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A B S T R A C T

In-situ monitoring is crucial for enhancing process quality control in laser powder bed fusion 
(LPBF). Currently, data-driven approaches in LPBF in-situ quality monitoring have shown 
remarkable success. However, existing data-driven methods often lack integration with physical 
knowledge, leading to the opacity of decision-making processes. Research on LPBF knowledge- 
data mixed-driven modeling is still relatively scarce. To address this gap, this paper proposes a 
deep graph network method guided by prior knowledge (MK-DGNet) for in-situ quality inspection 
based on coaxial melt pool images. In the proposed method, prior knowledge is first extracted 
based on understanding of melt pool. Then, the fusion module is used to place images and 
knowledge vectors in the same dimensional space. Finally, a deep graph network architecture is 
elaborately established, taking graph-formatted data as input to learn deep-layer relationships 
between nodes and edges. The superiority of MK-DGNet is demonstrated using publicly available 
NIST datasets and self-built CMPQ dataset. Additionally, explainable artificial intelligence 
methods are employed to explain the basis of network decisions and the effectiveness of prior 
knowledge. This research provides new methods and perspectives for addressing quality issues in 
the LPBF process.

1. Introduction

Additive manufacturing (AM), or 3D printing, creates parts directly from computer-aided design (CAD) models by layering ma
terials [1]. This technology enables the production of complex structures that are impossible to achieve with traditional methods. 
Currently, metal AM is undergoing a paradigm shift from prototyping parts to manufacturing them for final use. Among these tech
nologies, laser powder bed fusion (LPBF) stands out as one of the most promising. LPBF is widely used to manufacture high-precision, 
high-quality metal products [2,3].

However, LPBF process involves highly complex physical dynamics. Coupling factors such as powder quality, powder thickness, 
laser power, scanning speed, scan spacing, laser scanning pattern, gas environment, preheating of the build plate, and complexity of 
the part structure can lead to a high incidence of internal defects and geometric deformations [4–6]. Internal porosity is one of the 
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common defects in LPBF-formed parts, significantly compromising part’ s mechanical properties[7]. Extensive research has investi
gated the formation mechanisms and effects of three types of pores: lack-of-fusion, gas pores, and keyholes [8–10]. Hojjatzadeh et al. 
[11] reported six mechanisms of pore formation in LPBF, including induced pores from small holes, powder material gaps, metal vapor 
expansion causing boundary pores, surface fluctuations leading to pores, surface shallow depressions forming pores, and crack- 
induced pores. These findings provide further insights into pore formation in the LPBF process. These internal defects can further 
lead to decreased part density, degraded mechanical properties, and ultimately reduced repeatability of LPBF process [12]. Therefore, 
there is an urgent need to develop effective methods for in-situ monitoring of part quality during the printing process.

In-situ quality monitoring aims to prevent potential anomalies in metal additive manufacturing, ensuring that printed parts meet 
quality standards and avoiding issues such as excessive porosity or low density. It holds immense practical value, allowing for timely 
detection of internal defects and proactive measures to prevent damage to finished parts. A key method for in-situ quality monitoring 
in LPBF is “data-driven” approaches. It can leverage statistical and machine learning models to learn from in-situ data and make 
corresponding output decisions based on factors leading to decreased part quality. Traditional machine learning algorithms using 
manually extracted features [13–15] and deep learning algorithms utilizing convolutional neural networks [16–18] have achieved 
promising results, offering possible solutions for reducing porosity, increasing density, and improving part quality. However, if the 
manually selected features are inappropriate or insufficient, the algorithm’s performance may significantly decrease. Although deep 
neural networks have powerful learning capabilities due to rich network parameters and large-scale data, these networks often lack 
integration with physical knowledge, resulting in opaque decision-making processes, poor generalization, and limited interpretability.

To improve interpretability, significant effort has been invested in the areas of ex post interpretable analysis and ad hoc inter
pretable modelling [19]. While post hoc analysis seeks to explain the reasons behind obtained results, ad hoc modeling emphasizes the 
use of hybrid modeling constructs that combine expertise with neural networks to achieve a transparent decision-making process. 
Hybrid Driven Modeling(HDM), an ad hoc modeling approach, combines physical information with observational data [20]. HDM 
operates in three modes: physical information loss function, model architecture design, and input enhancement [21]. Compared to 
purely data-driven models, research indicates that HDM improves accuracy, generalization, and interpretability [22–24]. In recent 
years, researchers have also begun to explore the combination of HDM with the LPBF process [25,26]. Lu et al. [27] have developed a 
feature-based physics-constrained active dictionary learning framework for reconstructing thermal images collected during the fused 
filament fabrication and melt pool morphology images from LPBF experiments at NIST. This method integrates prior knowledge based 
on image features, enhancing the quality of reconstructed monitoring signals and improving the performance of state monitoring 
models. Liu et al. [28] developed an HDM model to predict the porosity by explaining the physical mechanisms and ranges of process 
parameters affecting porosity formation. Zhu et al. [29] proposed an HDM model that integrates the conservation laws of momentum, 
mass, and energy with data to adjust the learning process of neural networks, realizing prediction of melt pool characteristics. Du et al. 
[30] used simulation models for calculating the effects of process parameters and material properties on forming quality, aiming to 
predict balling phenomena. Ko et al. [31] introduced a physics knowledge-guided machine learning framework to address learning 
constraints of the process-structure–property (PSP) relationship in AM process. Through two sub-processes: knowledge graph-guided 
top-down and data-driven bottom-up, the framework is connected to decision and control activities as well as physical and virtual 
additive systems, achieving systematic PSP knowledge learning. The addition of knowledge provides greater interpretability to the 
network.

However, most current research transforms knowledge into Euclidean space and combines it with convolutional neural networks 
(CNNs). Although CNNs have shown effective performance in processing Euclidean spatial data, they have limitations in handling non- 
Euclidean spatial data. In fact, knowledge or knowledge graphs are more often presented as data in non-Euclidean space [31]. In a 
knowledge graph, nodes represent entities or concepts, while edges represent relationships or connections between them. Such 
complex relationships often cannot be simply represented by Euclidean spatial data. A graph is a general data structure where grids and 
sequences can be seen as special cases [32]. Recently, Graph neural networks (GNNs) have been increasingly applied by researchers to 
various detection tasks due to the ability to model the interdependencies between graph data [33]. Viewing sensor data as a graph is 
more flexible and effective for visual perception. Zhang et al. [34] converted acoustic signals into graph and applied a graph con
volutional neural network (GCN) to achieve fault diagnosis of rolling bearings. Li et al. [35] transformed vibration signals of rolling 
bearings into horizontal visibility graph and used GNNs to achieve fault classification. Mozaffar et al. [36] transformed the thermal 
data obtained from simulation into a graph and used graph recurrent neural networks (GRNN) to capture spatiotemporal dependencies 
of thermal responses, achieving predictions of thermal histories for different geometries in AM process. Researchers have also 
attempted to combine GNNs with LPBF. Zhu et al. [37] utilized graph structures to represent relationships between fatigue samples and 
employed GNNs with a multi-graph attention mechanism to predict high cycle fatigue life of titanium alloys. Jiang et al. [38] used 
GNNs to predict the tensile strength of lattice structures with different cell topologies. However, the application of GNNs for intelligent 
quality monitoring in LPBF remains to be explored. Additionally, graphs usually contain prior knowledge influencing the final results 
[33]. Most works do not consider prior knowledge when constructing graphs. Research on LPBF knowledge-data mixed-driven 
modeling is still relatively scarce.

