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A Neural-Symbolic Network for Interpretable Fault
Diagnosis of Rolling Element Bearings

Based on Temporal Logic
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Abstract— This study examines the issue of interpretability in
fault diagnosis for rolling bearings using a symbolic learning
technique. We propose the adoption of weighted signal temporal
logic (wSTL) as a formal language and introduce the temporal
logic network (TLN) as a neural-symbolic learning architecture
capable of encoding symbolic wSTL representations for input
signals. TLN comprises three subnetworks: a basic predicate
network for abstracting features and generating predicates from
vibration signals, an autoencoder for identifying significant signal
components, and a logic network for constructing a formal
language that aids in fault classification and model interpretation.
To improve comprehensibility, timed failure propagation graphs
(TFPGs) are used to visually represent the logical relationships
and propagation of fault events. Experimental results demon-
strate TLN’s ability to extract impulse fault patterns from signals,
accurately describe fault events through learned wSTL formulas,
and enhance understanding of fault events for nonexpert indi-
viduals through TFPGs. These findings contribute to the field
of fault diagnosis in rolling bearings by incorporating symbolic
learning techniques, using formal language representation and
TFPG for improved interpretability.

Index Terms— Interpretable fault diagnosis, rolling element
bearing, signal temporal logic (STL), symbolic learning, temporal
logic network (TLN).

I. INTRODUCTION

MODERN machines are becoming increasingly sophis-
ticated with intricate components and intricate interde-

pendencies. The complexity poses significant challenges when
it comes to identifying and addressing faults that may arise
during their operation [1]. Within these machines, bearings
serve as critical components that facilitate smooth and effi-
cient operation. However, the occurrence of faults in bearings
can lead to catastrophic consequences, including unexpected
downtime, expensive repairs, and potentially hazardous situ-
ations [2]. Therefore, accurate and timely fault diagnosis of
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bearings is crucial to ensure the safe and reliable functioning
of machines.

Traditional fault diagnosis methods, such as time-
domain [3], frequency-domain [4], and wavelet-based anal-
ysis [5], have long been used to identify and classify bearing
faults. However, as the complexity of machinery and systems
increases, the traditional fault diagnosis methods struggle to
provide accurate diagnosis results. On the other hand, machine
learning (ML) models have shown great potential in fault
diagnosis due to their ability to recognize complex patterns
in data [6]. However, their lack of interpretability has been
a significant challenge in deploying them in critical appli-
cations [7]. This limitation poses challenges when it comes
to making informed decisions regarding maintenance, repairs,
and replacement of key components, since they do not provide
explanations about how and why they make a decision and
reveal the fault mechanism. As a result, interpretable fault
diagnosis has emerged as a crucial field that aims to address
this challenge by providing transparent and interpretable fault
diagnosis results.

Several interpretable ML methods have been developed
to bridge the gap between accuracy and explainability,
enabling experts and nonexperts to comprehend and inter-
pret the diagnostic results effectively [8], [9], [10]. These
methods can be roughly classified into three classes: visual
explanations, feature-relevance explanations, and knowledge-
extraction explanations, respectively. Visual explanations use
graphical representations to illustrate a model’s decision-
making process, using techniques such as saliency maps [11],
class activation maps [12], and feature visualization [13].
Feature-relevance explanations aim to clarify how individual
input features influence the model’s output, using approaches
such as feature importance [14], partial dependence plots
(PDPs) [15], local interpretable model-agnostic explanations
(LIMEs) [16], and shapley additive explanations (SHAPs)
[17]. Knowledge-extraction explanations strive to demystify
the inner workings of complex models by converting their
outputs into more understandable formats such as rules or
tree structures, using techniques such as decision trees [18],
rule extraction [19], model distillation [20], and prototype
selection [21].

However, these interpretive methods face significant lim-
itations, especially in time-series fault diagnosis. Visual
explanations, typically effective for image-based analysis,
struggle to capture the evolving nature of time-series faults.
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Feature-relevance explanations fail to address the temporal
interdependencies and patterns crucial in time-series data.
Knowledge-extraction explanations often oversimplify com-
plex data, losing essential information needed for accurate
time-series fault diagnosis.

To address the above limitations, this article proposed
a temporal logic explanation framework for bearing fault
diagnosis, which uses temporal logic formulas to explain
the dynamic properties of time-series signals. Temporal logic
explanations represent a sophisticated interpretive method in
ML, particularly tailored for models dealing with sequential or
time-series data. The imperative for studying temporal logic
explanations becomes particularly pronounced in the realm
of machinery fault diagnosis, where time-series data play a
pivotal role. In such applications, an interpretable logic net-
work designed for inferring temporal logic explanations offers
marked advantages over traditional deep learning models or
methods based on formal reasoning. Unlike these conventional
approaches, an interpretable logic network adeptly captures
and represents the intricate temporal patterns and dependencies
critical in machinery fault diagnosis. For example, in the
monitoring of rotating machinery, the temporal evolution of
vibration signatures can be key to early fault detection and
prevention. A deep learning model might accurately predict
a fault, but without the clarity provided by temporal logic
explanations, the underlying temporal sequence leading to this
fault remains obscured. An interpretable logic network, in con-
trast, provides transparent insights into how specific temporal
patterns correlate with certain types of faults, enhancing both
the understanding and trust in the predictive system. This
transparency is not just crucial for accurate diagnostics but also
enables more targeted and effective maintenance strategies,
thereby reducing downtime and costs. Thus, in the context
of machinery fault diagnosis, the study and application of
interpretable logic networks for temporal logic explanation
are not only academically intriguing but also carry substantial
practical significance, offering a more profound and actionable
understanding of time-dependent fault dynamics.