Inspired by previous research, this study proposes a deep graph network approach based on melt pool prior knowledge guidance to 
achieve in-situ quality monitoring in LPBF. It involves fusing sensor data with melt pool prior knowledge and representing the data as a 
graph of nodes and edges according to the graph structure, allowing the prior knowledge to be involved in network training. However, 
testing the effectiveness of the prior knowledge poses a challenge. To address this limitation, we employ explainable artificial intel
ligence methods to evaluate the validity of the knowledge. The proposed depth graph network approach aims to incorporate the prior 
knowledge and a more generalized form of data in-situ monitoring printing quality. The main innovations and contributions of the 
methodology can be summarized as follows: 
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(1) We designed a deep graph neural network to achieve coaxial melt pool quality monitoring for LPBF. The proposed model was 
validated using the publicly available NIST dataset and the internally created CMPQ dataset. By processing data through a more 
flexible and generalized graph structure approach, it offers an alternative to traditional deep convolutional networks. This work 
provides a potential solution for real-time monitoring in LPBF.

(2) We designed a approach incorporating prior knowledge with raw sensor data. We selected physical, regional, and statistical 
information affecting melt pool quality as sources of prior knowledge and represented the data as a graph structure of nodes and 
edges, which participated in network training. The overall classification accuracy was improved, with significant enhancements 
observed in certain categories.

(3) We employed two explainable artificial intelligence methods to elucidate the basis of network decisions and the effectiveness 
and importance of incorporated prior knowledge. Visualizing the feature maps explained the quality of network feature 
extraction. By visualizing the attribution scores of melt pool images and prior knowledge, we explained the relationship be
tween melt pool morphology and quality, enhanced our understanding of the model’s decision-making process.

The remaining sections of the paper are structured as follows. Section 2 provides detailed information on the NIST and CMPQ 
datasets construction. Section 3 outlines the structure of the proposed methodology. Section 4 presents a comprehensive analysis of the 
performance and experimental results. Finally, Section 5 presents the conclusions and future work.

2. Datasets construction

The models presented in this paper were trained and validated using two datasets: the NIST dataset, as described in detail in [39], 
and the CMPQ dataset developed by the authors of this publication. Table 1 summarizes the constant parameters used during the 
creation of both datasets. The melt pool images of both datasets were acquired by the coaxial monitoring system, and the schematic 
diagram of the system is shown in Fig. 1. Coaxial melt pool images were captured by a modified high-speed camera mounted coaxially 
with the laser beam path. It means melt pool appears stationary within the field of view. The coaxial melt pool image acquisition 
system monitors melt pool by capturing morphology image frames fi ∈ RW×H, i = 1, 2 ,⋯,N with a near-infrared high-speed camera. 
W and H are the width and height of the image and N is the total number of melt pool images.

2.1. NIST dataset

The NIST dataset contains 12 cubes with dimensions of 10 mm × 10 mm × 5 mm. Each cube is printed with different scanning 
strategies and process parameters and is accompanied by a corresponding XYPT command file, including the x and y positions of the 
laser, power and trigger, as shown in Fig. 2. The coaxial imaging system for the NIST dataset is synchronized with the controller of the 
AM machine, capturing melt pool image frames when the trigger is set to 2. Comparison of the stored melt pool images with the 
markers of the XYPT command file shows that the image sequence is highly consistent with the triggers in the XYPT file. This alignment 
ensures the reliability and consistency of the acquired data. The XYPT file can be used to determine the location of the acquired melt 
pool image and the laser power at that point in time.

Furthermore, to ascertain the scanning speed associated with the melt pool image denoted as Fi, where i represents the frame 
number, it can be obtained through the laser positions S in frames i and i-1, and the interval time T between the two frames using the 
following equation: 

vi =
‖Si − Si− 1‖

T
(1) 

The laser positions can be directly extracted from the XYPT file, while T can be calculated by multiplying the recording interval of 
the triggers in the XYPT file by 10 us, where 10 us represents the time step for recording in the XYPT file [39].

Therefore, each melt pool image can be associated with its corresponding laser power and scanning speed. Ultimately, The NIST 
melt pool image dataset in this paper was established comprising 7 different combinations of laser power levels and scanning speeds in: 
P100_V900, P156_V800, P166_V500, P195_V500, P195_V800, P234_V800, and P60_V25, where ’P’ denotes laser power (W) and ’V’ 
denotes scanning speed (mm/s). The original data included over 40,000 combinations of different power and speed. Based on the 
number of image samples in each category and the actual scanning strategy, the 7 specific parameter combinations listed above were 
chosen as classification labels. However, there is still a significant difference in sample sizes among the selected 7 categories. For 
instance, the category P195_V800 with nominal laser power and scanning speed has over 240,000 samples, whereas the category 
P60_V25 has only about 1,000 samples, making the former approximately 240 times more numerous than the latter. To facilitate a 
more intuitive comparison of model performance and account for the impact of sample size on model training time, we randomly 

Table 1 
Constant parameters for NIST and CMPQ datasets.

Substrate material Powder material Layer thickness Laser beam diameter Bandwidth 
filter

Pixel 
size

Frame 
rate

Integration 
Time

NIST IN625 IN625 20 μm 85 μm 830–870 nm 8 μm 10KHZ 20 μs
CMPQ 316L 316L 50 μm 70 μm 700–950 nm 4.3 μm 3KHZ 0.25 ms
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Fig. 1. Coaxial melt pool monitoring system.

Fig. 2. XYPT file and corresponding melt pool image acquisition.

Fig. 3. (a) LPBF equipment. (b) Experimental parameter design. (c) Experimental final molding results.

Y. Zhang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 224 (2025) 111993 

4 



selected 900 melt pool images representing different scanning strategies for each category, ultimately forming a 7-class balanced 
dataset with 6,300 samples. The dataset was then split into training and validation sets in 9:1 ratio, with 5,670 melt pool images in the 
training set and 630 images in the validation set. It is worth noting that this remains a challenging classification task. Due to variations 
in scanning path and thermal conditions, even with the same laser power and scanning speed, there is significant uncertainty in the 
shape and size of the melt pool, with the melt pool area varying up to five times [40]. In the constructed NIST dataset, each category 
includes the effects of different scanning strategies, there is still considerable uncertainty in melt pool images.

2.2. CMPQ dataset

2.2.1. Experiment setup and data registration
The experiments were carried out on an EP-M250 (Hangzhou Shining Eplus 3D Tech Co., Ltd.), and the appearance of the machine 

is shown in Fig. 3(a). The build size of the print chamber is 262 × 250 × 300 mm3. We printed 5 mm × 5 mm × 5 mm cube parts using 
128 combinations of laser power (ranging from 50 to 400 W) and scanning speed (ranging from 100 to 1600 mm/s) to comprehen
sively cover the different energy density, producing parts with varying qualities. The energy density is defined as follows: 

E =
P

V.H.T
(2) 

where P represents laser power, V represents scanning speed, H represents hatching distance, and T represents layer thickness. The 
specific parameters are shown in Fig. 3(b). The raw material was 316L stainless steel powder with a particle size of about 5–53 μm. 
Table 2 summarizes the actual chemical composition content as well as the particle size distribution of the 316L powders in the ex
periments. The layer thickness was set to 50 μm, the layer rotation angle to 90◦, and the hatching distance to 110 μm. In addition, 
insufficient energy density leads to lack of fusion and incomplete parts. Excessive energy density can cause severe super-elevation and 
over melt, disrupting the formation of other parts in subsequent layers. It’s necessary to remove parts that cannot be formed or 
experience severe super-elevation during the printing process. The experiment stabilized after printing 20 layers, and there was no 
need to unload additional parts afterward. The final results, shown in Fig. 3(c), included 98 successfully printed parts.