Current temporal logic explanations in ML, while effective
in certain scenarios, face significant challenges in addressing
the complex, time-dependent dynamics of sequential data.
These methods struggle to map intricate temporal relationships
and dependencies onto formal logic structures in a way that is
both accurate and user-friendly. The core issue lies in devel-
oping a framework that can interpret the dynamic interplay of
features over time, balancing the fidelity of the explanation
with its clarity and accessibility to users.

To overcome these challenges, this article introduces a novel
neural-symbolic network (NSN) architecture, named the tem-
poral logic network (TLN), designed specifically for rolling
element-bearing fault diagnosis. The TLN addresses key lim-
itations of current temporal logic methods by enhancing the
interpretability and applicability of formal languages in com-
plex machinery systems. The existing temporal logic-based
fault diagnosis methods, while successful in certain monitoring
tasks [22], often rely on predetermined structures or prede-
fined atomic words, limiting their effectiveness in modern,
complex devices [23]. Furthermore, when these methods use
neural networks for learning formal languages, they typically

focus on fault diagnosis performance, leading to a lack of
transparency in the learning process and a failure to guarantee
formal performance [24].

The TLN incorporates the weighted signal temporal logic
(wSTL), which enhances the representation of vibration signal
features with embedded signal processing techniques and
offers differentiable quantitative semantics. This advancement
allows for a more precise capture and interpretation of tem-
poral features relevant to fault diagnosis. The integration of
wSTL within deep learning models in the TLN framework
represents a significant step forward. The parameters of the
modules in TLN can be translated into wSTL formulas,
enabling a clearer interpretation of fault events. The modular
design of the TLN also allows for flexible adjustments in the
framework, catering to various diagnostic scenarios.

Moreover, the TLN uses a temporal fault propagation graph
(TFPG) to visualize the relationships among fault events.
This visualization, combined with the formal wSTL formulas,
provides a comprehensive understanding of fault dynamics,
making it accessible to individuals without specialized knowl-
edge. This approach not only enhances the interpretability of
the diagnostic process but also links underlying features to
their respective generation mechanisms clearly and logically.
In comparison to the state-of-the-art methods, the contributions
of this approach can be summarized as follows.

1) Based on signal temporal logic (STL), we propose
wSTL, which can capture the features of vibration
signals with signal processing techniques embedded and
has a differentiable quantitative semantic.

2) We embed wSTL in deep learning models and propose
an NSN architecture. The parameters of the modules in
TLN can be transferred to a wSTL formula for fault
event interpretation. The modular design of TLN allows
us to change the framework’s arrangement for flexible
formula creation.

3) Using a TFPG, we visualize the relationships among
fault events. By combining these visualizations with for-
mal formulas, individuals without specialized knowledge
can comprehend the underlying features and link them
to their respective generation mechanisms.

The organization of the rest of this article is as follows.
Section II provides a comprehensive definition of formal lan-
guages and TFPG. Vital modules are presented in Section III.
The architecture of TLN is showcased in Section IV. Section V
uses three datasets to assess the TLN’s interpretability and
the effectiveness of the visualization techniques, and then
highlights the advantages of our method by comparing it
with the existing models. Finally, Section VI summarizes the
findings and draws the conclusions.

II. PRELIMINARIES AND NOTATIONS

In this section, we introduce the definitions of formal lan-
guage and TFPG, respectively. The first part presents wSTL’s
syntax and semantics. The second part introduces the formal
definition of TFPG and its application as a visualization tool.

A. Weighted Signal Temporal Logic
Definition 1 (Signal): In signal theory, a signal is a map-

ping from the time domain to the signal space. Given sets
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Fig. 1. Time series f (x). The regions framed by the black dotted box are
where the fault characteristic may be present. The red areas are where the
signal may reach and the green areas are where the signal must reach.

A and B, the set of mappings from A to B can be denoted
by F (A, B). Let D = {kτ0 | k ∈ N+

} represent the discrete
time domain, with τ0 as the sampling interval, and Rn as the
n-dimensional signal space. Thus, a signal x ∈ F (D, Rn).
For this article, x is a discrete-time signal, with xi [t] (i =

1, 2, . . . , n) denoting the amplitude of the i th dimension of x
at time t .

Definition 2 (STL): STL is one type of temporal logic that
describes the time-domain characteristics of discrete signals.
Its syntax can be defined recursively as

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | F[τ1,τ2]ϕ | G[τ1,τ2]ϕ (1)

where µ is a predicate logic with the form f (x) ∼ c. f (·) ∈

F (Rn, R) is a function that maps the n-dimensional signal x
to a real number; ∼∈ {<, ≥} denotes the comparison operator;
and c ∈ R is a constant. ¬ϕ is the negation of ϕ. ∧ and ∨ are
Boolean operators that represent logical AND and logical OR,
respectively. [τ1, τ2] denotes a time interval with τ1 ≤ τ2 and
τ1, τ2 ∈ N+. F and G are temporal operators that usually
appear before ϕ. F[τ1,τ2]ϕ means that ϕ is true “at least once”
within [τ1, τ2], and G[τ1,τ2]ϕ means that ϕ is “always” true
within [τ1, τ2].

According to Definition 2, STL can describe the property
of the discrete signal shown in Fig. 1.

Example 1: Fig. 1 illustrates a discrete time series x , and
the signal features covered by the red region and the green
region can be represented by STL formulas

ϕ1 = F[t1,t2] f (x) ≥ 0.7 (2)
ϕ2 = G[t3,t4] f (x) < 0.6. (3)

Equation (2) indicates that f (x) is greater than or equal to
0.7 at least once within [t1, t2]; (3) indicates that f (x) is
always less than 0.6 within [t3, t4]. In the rest of this article,
signal features are also referred to as fault events, and an
STL formula is the formal language representation of the fault
events.

Definition 3 (Robustness Degree of STL): STL is equipped
with quantitative semantics [24], called robustness degree
ρ(x, ϕ, t0). It measures the degree of how much the signal
x satisfies the STL formula ϕ at time t0 and is equivalent
to the ability of ϕ to describe the behavior of x at t0. If we
denote the set of STL formulas by 9, then robustness degree
ρ : F (D, Rn) × 9 → R is a function that maps a signal x
and an STL formula ϕ to a real number. The robustness degree

ρ(x, ϕ, t0) of STL is defined as follows:

ρ(x, f (x) < c, t0) = c − f (x)
ρ(x, f (x) ≥ c, t0) = f (x)−c

ρ(x, ¬ϕ, t0) = −ρ(x, ϕ, t0)
ρ(x, ϕ1 ∧ ϕ2, t0) = min(ρ(x, ϕ1, t0), ρ(x, ϕ2, t0))
ρ(x, ϕ1 ∨ ϕ2, t0) = max(ρ(x, ϕ1, t0), ρ(x, ϕ2, t0))

ρ
(
x, G[τ1,τ2]ϕ, t0

)
= min

t ′∈[t0+τ1,t0+τ2]
ρ
(
x, ϕ, t ′

)
ρ
(
x, F[τ1,τ2]ϕ, t0

)
= max

t ′∈[t0+τ1,t0+τ2]
ρ
(
x, ϕ, t ′

)
(4)

where t0 in ρ(x, ϕ, t0) means that the robustness degree is
computed from t0, and ρ(x, ϕ, t0) is also written as ρ(x, ϕ)

when t0 = 0. If ρ(x, ϕ, t0) ≥ 0, the behavior of x satisfies the
description of ϕ and is denoted as x |H ϕ; if ρ(x, ϕ, t0) < 0,
the behavior of x does not satisfy the description of ϕ and is
denoted as x ̸|H ϕ.

However, STL has some drawbacks.
1) A formula with the form F[τ1,τ2]µ or G[τ1,τ2]µ is called an

atomic formula. In Definition 1, all the atomic formulas
within an STL formula ϕ have the same weight, which
makes it impossible to distinguish the contribution of
different atomic formulas to ϕ.

2) The robustness degree of STL is not derivable because
of the presence of min and max operators. If we embed
STL in a neural network, the training process will likely
be ineffective.

Definition 4 (wSTL): The syntax of wSTL is an extension
of STL, which can be defined recursively as

ϕw
:= µ | ¬ϕw

| ϕw
1 ∧ ϕw

2 | ϕw
1 ∨ ϕw

2

|F[τ1,τ2]ϕ
w

| G[τ1,τ2]ϕ
w

| ϕw
1 U[τ1,τ2]ϕ

w
2 .

(5)

The semantics of the predicate µ, the operators ∧, ∨, ¬, and
the temporal operators F and G are the same as in Definition 1.
There are two differences between wSTL and STL

1) Each formula ϕi in wSTL has a weight wi , which
represents the contribution of ϕi to ϕ.

2) A new temporal operator U is added to wSTL.
ϕw

1 U[τ1,τ2]ϕ
w
2 means that after satisfying the descrip-

tion of ϕw
1 , the behavior of the signal will satisfy the

description of ϕw
2 within [τ1, τ2]. U enables wSTL for

characterizing the propagation of signal features in the
time domain.

Definition 5 (Robustness Degree of wSTL): Like STL,
wSTL is also equipped with quantized semantics called
weighted robustness degree. Given an n-dimensional signal
x and a wSTL formula ϕ, the weighted robustness degree
ρw(x, ϕ, t0) is defined as follows:

ρw(x, f (x) < c, t0) = c − f (x)

ρw(x, f (x) ≥ c, t0) = f (x)−c

ρw
(
x, G[τ1,τ2]ϕ

w, t0
)

= gG
(
w,

[
ρw

(
x, ϕ, t ′

)]
t ′∈[t0+τ1,t0+τ2]

)
ρw

(
x, F[τ1,τ2]ϕ

w, t0
)

= gF
(
w,

[
ρw

(
x, ϕ, t ′

)]
t ′∈[t0+τ1,t0+τ2]

)
ρw

(
x, ∧N

i=1ϕ
wi
i , t0

)
= g∧

([
wi , ρ

w(x, ϕi , t0)
]

i=1,2,...,N

)
ρw

(
x, ∨N

i=1ϕ
wi
i , t0

)
= g∨

([
wi , ρ

w(x, ϕi , t0)
]

i=1,2,...,N

)
ρw

(
x, ϕw

1 U[τ1,τ2]ϕ
w
2 , t0

)
= gU

([
ρw

(
x, ϕw

2 , t ′
)

t ′∈[t0+τ1,t0+τ2]

][
ρw

(
x, ϕw

1 , t ′′
)

t ′′∈[t0,t ′]

])
(6)
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where gG(·), gF (·), g∧(·), g∨(·), and gU (·) are the robustness
degree computation functions of G[τ1,τ2]ϕ

w, F[τ1,τ2]ϕ
w, ϕ

w1
1 ∧

ϕ
w2
2 ∧, . . . ,∧ϕ

wN
N , ϕ

w1
1 ∨ ϕ

w2
2 ∨, . . . ,∨ϕ

wN
N , and ϕw

1 U[τ1,τ2]ϕ
w
2 ,

respectively. The specific mathematical expressions are defined
as in (7), shown at the bottom of the page.