In self-built coaxial melt pool monitoring system, the high-speed camera is the Ximea xiQ–USB3 Vision Camera, MQ013xG-ON 
model, with the resolution of 96 × 100 pixels and the pixel size of 4.8 µm. The frame rate is 3000 fps, and the exposure time is set 
to 0.25 ms. This acquisition system samples using its own clock and is not synchronized with the AM machine’s controller. In general, 
LPBF system determines the geometry and location of the part based on the imported design file. Recognizing part features, the system 
slices the part into multiple layers and generates the actual scan path for each layer based on the contours of each slice and the user’s 
scanning strategy. In this study, serpentine scanning strategy is used for scanning parts. Laser shuts off briefly and melt pool disappears 
when laser moves beyond the part’s contour during the printing process. This duration is defined as the turning time tturn. During this 
period, the gray level of melt pool image captured is much lower than when laser is turned on. A similar pattern is observed when the 
laser moves to the starting point of scanning the next part after completing the previous part, defined as the transition time ttransition. 
Transition time is much greater than turning time, i.e., ttransition ≫ tturn. Therefore, tturn and ttransition are used to differentiate melt pool 
images into different sets corresponding to different paths and parts as shown in Fig. 4.

2.2.2. CMPQ dataset construction
In real-world scenarios, we usually focus more on the quality of the printed parts. Therefore, in-situ monitoring data have 

frequently been used to detect defects, predict or control AM part quality [41,42]. According to the type of porosity and density, parts 
are generally classified into different labels such as high quality, medium quality, low quality or lack of fusion, conductive modes and 
keyholes. This type of research focuses on linking sensor data generated by combinations of process parameters to part quality, which 
helps identify changes in part quality caused by slight perturbations in process parameters. To facilitate comparative analysis with 
existing LPBF research, we also mapped in-situ monitoring data to part quality in this study, using post-processed quality labels of high, 
medium, and low. However, merely using high, medium, and low labels might lead the model to find shortcut solutions, resulting in 
simplification. Therefore, in the ablation experiment, we also conducted a study on directly identifying subtle changes in process 
parameters similar to the labels used in NIST dataset for ensuring that our results are not affected by model oversimplification.

Currently, the industry standard for monitoring the quality of parts related to porosity and density is X-ray. However, obtaining 
density and porosity data for multiple samples via X-ray is both expensive and time-consuming. The Archimedes method provides a 
faster and more economical way to collect density data for multiple samples. To reduce measurement errors, the experiment was 
repeated five times for each sample, ensuring the sample remained dry and clean throughout. Obvious outliers due to improper 
operation were excluded, ensuring at least three valid measurements per sample. The sample’s density (ρ) and relative density (η) is 
defined as follows: 

Table 2 
Chemical compositions and particle size distribution of 316L powder.

Chemical Composition (%) Particle Size Distribution (μm)
Si C Cr S Ni P Mo Mn Fe D10 D50 D90

0.38 0.007 17.08 0.003 10.73 0.021 2.42 0.45 Bal. 19.10 33.10 56.50
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ρ =
m1

m1 − m2
× ρliquid, η =

ρ
ρʹ (3) 

where m1 represents the mass of the sample in air (g), m2 represents the mass of the sample is immersed in liquid (g), ρliquid represents 
the density of liquids (g/cm3), and ρ́  represents the theoretical density (g/cm3). In this experiment, the liquid was distilled water 
(
ρliquid = 1g/cm3). The theoretical density of 316L stainless steel is 7.98g/cm3.

Fig. 5(a) illustrates the histogram of part’s relative density. Based on these measurements, parts were annotated and paired with 
corresponding melt pool images to create a labeled dataset, termed the Coaxial Melt Pool Quality (CMPQ) dataset. This dataset cat
egorizes parts into three quality classes: high quality (density ≥98 %), medium quality (95 % ≤density <98 %), and low quality 
(density ≤95 %). The thresholds of 95 % and 98 % were determined by considering the average distribution of image data and actual 
working conditions. As shown in Fig. 5(b), the distribution of samples across different quality classes in the CMPQ dataset is depicted. 
From each part, 200 images were randomly selected as corresponding melt pool data, resulting in 19,600 melt pool images in total. The 
dataset was then split into training and validation sets in a 9:1 ratio, with 17,640 melt pool images in the training set and 1,960 images 
in the validation set.

3. Methodology

The method aims to achieve in-situ quality inspection based on deep graph networks guided by melt pool prior knowledge (MK- 
DGNet). Fig. 6 illustrates the general framework of the proposed method, which consists of two main components: knowledge vector 
acquisition and depth graph network construction. By combining prior knowledge with image data and transforming it into graph 
representation, its advantages include: 1) Transparent decision-making process achieved by combining domain expert knowledge with 
neural networks; 2) Decision-making using graph structures allows for more flexible modeling of complex objects, as graph is a 
generalized data structure where grids and sequences can be viewed as special cases; 3) Advanced research in Graph Neural Networks 
(GNNs) can be transferred to online monitoring in LPBF.

Fig. 4. Laser scanning path and Melt Pool data registration.

Fig. 5. (a) Histogram of part relative density. (b) Distribution of quality classes in CMPQ dataset.
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3.1. Melt pool prior knowledge

The interpretation of “knowledge” varies across different domains. In linguistic, knowledge is understood as the comprehension or 
information about a subject acquired through experience or research. In additive manufacturing, “knowledge” pertains to a repository 
of process models, statistical inferences, data, or other information sources that can be extrapolated and transferred across materials, 
machines, and part types. Melt pool refers to the liquid area formed when a laser irradiates the surface of metal powder. The quality 
and stability of melt pool directly affect the microstructure and mechanical properties of the final part. Monitoring the melt pool in 
LPBF and other metal 3D printing processes is crucial, as various melt pool information has been widely utilized in online quality 
inspection of LPBF processes [43–45]. In this study, melt pool serves as the object for acquiring prior knowledge, represented as a one- 
dimensional vector. Three physically intuitive melt pool features, three region features, and four statistically based general features are 
designed, representing the melt pool prior knowledge to guide network training. It is worth noting that the form of prior knowledge is 
not entirely fixed, and with deeper understanding of the LPBF process, higher-dimensional knowledge can be extracted for subsequent 
integration into network training to guide the training process further.

Specifically, as depicted in Fig. 7, these features were obtained through the extraction of the region of interest (ROI), median 
filtering, and binary thresholding. The center of the melt pool corresponds to the point of direct contact between the laser and the 
material, where the temperature is highest, energy density is maximum, and pixel brightness is highest. By summing each pixel along 
rows and columns separately, the maximum pixel values in the horizontal and vertical directions are located to determine the position 
of melt pool center. Using this center as reference, 32 × 32 size region of interest (ROI) is cropped to ensure extraction of the primary 
area containing melt pool. The 32 × 32 ROI size was determined through repeated experiments based on the characteristics of the NIST 

Fig. 6. The framework of the proposed MK-DGNet.