B. Timed Failure Propagation Graph

Definition 6 (TFPG): TFPG is a visualization model
adopted by Vanderbilt University for system failure analysis.
Formally, a TFPG is a tuple G = ⟨F, D, E, ET, dc, D P ⟩,
where: 1) F is a set of failure mode nodes; 2) D is a set
of discrepancy nodes; 3) E is a set of directed edges that
satisfies E ⊆ V × V , where V = F ∪ D; 4) ET : E → I
is a mapping from a directed edge e ∈ E to a time interval
[tmin(e), tmax(e)] ∈ I ; 5) dc : D → {AND, OR} is a mapping
from a discrepancy node d ∈ D to its discrepancy type; and
6) D P maps a discrepancy node d ∈ D to an atomic formula
ϕ ∈ 8.

A formal formula can be mapped to a TFPG, enabling
us to effectively depict the intricate interconnections among
fault occurrences. By examining Example 2, we can acquire
a deeper comprehension of the practical implementation of
TFPGs in producing interpretable fault diagnosis.

Example 2: Fig. 2(a) illustrates the moment spectrogram
of a vibration signal, and Fig. 2(b) is the TFPG describing
its characteristics. TFPG is a directed graph, the dashed node
is the fault mode node, and the solid nodes are discrepancy
nodes, which can indicate fault events and their logical rela-
tionships. The solid circle indicates OR, and the solid square
indicates AND. The symbol inside the node is the name of the
fault event, and the numbers above the directed edge represent
the time interval of failure propagation. TFPGs not only
describe the logical relationships and propagation between
fault events in graphical form but also can be interpreted
in natural language. The natural language description of the
TFPG shown in Fig. 2(b) is: “The faulty characteristics of the

Fig. 2. Visualization of diagnostic results by TFPG. (a) Moment
spectrogram from an outer race fault bearing. (b) TFPG mapped by
ϕO = F[0,0.5]((ϕ1U[0,0.1]ϕ2) ∧ ϕ3)U[0,0.2]ϕ4.

outer ring fault mode are: within 0.5 s after the bearing begins
to rotate, fault events ϕ1 and ϕ3 will occur; within 0.1 s after
ϕ1 occurs, ϕ2 will occur; within 0.2 s after the occurrence of
ϕ2 and within 0.2 s after the occurrence of ϕ3, ϕ4 will occur.”
The natural language description of fault events can be referred
to Example 1.

III. NETWORK MODULES

In this section, we present the network modules based on
wSTL, and all of them are components of TLN.

A. Wavelet Convolution Module

The wavelet convolution module can extract features from
vibration signals. As shown in Fig. 3, a group of Laplace
wavelets with different parameters, which can be considered
as a filter bank, are used to convolve with the input. The
parameters of the wavelets are randomly initialized and to be
trained. The following is how the vibration signal is handled
in this module:

yi = F(x × wi ) (8)

ρw
(
x, ∧N

i=1ϕ
wi
i , t

)
:=


N

√
5N

i=1(1 + wiρw(x, ϕi , t) − 1, ∀i ∈ [1, 2, . . . , N ], ρw(x, ϕi , t) > 0

1
N

N∑
i=1

(−wiρ
w(x, ϕi , t)), otherwise

ρw
(
x, ∨N

i=1ϕ
wi
i , t

)
:=


1
N

N∑
i=1

(wiρ
w(x, ϕi , t)), ∃i ∈ [1, 2, . . . , N ], ρw(x, ϕi , t) > 0

−
N

√
5N

i=1(1 − wiρw(x, ϕi , t)) + 1, otherwise

ρw
(
x, □[τ1,τ2]ϕ

w, t
)

:=


τ2−τ1

√
5

τ2
t ′=τ1

(1 + wρw(x, ϕ, t ′)) − 1, ∀t ′
∈ [t + τ1, t + τ2], ρw

(
x, ϕ, t ′

)
> 0

1
τ2 − τ1

∑
t ′∈[t+τ1,t+τ2]

(
−wρw

(
x, ϕ, t ′

))
, otherwise

ρw
(
x, ♢[τ1,τ2]ϕ

w, t
)

:=


1

τ2 − τ1

∑
t ′∈[t+τ1,t+τ2]

(
wρw

(
x, ϕ, t ′

))
, ∃t ′

∈ [t + τ1, t + τ2], ρw
(
x, ϕ, t ′

)
> 0

−
τ2−τ1

√
5

τ2

t ′=τ1

(
1 − wρw

(
x, ϕ, t ′

)
+ 1, otherwise

ρw
(
x, ϕw

1 U[τ1,τ2]ϕ
w
2 , t

)
:= max

t ′∈[t+τ1,t+τ2]