Fig. 7. Process of melt pool feature extraction.
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and CMPQ datasets. Additionally, median filtering with a 3 × 3 filter kernel size reduces image noise and enhances melt pool effect. 
During binarization, an adaptive thresholding method is utilized to fully extract the melt pool region and generate its bounding 
rectangle. Subsequently, the area, length, and width of the melt pool are calculated. Melt pool area (MA) can be computed using 
Green’s formula: 

MA =

∮

C
xdy − ydx (4) 

where C represents the contour of melt pool, and x, y are coordinate functions of the contour curve C. Additionally, melt pool length 
(ML) and melt pool width (MW) are determined by identifying the minimum area bounding rectangle enclosing melt pool region. ML 
denotes the length of this rectangular boundary, and ML denotes its width.

Region features summarize the key geometric characteristics, aiding in deeper understanding of structural properties. Compact
ness, circularity, and eccentricity are crucial for learning melt pool characteristics. Melt pool compactness (MCP) measures the degree 
of pixel aggregation within melt pool, where higher compactness indicates clear boundaries and regular shapes. MCP is defined as: 

MCP =
Perimeter2

MA
(5) 

where Perimeter denotes melt pool perimeter. On the other hand, melt pool circularity is crucial for evaluating shape consistency. Melt 
pool with lower circularity values may exhibit irregular shapes or deviate from the ideal state, potentially impacting part’s quality. 
Melt pool circularity (MCIR) holds particular significance in detecting irregular and abnormal melt pool. MCIR is calculated by the 
following formula: 

MCIR =
4π • MA

Perimeter2 (6) 

Although MCP and MCIR have similar expressions, they have different region meanings. The network can capture their deep re
lationships through complex feature extraction. Eccentricity is also one of the key features describing the shape of melt pool. Lower 
eccentricity values indicate that the melt pool shape is close to circular, while higher eccentricity values indicate that the melt pool has 
a more elongated or stretched shape. Melt pool eccentricity (MEC) can be defined as the ratio of the ellipse’s focal length (2c) to its 
major axis (2a), which is represented as follows: 

MEC =
2c
2a

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − b2

√

a
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
b
a

)2
√

(7) 

where b represents the length of the semi-minor axis. Additionally, statistical features comprehensively summarize the distribution 
characteristics of melt pool image intensity, providing valuable prior information for subsequent analysis and decision-making. These 
features include ROI’s brightness mean (RBM), variance (RV), kurtosis (RK), and skewness (RS). RBM and RV can reflect the brightness 
and uniformity of the melt pool, while RK and RS can unveil the shape and symmetry of the intensity distribution of the melt pool.

Fig. 8. Knowledge vectors for different melt pool quality.
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The comprehensive analysis of intuitive physical features, region features, and statistical features enables a thorough assessment of 
the morphology, structure, and quality of the melt pool, providing researchers with crucial reference information. This aids in opti
mizing the melt pool formation process and improving the quality of parts. In this study, the aforementioned 10 parameters were 
combined into a one-dimensional prior knowledge vector. To ensure fair comparison, input data were normalized to the range [0, 1] 
using min–max normalization: 

xʹ =
x − min(x)

max(x) − min(x)
(8) 

This normalization scales the numerical range of each parameter, avoiding biases introduced by different magnitudes and ensuring 
equal treatment during model training. Fig. 8 illustrates the knowledge vectors of melt pools with different qualities.

3.2. Fusion of prior knowledge and images

The depth graph network designed in this study utilizes a dual-input framework of images and knowledge vectors. In this 
framework, knowledge vectors are represented as one-dimensional vectors of length 10, while images are two-dimensional infor
mation. To effectively integrate prior knowledge into the network training process, we introduce fusion module. This module merges 
one-dimensional and two-dimensional information, aligning both the image and the knowledge vector within the same dimensional 
space.

The inspiration for this design stems from the application of fully connected (FC) layer neurons in deep learning, where one- 
dimensional information is typically processed. Typically, 2–3 FC modules are employed for classification tasks, with the number 
of neurons in the final FC layer being fewer than the preceding 1–2 layers. The rationality behind this design is to gradually reduce the 
complexity. In this study, we reverse this concept. Firstly, we expand one-dimensional vectors to increase their node count, and then 
transform them into two-dimensional pseudo-images. Meanwhile, by leveraging the downsampling and upsampling capabilities of 
convolutional and deconvolutional layers, we can flexibly adjust their sizes and channel numbers to scale the original images and 
pseudo-images to a fixed size. The purpose of this process is to uniformly process data from different input sources and enable seamless 
interaction within the network.

Specifically, the Vector-Transform operation first applies two linear transformations to the input vector of length 10, mapping it to 
lengths of 24, and 49. Subsequently, the vector of length 49 is adjusted to form a pseudo-image of size 7 × 7. The pseudo-image 
undergoes two transposed convolutions for upsampling, resulting in final size of 56 × 56 and the channel count of 16. Choosing a 
smaller channel count aims to reduce the model’s parameter count. During the image transformation process, the input image size was 
first adjusted to 224 × 224 to align with the conventional input size used by classic end-to-end CNNs. If the size is not adjusted before 
input, the structure of CNNs would require significant modification to function properly, which could impact their performance. This 
adjustment facilitates subsequent comparative analysis. Then, we applied suitable convolution operation to deflate the image size, 
ultimately obtaining an output with dimensions of 64 × 56 × 56. The sizes of knowledge vectors and melt pool image changes in the 
fusion module are shown in Fig. 9. Conv-K-S-P-C denotes that the size of convolution kernel is K × K, the size of stride is S, the size of 
padding is P, and the number of channels is C. Up-Conv-K-S-P-C denotes transposition convolution, and the meaning of the parameters 
is the same as that of convolution kernel.

3.3. Depth graph network construction

For data of size H × W × C, we could divide it into N data blocks [46]. Each data block is transformed into a feature vector xi ∊R D, 

Fig. 9. Fusion module setting.
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resulting in R = [ x1 x2 ⋯ xN ], where D is the dimension of the features, and i = 1,2, ⋯ ,N. These features can be considered as a set 
of unordered nodes. The number of nodes N is set as 196. The distance d

(
xi , xj

)
between nodes xi, xj∊R[xN] is computed as follows: 

d
(
xi, xj

)
= ‖xi − xj‖

2
=

∑D

k=1

(
xik − xjk

)2 (9) 

By comparing the distance between xi and other nodes, We can find K nearest neighbors N(xi) for xi. For each xj∊N(xi), we create an 
edge eji from xj to xi, where the edge weight is the distance between the two nodes. Then we obtain a graph G = (X,E) , where E 
represents all the edges.