(
min

(
ρw

(
x, ϕw

2 , t ′
)
, min

t ′′∈[t,t ′]
ρw

(
x, ϕw

1 , t ′′
)))

(7)
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Fig. 3. Computational procedure of the wavelet convolution module.
To generate feature maps, the vibration signal is convolved by a set of Laplace
wavelets and processed by some other data processing procedures F(·).

where x denotes the vibration signal; wi denotes the
i th Laplace wavelet; yi denotes the i th feature map; ∗ denotes
1-D convolution operation; and F(·) denotes some other data
processing procedures, including batch normalization (BN),
nonlinear activation, and max-pooling

F(·) = MaxPool1d(ReLU(BatchNorm1d(·))). (9)

B. Predicate Generation Module

After getting the features, the predicate generation module
can generate some predicates describing them and calcu-
late their robustness degrees. Depending on the comparison
operator within the predicate, the module has two modes of
computation

µ≥,i = yi − ci , µ<,i = ci − yi (10)

where ci represents the constant within the i th predicate;
and µ≥,i and µ<,i represent the robustness degree of yi ≥ ci
and yi < ci , respectively. Note that ci is the parameter to be
trained in this module.

C. Temporal Logic Modules

In total, there are five temporal logic modules: TemporalA1,
TemporalO1, TemporalU , TemporalA2, and TemporalO2, which
are used to construct wSTL formulas. To enhance the clarity
of our presentation, we establish the designations of Level I
formula, Level II formula, and subsequent levels accordingly.
Level I formulas are formed by combining atomic formulas
once with ∧, ∨, or U , for example, ϕ1 ∧ϕ2. Level II formulas
are formed by combining Level I formulas with these operators
again. Fig. 4 illustrates the computation of these five modules.

According to the syntax of wSTL, a predicate is usually
preceded by a temporal operator, and each temporal operator
has an effective time interval. We now assume that the effective
time intervals have been obtained, the and method for getting
them will be presented in Section IV. TemporalA1 first adds the
temporal operator G before the predicate sequence to generate
the atomic formula sequence. Next, this module selects a
certain number of atomic formulas and randomly generates
a set of weights, combining the atomic formulas using ∧ to
form a Level I formula sequence. Finally, ReLU(·) activates
the robustness degree sequence, rendering the Level I formulas
with positive robustness degrees valid

ϕ
w j

j = ρw
(
yi , G[τ1,τ2] j µ j

)
(11)

ϕ
wk
∧I ,k = ReLU

(
ρw

(
yi , ∧

N
j=1ϕ

w j

j

))
(12)

where µ j and ϕ
w j

j denote the robustness degree of the
j th predicate and the j th atomic formula, respectively;
[τ1, τ2] j denotes the j th effective time interval for µ j ; w j is
the weight for ϕ j ; ϕ

wk
∧I ,k denotes the kth Level I formula; and

N represents the number of atomic formulas that constitute
ϕ

wk
∧I ,k . The weights of the formulas are randomly initialized at

the beginning and are the parameters to be trained. Similarly,
within TemporalO1, the temporal operator F is added before
the predicates, and the atomic formulas are connected by ∨.

TemporalU first adds the temporal operator (F or G) before
the predicates and then combines two atomic formulas with U

ϕ
wk
UI ,k = ReLU

(
ρw

(
x, ϕ

w1
j1 U[0,L]ϕ

w2
j2

))
(13)

where ϕ
w1
j1 and ϕ

w2
j2 can be any possible atomic formula;

and ϕ
wk
UI ,k denotes the kth Level I formula with the form

ϕw
1 U[0,L]ϕ

w
2 . To reduce the number of parameters in this

module, we fix the propagation time as [0, L].
Level I formulas will be fed into TemporalA2 and

TemporalO2. TemporalA2 randomly generates a set of weights
and uses the operator ∧ to combine Level I formulas

ϕwm
∧I I,m

= ReLU
(
ρw

(
yi , ∧

M
k=1ϕ

wk
∧I,k

))
(14)

where wk represents the weight for ϕ
wk
∧I ,k ; ϕ

wm
∧I I,m denotes the

activated robustness degree for the mth Level II formula; and
M represents the number of Level I formulas that consti-
tute ϕ

wm
∧I I,m . TemporalO2 performs the same computation as

TemporalA2, with the only difference being that the formulas
are connected by ∨.

IV. TEMPORAL LOGIC NETWORK

In this section, we introduce the architecture of TLN.
TLN can extract interpretable patterns from vibration signals,
identify the time intervals where the patterns are located,
and automatically learn a wSTL formula that describes the
logical relationship between patterns. As shown in Fig. 5, TLN
contains three subnetworks.

1) Basic Predicate Network: Extract interpretable patterns
from vibration signal and generate a sequence of predi-
cates that describe the patterns.

2) Autoencoder: Identify the probability that a sampling
point is within an effective time interval.

3) Logic Network: Construct wSTL formulas based on
effective time intervals and predicate sequence.