For a graph G = (X,E), graph convolutional layers can leverage the topology and connectivity of nodes to extract high-dimensional 
features from the graph. The core of the graph convolution operation is to aggregate the features of each node’s neighboring nodes 
[32,47]. Through this process, each node integrates information from its surrounding nodes, reflecting it in its own feature repre
sentation. This aggregation and updating process aids in capturing both the global structure and local features of the graph, providing 
rich input features for subsequent graph-related tasks. Specifically, graph convolution operates as follows: 

Gʹ = F(G, W) = Update
(
Aggregate

(
G,Wagg

)
,Wupdate

)
(10) 

where Wagg and Wupdate are the learnable weights of the aggregation and update operations, respectively. More specifically, the ag
gregation operation computes a representation of a node by aggregating features of neighboring nodes, and the update operation 
further merges the aggregated features: 

xʹ
i = h

(
xi, g

(
xi,N (xi),Wagg

)
,Wupdate

)
(11) 

where N
(
xl

i
)

denotes the set of neighboring nodes of xl
i. To demonstrate the flexibility and effectiveness of the method, we adopt the 

maximum relative graph convolution as the operation for graph convolution, as it is both simple and efficient [48],which is repre
sented as follows: 

g( • ) = xʹ́
i =

[
xi,max

( {
xj − xi

⃒
⃒j∊N (xi)

})
] (12) 

h( • ) = xʹ
i = xʹ́

i Wupdate (13) 

The bias term is omitted. The graph-level processing described above can be represented as: 

Xʹ = GraphConv(X) (14) 

Further, the multi-head update operation of graph convolution is introduced. The aggregated feature xʹ
i is first divided into h heads, 

namely head1, head2, …,headh. Then, these heads are updated separately using different weights. All heads can be updated in parallel 
and concatenated to form the final value. 

Xʹ =
[
head1W1

update, head2W2
update, ⋅ ⋅ ⋅, headhWh

update

]
(15) 

The multi-head update operation allows the model to update information in multiple representation subspaces, promoting feature 
diversity. Also, linear layers can be applied before and after graph convolution to project node features into the same domain and 
increase feature diversity. Additionally, Non-linear activation functions is inserted after graph convolution to prevent layer collapse. 
We refer to the upgraded module as the “Grapher” module. In practice, given input features X∊RN×D, the Grapher module can be 
represented as: 

Y = σ(GraphConv(XWin)Wout +X (16) 

where Y∊RN×D, Win and Wout are the weights of the fully connected layers, and σ is the activation function. To further enhance the 
feature transformation capability and alleviate the over-smoothing phenomenon, we employ a feed-forward network (FFN) at each 
node. The FFN module is a simple multi-layer perceptron consisting of two fully connected layers: 

Z = σ(YW1)W2 +Y (17) 

where Y∊RN×D, W1 and W2 are the weights of the fully connected layers, and the bias terms are omitted. The hidden dimension of the 
FFN is typically greater than D. In both the Grapher and FFN modules, batch normalization is applied after each fully connected layer 
or graph convolutional layer. The stacking of Grapher modules and FFN modules forms the basic building blocks of the Depth-Graph- 
Net block.

Based on the data’s graph representation and the proposed Depth-Graph-Net block, we can construct the deep graph network 
guided by melt pool prior knowledge (MK-DGNet) for the task of in-situ quality inspection. Referring to the pyramid structure of 
traditional deep convolutional networks, as the network deepens, the spatial dimensions of the feature maps gradually decrease, which 
leverages the scale invariance of images to generate high-dimensional features. Specifically, as the network progresses, the input data 
dimensions (H, W, C) will see reductions in H and W while the dimension C increases. The data size variations of MK-DGNet are 
summarized in Table 3.
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4. Result and discussion

In this study, we evaluated 10 different deep learning models, including models that solely used melt pool images for classification: 
VGG16 [49], GoogLeNet [50], ResNet50 [51], MobileNetV2 [52], and DGNet, as well as their improved versions. The enhanced 
versions involved integrating melt pool prior knowledge into the aforementioned models and incorporating it into network training. 
These improved models are respectively named MK-VNet, MK-GNet, MK-RNet, MK-MMet, and the proposed MK-DGNet. VGG16 ex
tracts features by increasing the depth of the network, with the classification part employing three fully connected layers for classi
fication. GoogLeNet extracts information from images at different scales through multiple convolutional kernels, and finally merges 
them to obtain different representations of the image. ResNet50 utilizes residual blocks to extract features, and the classification part 
consists of a combination of Global Average Pooling (GAP) and one fully connected layer. MobileNetV2 is characterized by faster 
training speed and fewer parameters, making it suitable for deployment on mobile devices. MK-DGNet and DGNet capture deep 
features of the data in graph manner, with MK-DGNet integrating melt pool prior knowledge to guide network training.

We evaluated the performance of our models using both the publicly available NIST dataset and the dataset we created ourselves, 
named CMPQ. To ensure fair comparison, they were trained on a single NVIDIA RTX 3060 GPU and all models were trained for 100 
epochs with a batch size of 32. We utilized the Adam optimizer with a learning rate set to 0.001 for all experiments. Additionally, we 
incorporated label smoothing techniques into the model training process. This technique involves smoothing the cross-entropy loss 
between predicted probabilities and ground truth labels, encouraging the model to produce more calibrated probabilities and reducing 
the risk of overfitting to noisy labels. The loss function is represented as follows: 

Loss = −
1
N
∑N

i=1
(1 − α) • yi • log(ŷi) − α •

1
N
∑N

i=1
log(ŷi) (18) 

where y represents the probability distribution of the ground truth labels, yi is the probability of the i-th class, ŷi signifies the model’s 
predicted probability for the i-th class, and α is the smoothing factor set to 0.01.

4.1. Model performance

Table 4 presents the accuracy (ACC) and F1-score (F1) of different models on the NIST and CMPQ datasets, as well as the states of 
the models (underfitting UF, overfitting OF, normal fitting NF, oscillation OSC). The proposed MK-DGNet performs excellently on the 
NIST dataset, achieving the highest ACC and F1 among all the compared models, with values of 85.56 % and 85.60 %, respectively. 
Compared to traditional CNNs, MK-DGNet shows significant performance improvements in ACC ranging from 5.09 % to 12.54 % and 
in F1 ranging from 4.95 % to 12.43 %. The ACCs of traditional CNNs (VGG16, GoogLeNet, ResNet50, and MobileNetV2) are 80.47 %, 
73.02 %, 77.78 %, and 76.03 %, respectively, and their F1 are 80.65 %, 73.17 %, 77.80 %, and 75.94 %, respectively. Compared to the 
large-parameter VGG16, MK-DGNet’s ACC and F1 improved by 5.09 % and 4.95 %, respectively, while reducing the parameter count 
by 108.36 MB and the number of FLOPs by 11.22G. Compared to ResNet50 with similar number of parameters and FLOPs, MK-DGNet’s 
ACC and F1 improved by 7.78 % and 7.8 %. Compared to GoogLeNet and the lightweight MobileNetV2, MK-DGNet’s ACC improved by 
12.54 % and 9.53 %, and F1 improved by 12.43 % and 9.66 %, respectively. On the self-created CMPQ dataset, compared to traditional 
CNNs, MK-DGNet also maintained the highest ACC and F1 at 96.34 % and 96.37 %, showing improvements ranged from 1.52 % to 4 %, 
and ranged from 1.53 % to 3.91 %, respectively. Compared to VGG16′s 93.83 % and 93.87 %, MK-DGNet’s ACC and F1 improved by 
2.51 % and 2.5 %; compared to GoogLeNet’s 92.95 % and 93.05 %, they improved by 3.39 % and 3.32 %; compared to ResNet50′s 
94.85 % and 94.84 %, they improved by 1.5 % and 1.53 %; compared to MobileNetV2′s 92.34 % and 92.46 %, they improved by 4 % 

Table 3 
Size variation of MK-DGNet. H × W: input data size, D: feature dimension, E: hidden dimension ratio 
in FFN, K: number of neighbors in graph convolution.

Stage Output size MK-DGNet

Fusion module H/4 × W/4 Vector-Transform 
Image-Transform

Stage1 H/4 × W/4
⎡

⎣
D = 80
E = 4
K = 9

⎤

⎦× 2

Downsample H/8 × W/8 Conv-3–2-1–160
Stage2 H/8 × W/8

⎡

⎣
D = 160

E = 4
K = 9

⎤

⎦× 2

Downsample H/16 × W/16 Conv-3–2-1–160
Stage3 H/16 × W/16

⎡

⎣
D = 160

E = 4
K = 9

⎤

⎦× 6

Downsample H/32 × W/32 Conv-3–2-1–640
Stage4 H/32 × W/32

⎡

⎣
D = 640

E = 4
K = 9

⎤

⎦× 2

Head 1× 1 Pooling&MLP
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and 3.91 %. MK-DGNet consistently achieved the highest ACC and F1 on both datasets. Considering the overall performance in terms of 
parameter size, computational load, and model performance, MK-DGNet achieves optimal results with relatively lower computational 
and storage consumption, effectively reducing memory usage and saving computational resources. It is worth noting that while the 
runtime in the table does not show significant differences during the testing of each model, actual deployment time can be influenced 
by various factors such as GPU computation speed and data loading methods.

To further illustrate the effectiveness of the proposed MK-DGNet, Figs. 10 and 11 show the convergence of loss with epochs for 
different models on the NIST and CMPQ datasets. Compared to other models, MK-DGNet achieves the lowest training and validation 
loss on both the NIST and CMPQ datasets. Specifically, on the NIST dataset, compared to other models, MK-DGNet maintains the lowest 
training and validation loss levels after the 20th epoch. On the CMPQ dataset, MK-DGNet’s training and validation losses nearly 
remained at the lowest levels after the 20th epoch. MK-DGNet not only performs excellently on both datasets but also demonstrates 
effective optimization during training. Fig. 12 show the changes of validation accuracy with epochs for different models on the NIST 
and CMPQ datasets. Compared to other models, MK-DGNet’s validation accuracy increases rapidly and remains at the highest level 
after the 20th epoch, consistent with the changes in loss.

Furthermore, comparing CNNs that incorporate prior knowledge of melt pool (MK-VNet, MK-GNet, MK-RNet, MK-MMet) with 
corresponding traditional CNNs (VGG16, GoogLeNet, ResNet50, MobileNetV2), we observed significant differences in performance. 
Specifically, MK-VNet and MK-GNet performed poorly compared to VGG16 and GoogLeNet on both datasets. On the NIST dataset, MK- 
VNet’s validation loss increased with more epochs, indicating clear overfitting. Meanwhile, MK-GNet’s loss did not decrease signifi
cantly, and its ACC and F1 were relatively low, indicating underfitting. This indicates that the integrated prior knowledge have had a 
negative impact on the network’s guidance. From Figs. 10(b) and 11(b), it is evident that ResNet50′s validation loss exhibited os
cillations, possibly due to the residual structure introducing excessive redundant parameters, causing the network to learn unnecessary 
details. In contrast, MK-RNet, integrating melt pool prior knowledge, effectively mitigated ResNet50′s oscillation issue and achieved a 
0.65 % improvement in ACC and F1 score on the CMPQ dataset. This indicates that integrated prior knowledge had a positive effect on 
the network guidance. Additionally, compared to MobileNetV2, MK-MNet shows a decrease in ACC and F1 on the NIST dataset by 2.54 
% and 2.42 %, respectively, but has a slight improvement on the CMPQ dataset, with increases of 0.87 % and 0.83 %. Overall, the 
guidance effect of prior knowledge varies significantly across different types of CNNs. For MK-DGNet and DGNet capturing deep data 
features through graph structures, MK-DGNet outperforms DGNet with an increase of 6.04 % and 6.17 % in ACC and F1 on the NIST 
dataset, rising from 79.52 % and 79.43 % to 85.56 % and 85.60 %, respectively. On the CMPQ dataset, MK-DGNet improves the ACC 
and F1 scores by 2.21 % and 2.17 %, respectively, increasing from 94.13 % and 94.20 % to 96.34 % and 96.37 %. Furthermore, the 
performance of DGNet on both datasets indicates that even without integrating prior knowledge, processing images using graph-based 

Table 4 
Classification performance of different model on NIST, CMPQ dataset.

Model FLOPs (G) Parameter (M) NIST CMPQ Validation Time (s/batch)

ACC (%) F1 (%) Model State ACC (%) F1 (%) Model State

VGG16 15.47 134.29 80.47 80.65 NF 93.83 93.87 NF 0.146
GoogLeNet 1.58 5.98 73.02 73.17 NF 92.95 93.05 NF 0.140
ResNet50 4.13 23.52 77.78 77.80 OSC 94.85 94.84 OSC 0.183
MobileNetV2 0.33 2.23 76.03 75.94 NF 92.34 92.46 NF 0.122
DGNet 4.36 25.98 79.52 79.43 NF 94.13 94.20 NF 0.135
MK-VNet 15.24 134.27 53.49 52.73 OF 92.45 92.53 NF 0.219
MK-GNet 1.55 5.98 54.76 53.12 UF 86.17 86.28 NF 0.126
MK-RNet 4.10 23.52 76.67 76.88 NF 95.50 95.49 NF 0.192
MK-MNet 0.35 2.26 73.49 73.52 NF 93.21 93.29 NF 0.141
MK-DGNet 4.25 25.93 85.56 85.60 NF 96.34 96.37 NF 0.166

Fig. 10. Loss curves of different models on NIST dataset. (a) Train Loss. (b) Validation Loss.
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methods can achieve results similar to traditional CNNs. These results not only demonstrate that viewing sensor data as graph 
structures is effective, but also highlight that the MK-DGNet framework is better at integrating prior knowledge than CNNs. Proper 
integration of prior knowledge is crucial for enhancing model performance.

Additionally, the working characteristic curve (ROC) of MK-DGNet and its area under the curve (AUC) are presented in Fig. 13. The 
ROC curve provides an intuitive understanding of the model’s performance across different classes by showing the relationship be
tween the true positive rate and false positive rate. Meanwhile, the AUC, as the area under the ROC curve, offers a concise metric for 
comprehensively evaluating the model’s performance, with values closer to 1 indicating better performance. It can be observed that 
MK-DGNet achieves AUC values of 0.95 or higher for predicting seven classes on the NIST dataset. Specifically, for predicting the 
classes P100_V900 and P60_V25, the AUC reaches 1.00. The average AUC score is 0.97 on the NIST dataset. Moreover, on the CMPQ 
dataset for predicting the high, medium, and low quality of the melt pool, the AUC reaches 0.99. These results demonstrate that MK- 
DGNet exhibits robustness, accurately and reliably predicting the state and quality of melt pools during the laser additive 
manufacturing process.

Fig. 11. Loss curves of different models on CMPQ dataset. (a) Train Loss. (b) Validation Loss.

Fig. 12. Validation accuracy curves of different models. (a) NIST dataset. (b) CMPQ datasets.