Within the basic predicate network, the wavelet convolution
module generates 16 pairs of wavelet parameters, which leads
to 16 convoluted time-series signals from one vibration signal.
Then, the predicate module calculates the robustness degree of
the predicates describing these convoluted signals in two cases
based on the type of predicates, i.e., ≥ and <. For a convoluted
time series with length N , the output of the basic predicate
network µ ∈ R32×N can be described as follows:

yi = WaveletConv(x, wi )

µ≥,i = yi − ci , µ≤,i = ci − yi

µ =
[
µ≥,0, µ<,0, . . . , µ≥,i , µ<,i , . . . , µ≥,15, µ<,15

]
(15)
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Fig. 4. Diagrams of temporal logic modules. (a) and (b) TemporalA1 and TemporalO1, which first add temporal operators before predicates, and then compose
atomic formulas into Level I formulas. For example, in (a), three adjacent atomic formulas together form a Level I formula: ϕ

w1
∧I ,1 = ϕ

w1
1 ∧ ϕ

w2
2 ∧ ϕ

w3
3 .

(c)–(e) TemporalU , TemporalA2, and TemporalO2, respectively, which use ∧, ∨ or U to join Level I formulas into Level II formulas. In (d), two adjacent
Level I formulas together form a Level II formula: ϕ

w1
∧I I,1 = ϕ

w1
I,1 ∧ ϕ

w2
I,2. The solid nodes represent valid wSTL formulas with robustness degrees greater

than 0, the hollow nodes are invalid wSTL formulas with robustness degrees equal to 0.

Fig. 5. Architecture of TLN.

where x denotes the vibration signal; and y denotes the
convoluted time series. µ≥ and µ< represent the robustness
degree of predicates with the form y ≥ c and y < c,
respectively.

The autoencoder accepts the robustness degree sequence
and calculates the probability that each sampling point falls
within the effective time interval. The encoder is responsible
for extracting abstract information from the robustness degree
sequence. It has two compositions, each of which includes
a convolutional layer, an activation layer, and a max-pooling
layer. The decoder is responsible for mapping the abstract

information to a probability sequence. It is similar to the
encoder but processes the data in reverse order. Data are
calculated in the autoencoder as follows:

h = Encoder(µ), p = Decoder(h) (16)

where h is the hidden layer representation, and p denotes the
probability sequence.

Section III states that a temporal logic operator typically
has an interval parameter, representing the time span during
which the operator takes effect. We use a temporal group-
ing algorithm for merging effective time intervals from the
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probability sequence p, which is based on the watershed
algorithm in [25].

As shown in Fig. 5 (temporal grouping algorithm modular),
the blue curve is the probability sequence, and the red curve
is its complement, on which the algorithm acts. The sequence
is referred to as a “terrain” with “peaks” and “valleys.” When
water is poured into the terrain, a “water level” (γ ) is created,
and the flooded area is denoted by G(γ ). As the water
level rises, adjacent flooded areas will become connected,
which can be prevented by constructing a “dam” between
them. The constructed dams can divide the terrain into several
areas. In this analogy, “pouring water” and searching for the
“flooded areas” refer to counting the effective intervals in the
complementary sequence where the probability is less than
γ ; and constructing “dams” refers to merging the effective
intervals. Note that the “valleys” in the red curve are the
“peaks” in the blue curve, so the areas with lower water levels
represent intervals with higher probability. In addition, we set
the threshold v to represent the maximum proportion of the
flooded area G(γ ) to the total area. When the proportion is
larger than v, we create a watershed.

Using this algorithm, continuous and effective time intervals
can be extracted from p

µvalid = pvalid

⊗
µ, pvalid = TG(p) (17)

where pvalid denotes the valid time intervals; µvalid denotes
the new robustness degree sequence; and

⊗
stands for the

elemental product operation. In pvalid, if an element is 0,
it means that the position is not in the effective interval;
conversely, it is in the effective interval. Besides, the value
of the nonzero element indicates the predicate’s robustness
degree.

In the logic network, we first use TemporalA1, TemporalO1,
and TemporalU to generate atomic formulas and connect
them. Then we use TemporalA2 and TemporalO2 to combine
the Level I formulas. Finally, wSTL formulas can be fed
into a classifier and mapped to a certain bearing state. The
computational steps of the logic network are represented as
follows:

ϕw
∧I

= TemporalA1(µvalid), ϕw
∨I

= TemporalO1(µvalid)

ϕw
UI

= TemporalU (µvalid), ϕw
I = concat

(
ϕw
UI

, ϕw
∧I

, ϕw
∨I

)
ϕw

∧I I
= TemporalA2

(
ϕw

I

)
, ϕw

∨I I
= TemporalO2

(
ϕw

I

)
ϕw

I I = concat
(
ϕw

∧I I
, ϕw

∨I I

)
, c = Classifier

(
ϕw

I I

)
(18)

where ϕw
∧I

, ϕw
∨I

, and ϕw
UI

denote the Level I formulas connected
by ∧, ∨, and U , respectively. ϕw

∧I I
and ϕw

∨I I
denote the Level

II formulas. c is the bearing state. The detailed configurations
of the modules are shown in Table I.

V. CASE STUDIES

In this section, three datasets are used to validate the
effectiveness of the proposed interpretable model. What is
more, two public datasets are used to perform comparative
analysis of different methods. The signals are preprocessed in
MATLAB environments, and all the results are obtained on

TABLE I
CONFIGURATIONS OF THE MODULES

an Intel1 Core2 i5-9300 CPU with 8.0-GB RAM via PyTorch,
Python 3.8.