Fig. 13. ROC curve of MK-DGNet. (a) NIST dataset. (b) CMPQ datasets.
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To further illustrate the effectiveness of incorporating prior knowledge, Figs. 14 and 15 display the confusion matrices of MK- 
DGNet and DGNet on NIST and CMPQ datasets. These matrices provide insights into the performance of the network classification 
models. Each row represents the actual class, while each column represents the predicted class by the model. For example, consider the 
first row in Fig. 15(a). The value 0.97 indicates that 97 % of samples in the P100_V900 category are correctly classified by the model. 
The last column in the same row shows 0.02, indicating that 2 % of samples in P100_V900 are incorrectly classified as P60_V25. An 
ideal classifier would produce a confusion matrix with values of 1 on the diagonal (representing 100 % correct classifications) and 
0 elsewhere (indicating no misclassifications).

From Fig. 14, the confusion matrix indicates that MK-DGNet and DGNet achieve nearly 100 % accuracy on the P100_V900 and 
P60_V25 categories in the NIST dataset. For other categories, MK-DGNet shows significant improvements compared to DGNet. For 
other categories, MK-DGNet shows significant improvements compared to DGNet. Specifically, classification accuracies for P166 
V500, P195 V500, and P195 V800 are improved by 10 %, 17 %, and 9 %, respectively. Additionally, P156 V800 and P234 V800 show 
modest improvements of 3 % and 4 %, respectively. For the CMPQ dataset, MK-DGNet also demonstrates a 1–3 % improvement in the 
classification accuracy for high, medium, and low melt pool quality categories, as shown in Fig. 15. The performance on both datasets 
suggests that the incorporation of prior knowledge effectively supplements the network’s features, guiding and participating in 
network training.

4.2. Visualization

To further elucidate the effectiveness of incorporating prior knowledge and the importance of corresponding knowledge, we 
employ interpretable methods to decouple networks and elucidate the causal relationships between inputs and outputs of machine 
learning models. This is particularly essential for the development of online monitoring models for LPBF, as the relationship between 
process parameters and part quality is not yet fully understood [53]. Through interpretability methods, we can gain a deeper un
derstanding of the model’s perception capabilities, enhancing the reliability of deep learning approaches.

T-SNE is a popular high-dimensional data visualization method because it can map high-dimensional data into two- or three- 
dimensional space. We apply t-SNE to transform the NIST and CMPQ validation sets into two-dimensional space, and the results 
are depicted in Fig. 16. As shown in Fig. 16(a), the NIST raw data for P100_V900 and P60_V25 show a clustering trend, while other 
categories have significant overlap. This could be attributed to the fact that these categories represent transition processes, meaning 
they occur at the edges of parts, during laser steering, or at region boundaries, where the process conditions are relatively simple. 
Conversely, other categories involve various scanning strategies such as serpentine, back-and-forth, re-melt, and island patterns. These 
complex conditions lead to significant variations in melt pool, resulting in considerable overlap in the original data in the low- 
dimensional space. Fig. 16(b) indicates that although the CMPQ original data also show overlap in the low-dimensional space, 
different categories of samples have begun to exhibit clustering trend. This could be attributed to the fact that the variation in CMPQ 
melt pool quality is mainly caused by changes in P and V, with fewer influencing factors compared to the NIST dataset, resulting in 
lower complexity than NIST dataset.

The network utilized in this study can be summarized as comprising a feature extractor and a fully connected layer classifier. The 
feature extractor is employed to extract high-dimensional features of melt pool, while the fully connected layer maps these high- 
dimensional features to specified categories. To evaluate the effectiveness of different networks in feature extraction for quality 
monitoring, we utilized t-SNE to analyze the feature extractors of VGG16, GoogLeNet, ResNet50, and MK-DGNet. Specifically, we 
visualized the outputs of the feature extractors on the NIST and CMPQ test sets, which are the inputs to the fully connected layer. the 
results are depicted in Figs. 17 and 18. On the NIST dataset, the four models effectively separated the features of P100_V900 and 
P60_V25, confirming the confusion matrix results shown in Fig. 14(a) and the patterns illustrated in Fig. 16(a). However, as shown in 
Fig. 17(a, b, c), there remains significant overlap among other categories in the feature space of the three CNNs. In contrast, in the low- 
dimensional feature space of MK-DGNet as shown in Fig. 17(d), although some feature overlap among other categories still exists, the 
center distances of different categories are increasing, moving away from the overlapping region, and the samples show a tendency to 

Fig. 14. Confusion matrix on NIST dataset. (a)MK-DGNet. (b) DGNet.
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Fig. 15. Confusion matrix on CMPQ dataset. (a)MK-DGNet. (b) DGNet.

Fig. 16. T-SNE Visualization on Raw Data. (a) NIST Validation Set. (b) CMPQ Validation Set.

Fig. 17. Different models T-SNE visualization on NIST Validation Set. (a) VGG16. (b) GoogLeNet. (c) ResNet50. (d) MK-DGNet.

Fig. 18. Different models T-SNE visualization on CMPQ Validation Set. (a) VGG16. (b) GoogLeNet. (c) ResNet50. (d) MK-DGNet.
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cluster around their respective centers. On the CMPQ dataset, although the different networks all show great feature space distribution, 
VGG16 and GoogLeNet still have a few overlapping features among different categories, while ResNet50 and MK-DGNet demonstrate 
clearer decision boundaries, as shown in Fig. 18. These results show that MK-DGNet outperforms these CNNs in feature extraction 
quality. The superior performance may be attributed to the fact that variations in process conditions impact the dynamic behavior of 
the melt pool, which affects the characteristics of melt pool in turn. MK-DGNet incorporate the characteristics of melt pool variations 
through prior knowledge of graph forms, improving feature extraction quality.

Furthermore, we employed another interpretability method to elucidate the relationship between network inputs and outputs. The 
Integrated Gradients method is a technique used to explain the predictions of deep learning models [54]. Integrated gradients measure 
the contribution of specific knowledge feature to the model’s decision by calculating the accumulated gradients of the specific 
knowledge input to the model output. Integrated Gradients are defined as the path integral of gradients along a straight path from a 
baseline xʹ to the input x. The baseline is typically chosen as either the zero vector or an all-black image. The integrated gradient along 
the i-th dimension between the input x and the baseline x́  is defined as follows, where F(x) represents the output of the neural network 
model. 

IntegratedGradsi(x) ::=
(
xi − xʹ

i
)
×

∫ 1

α=0

∂F(xʹ + α × (x − xʹ) )
∂xi

dα (19) 

Integrated Gradients can provide insights into which input features have the most significant impact on the classification within a 
neural network. It offers direct causal explanations between inputs and outputs without requiring any prior knowledge of LPBF 
physics. This method facilitates an intuitive understanding of the model’s decisions and helps explain the basis for predictions under 
specific inputs. By examining the score values for each output, we can intuitively assess the importance of the input knowledge in the 
network’s decision-making process. Additionally, we can determine which components of the prior knowledge vector are most critical.