A. CWRU Dataset
1) Dataset Introduction: The CWRU dataset was provided

by Case Western Reserve University Bearing Data Center.
In this dataset, electrical discharge machining (EDM) was used
to create indentations on the bearing. The indentations are
0.007, 0.014, and 0.021 in in size, and they are positioned
on the bearing’s inner ring, outer ring, and rolling element,
respectively. The rotating speeds of the bearing are 1797,
17726, 1750, and 1730 r/min. The motor loads are 0, 1, 2,
and3 hp in each case. The sensor collected data at a sampling
frequency of 12–48 kHz. In this article, we only use the
vibration signals acquired at 0 hp with 1797 r/min and 12 kHz.
More detailed descriptions of this dataset are presented in
Table II.

2) Results: We intercepted segments from raw signals using
a sliding window of length 1024. If the window length is too
long, it extends the sequence involved in convolution, leading
to longer operation times. Conversely, a too short window
length results in incomplete information within a segment,
limiting the model’s ability to capture enough features or their
relationships. For each bearing state, 80% of the samples are
allocated for the training set and 20% for the testing set.
We used Adam optimizer to update the model’s parameters

1Registered trademark.
2Trademarked.
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TABLE II
INFORMATION OF THE CWRU DATASET

Fig. 6. Confusion matrix of the optimal model on the testing set. Labels
0-9 denote the ten states of the bearing.

with a learning rate of 0.0005. The network was trained for
400 epochs with a batch size of 20.

After training, the test accuracy of the model is 97.73%,
indicating that TLN can not only distinguish fault modes
but also has good generalization capability. Fig. 6 shows the
confusion matrix of the optimal model, and the majority of
faults can be accurately classified.

Fig. 7 illustrates the feature maps of TLN. The figures
are organized into four rows, each representing a bearing
state: normal, inner ring fault, outer ring fault, and rolling
element fault. There are two figures for each state. The first
one displays the vibration signal, its feature map, and the
probability indicating where the features are located within
the effective time intervals. First, the feature map inherits
the peaks in the vibration signal, which means that TLN
successfully extracts key features from the input. Second,
based on real-life experience, different vibration signals will
show different peaks at different times. As a result, the peak
becomes one of the features used to describe the behavior of
the signal. The feature map reveals a high probability that the
peak is within the effective time intervals, which implies that
TLN can position the intervals where the features are located.

The second figure depicts the features’ robustness degrees. The
peaks have higher robustness degrees, which is compatible
with the definition of wSTL’s semantics.

Table III shows the wSTL formulas learned by TLN. The
weights of the formulas are not displayed because they are not
useful for interpretation. Moreover, we add a temporal operator
F[0,0.0010] before each formula, representing that the formula
will be satisfied within the first 0.001 s after the beginning of
the signal. According to the definitions presented in Section II,
we can explain each wSTL formula with a natural language
sentence.

a) Normal: Within 0.001 s after the beginning of the
signal, fault event ϕ1 is expected to occur. ϕ1 stands for the
second dimension of f (x), denoted as f (x)2, which is always
less than 0.9663 within the time interval of 0–0.032 s.

b) Inner ring fault: Within 0.001 s after the beginning of
the signal, fault event ϕ1 is expected to occur. Within 0.0063 s
after the occurrence of ϕ1, fault event ϕ2 will occur. ϕ1 stands
for f (x)3 is eventually larger than or equal to 0.1289 within
0.0078–0.0178 s. ϕ2 denotes that f (x)13 is eventually larger
than or equal to 0.8452 within 0.0206–0.0226 s.

c) Outer ring fault: Within 0.001 s after the beginning of
the signal, fault events ϕ1 and ϕ3 are expected to occur. Within
0.0063 s after the occurrence of ϕ1, ϕ2 will occur. Within
0.0063 s after the occurrence of ϕ3, ϕ4 will occur. ϕ1 stands for
f (x)7 which is eventually larger than or equal to 0.3873 within
0–0.0010 s. ϕ2 denotes that f (x)6 is always larger than
or equal to 0.0128 within 0.0048–0.0054 s. ϕ3 stands for
f (x)16 is always larger than or equal to 0.0010 within
0.0215–0.0225 s. ϕ4 denotes that f (x)11 is eventually larger
than or equal to 0.3886 within 0.0240–0.0254 s.

d) Rolling element fault: Within 0.001 s after the begin-
ning of the signal, fault event ϕ1 is expected to occur.
Within 0.0063 s after the occurrence of ϕ1, fault event
ϕ2 will occur. ϕ1 stands for f (x)5 is eventually larger than
or equal to 0.0068 within 0.0076–0.0086 s. ϕ2 denotes that
f (x)7 is eventually larger than or equal to 0.3873 within
0.0140–0.0171 s.

Fig. 8 displays the feature maps and TFPGs for the three
fault states. As observed in the feature maps, the peaks in the
vibration signals correspond to fault events, although not all
the peaks indicate faults. This discrepancy may arise due to the
sufficient discriminative power of a smaller number of features
when performing fault classification. The TLN, recognizing
the low average energy and absence of prominent peaks in
the normal state signal, learns a simpler wSTL formula that
only requires the signal’s amplitude not to exceed a certain
constant threshold. Moreover, the TFPGs vividly depict the
logical connections between fault events and their temporal
diffusion. In contrast to alternative visualization techniques,
the proposed approach affords a more uncomplicated and
accessible representation, enabling personnel without special-
ized expertise to comprehend the practical ramifications of
the failures. The rigorous capture of signal impulses by the
wSTL formula empowers workers to detect faults accurately
and make informed decisions regarding part replacement or
lubrication. However, due to the long runtime of the temporal
logic modules and several convolutional operations involved,
the training time of TLN is long.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 11,2024 at 01:21:45 UTC from IEEE Xplore.  Restrictions apply. 