We employ the integrated gradient method to investigate the importance of pixel inputs in MK-DGNet. Through visualization of the 
integrated gradients of image pixels, we can understand which regions of the image the network focuses on. In Fig. 19, it is evident that 
regardless of the classification task on either the NIST or CMPQ dataset, MK-DGNet consistently emphasizes the melt pool region. This 
indicates that the network accomplishes the classification task by capturing the high-dimensional information of melt pool. Because 
melt pool encapsulates the high-dimensional information of the complex physical processes of the LPBF, this aligns with our con
ventional judgment. By analyzing melt pool region, we can better determine whether melt pool’s status is ideal or abnormal, thereby 
providing more refined quality control. Additionally, this visualization can separate melt pool region from other regions, as shown in 
the NIST example image of Fig. 19, where the network’s attention to non-melt pool region decreases. Overall, through the visualization 
of image integral gradients, we can highlight the importance of image pixels in network decisions, providing intuitive evidence for 
network decisions. This method not only helps us understand the decision-making process of the network in classification or other 
tasks but also reveals which pixel information in the input image is more critical to the network, thereby assisting us in further 
optimizing the network’s performance and interpreting its behavior.

In Fig. 20, the average integrated gradients of melt pool prior knowledge vectors for different categories are illustrated. The ab
solute value of specific knowledge input’s integral gradient reflects its contribution to a specific category predicted by the model. A 
larger absolute value indicates a stronger contribution. A positive value means that the specific knowledge has a positive contribution 
to the model’s prediction for the specified category, increasing the probability of the model predicting that category. Conversely, a 
negative value indicates that the specific knowledge has a negative contribution, decreasing the probability of predicting that category. 
By examining the integral gradients of the prior knowledge vectors, several interesting observations can be made.

On the NIST and CMPQ datasets, the network exhibits differential attention to knowledge across different categories, with a 
particular emphasis on statistical knowledge. This indicates that statistical knowledge effectively reveals the distribution character
istics of the melt pool, uncovering information regarding stability, symmetry, and other factors relevant to identifying melt pool 
morphology and quality. Additionally, the network shows considerable attention to the physically intuitive characteristics of the melt 
pool, but the degree and correlation of attention to melt pool area, length, and width vary across different categories. On the CMPQ 
dataset, the network’s attention to melt pool area surpasses its attention to melt pool length and width. This is because melt pool area 
better reflects changes in energy density. Insufficient energy density can lead to lack of fusion, while excessive energy density can lead 
to keyhole. Therefore, an appropriate range of energy density is crucial for ensuring part quality. Overall, the relationship between 
energy density and part quality resembles an inverted U-shaped curve, with melt pool area serving as a better indicator of this 
combined variation than melt pool length and width. As shown in Fig. 20(b), both low-quality and high-quality melt pools exhibit a 
negative correlation with melt pool area. This can be explained by the fact that in low-quality melt pools, a smaller melt pool area 
increases the probability of low-quality melt pools, thus leading to the observed negative correlation. In high-quality melt pools, larger 
melt pool areas are associated with higher energy density, which can result in decreased melt pool quality, hence the negative cor
relation observed. In the moderate melt pool quality range, as energy density gradually increases, melt pool area expands, ensuring 
thorough powder fusion and improving printing quality, thus resulting in a positive correlation between network attention and melt 
pool area. These observations align with our understanding of existing melt pool knowledge.

It’s important to emphasize that MK-DGNet does not rely solely on any single knowledge for judgment but integrates various 
factors’ influences into its decision-making process throughout network training. Here, integral gradients provide new insights into 
LPBF, demonstrating the basis of the network’s decisions and indicating the positive or negative correlation between classification 
categories and knowledge. LPBF experts can use these correlations as a means to understand the complex physical processes of LPBF 
further and explore guiding principles.
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4.3. Ablation experiment

As mentioned during the CMPQ dataset construction, merely using three labels might lead the model to find shortcut solutions, 
resulting in simplification. Therefore, in this section, we investigate the identification of melt pool variations under slight perturba
tions of process parameters to ensure that our results are not affected by model simplifications. Similar to the label in the NIST dataset, 
we created a 98-class classification task based on different combinations of process parameters as described in Section 2.2.1, according 
to the forming results of the parts. Specifically, for each category, 200 melt pool images were used as training samples, which were in 
constructing the CMPQ dataset. Additionally, 50 new images were added for each category as test samples, which were not present in 
the CMPQ dataset. Ultimately, we created the verification dataset, termed the coaxial melt pool quality verification (CMPQ-V) dataset, 
with 98 classes classification task where the training set contains 19,600 samples, and the validation set contains 4,900 samples.

Fig. 21 displays the classification performance of CNNs and MK-DGNet on CMPQ-V dataset. MK-DGNet still achieves the highest 

Fig. 19. Visualization of the integrated gradient of the melt pool image.

Fig. 20. Integrated gradient of melt pool prior knowledge vector. (a)NIST dataset. (b)CMPQ dataset.
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ACC and F1 on the CMPQ-V dataset, with values of 85.56 % and 85.60 %. The trend of validation accuracy variation remains consistent 
with the CMPQ dataset. In CNNs, except for the large-parameter VGG16, other CNN models exhibit varying degrees of degradation. 
These results demonstrate that MK-DGNet has a favorable transferability and is not affected by model simplification.

5. Conclusion

In this study, we propose a novel machine learning architecture called MK-DGNet, aimed at integrating prior physical knowledge 
and employing a more versatile graph data format for application in in-situ quality monitoring of LPBF. The effectiveness and 
robustness of the developed framework were validated using publicly available NIST datasets and internally created CMPQ datasets, 
employing explainable artificial intelligence methods to validate the efficacy of prior knowledge. The main findings are as follows: 

(1) The developed MK-DGNet achieved the highest ACC and F1 scores on both datasets. MK-DGNet demonstrated rapid accuracy 
improvement and loss reduction during the initial stages of training. After 20 epochs, its accuracy became significantly 
outstanding and maintained this highest level in most subsequent epochs compared to other models. The average AUC scores of 
MK-DGNet on the NIST and CMPQ datasets were 0.97 and 0.99, respectively, demonstrating its robustness. Ablation experi
ments indicate that our results are not affected by model simplification and show good transferability. The proposed deep graph 
neural network guided by prior knowledge can effectively handle visual tasks and has the potential to become an essential 
component of LPBF systems.

(2) The proposed approach, incorporating prior knowledge with raw sensor data and representing the data in the form of graph, is 
feasible and effective. The ability of deep graph networks to integrate prior knowledge surpasses CNNs. On the NIST dataset, the 
designed MK-DGNet achieved classification accuracy improvements of 10 %, 17 %, and 9 % for P166 V500, P195 V500, and 
P195 V800, respectively. Additionally, P156_V800 and P234_V800 showed moderate improvements of 3 % and 4 %, respec
tively. On the CMPQ dataset, classification accuracy for high, medium, and low melt pool quality categories improved by 1–3 %.

(3) Explainable artificial intelligence methods elucidate the basis of network decisions and the effectiveness and importance of the 
incorporated prior knowledge. The t-SNE visualization indicate that MK-DGNet extracts higher quality features compared to 
CNNs. Attribution score visualization show that MK-DGNet focuses on the melt pool area in images for decision-making and that 
the network’s attention to different categories of knowledge varies. By explaining the relationship between melt pool 
morphology and melt pool quality enhance the network’s interpretability and reliability.

In our future work, we plan to expand our knowledge scope to include principles of physics and engineering. We aim to construct a 
defect knowledge graph for LPBF and integrate it into our developing prior-knowledge-guided deep graph network framework. This 
integration will enable more reliable online monitoring of LPBF processes.
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