TIAN et al.: NEURAL-SYMBOLIC NETWORK FOR INTERPRETABLE FAULT DIAGNOSIS 3515614

Fig. 7. TLN’s feature maps after trained with the CWRU dataset. Both features and robustness degrees are normalized.

TABLE III
wSTL FORMULAS FOR FOUR BEARING STATES IN THE CWRU DATASET

B. SCUT Dataset

1) Dataset Introduction: CWRU is a high-quality dataset
with small noise. To assess the generalizability and robustness
of TLN, we evaluated the model’s performance using a dataset
that we have collected. The SCUT dataset was provided by
South China University of Technology, and the test rig is
shown in Fig. 9. It has a motor, an electromagnetic brake
that can apply a torque load, and a hydraulic jack that can
apply a radial load. The indentation size is 0.8 mm, and
they are positioned on the bearing’s inner ring, outer ring,

and rolling element, respectively (as shown in Fig. 10). The
vibration signals are sampled at the bearing fixture by two
mutually perpendicular accelerometers in the horizontal and
vertical directions under four speeds (1240, 1210, 1180, and
1150 r/min) with a sampling frequency of 32 kHz. The bearing
state can be divided into four classes, and more detailed
descriptions of this dataset are presented in Table IV.

2) Results: Initially, TLN was trained using time-domain
signals as the training data, keeping the experimental con-
figurations unchanged. However, the classification accuracy
was relatively low, which is only around 80%. The reasons
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Fig. 8. TFPGs mapped by wSTL formulas. (a) TFPG of inner ring fault. (b) TFPG of outer ring fault. (c) TFPG of rolling element fault. Each TFPG not
only has a basic frame but also has a feature map attached to the discrepancy node. The black dashed box frames the absolute intervals of the fault event, and
the yellow area represents the interval in which the event may occur. For the inner ring fault, there are two fault events. ϕ1 means that f (x)3 will eventually
be greater than or equal to 0.1289 in 0.0078–0.0178 s, whereas ϕ2 means that f (x)13 will eventually be greater than or equal to 0.8452 in 0.0206–0.0226 s.
According to the definition of wSTL, the theoretical existence interval of ϕ2 is 0.0078–0.0240, as covered by the yellow area. The left line of the black dashed
box lies within the yellow region, indicating that the wSTL formula generated by the TLN is grammatically correct.

could be: First, the SCUT dataset, as opposed to the CWRU
dataset, contains a higher degree of noise, leading to less
prominent distinctions among the waveforms of different sig-
nal types, as shown in Fig. 11. Second, the noise in vibration
signals is not stationary, resulting in varying peak positions
even among samples of the same type, thereby diminishing
their commonalities.

To address these challenges, we devised an alternative
approach wherein TLN was trained using frequency-domain

data. After applying a low-pass filter for noise reduction,
we first split the filtered signal into segments of length 1024.
Then we computed their power spectra within the frequency
range of 0–4000 Hz. Finally, the normalized power spectra
were then used as the training data. In this experiment,
we omitted the wavelet convolution module for feature extrac-
tion, given that the input data had already been filtered.
Furthermore, since the training data were in the frequency
domain, we excluded the temporal logic module TemporalU
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TABLE IV
INFORMATION OF THE SCUT DATASET

Fig. 9. Bearing test rig of the SCUT dataset.

Fig. 10. Four states of the rolling element bearing.

from the TLN architecture. We opted for the Adam optimizer
to update the model’s parameters, setting the learning rate at
0.0001. The network underwent training for 400 epochs with
a batch size of 20. Across all the bearing states, the model
trained using frequency-domain data consistently outperforms
its time-domain counterpart, as depicted in Table IV. The
former boasts an average accuracy of 100.00%, whereas the
latter demonstrates an average accuracy of only 85.62%.

Fig. 12 presents the normalized feature maps of the signals.
It is observed that frequency bands with higher power densities
are more likely to be signal features, indicating that TLN can
identify signal characteristic frequencies. Moreover, the higher
robustness degrees of the power spectra peaks demonstrate the
effectiveness of the formal formula in describing the signal’s

Fig. 11. Waveforms of the signals within the SCUT dataset.

behavior, particularly its peaks’ magnitude. The formulas
learned by TLN are displayed in Table V, and the subscripts
of the temporal operator signify the frequency interval where
the predicate applies. Below are the interpretations of these
formulas in natural language.

a) Normal: The behavior of the signal has to satisfy the
description of the atomic formula ϕ1, which means that the
power density is always greater than or equal to 0.4028 W/Hz
within the frequency interval of 732.27–841.32 Hz.

b) Inner ring fault: The behavior of the signal has to
satisfy at least one of the descriptions of these three atomic
formulas: ϕ1, ϕ2, and ϕ3. ϕ1 means that the power density
is eventually larger than or equal to 0.3266 W/Hz within
15.63–77.94 Hz. ϕ2 means that the power density is eventually
larger than or equal to 0.0006 W/Hz within 794.58–903.64 Hz.
ϕ3 means that the power density is eventually larger than or
equal to 0.0006 W/Hz within 2118.81–2227.87 Hz.

c) Outer ring fault: The power density of the signal
is always greater than or equal to 0.3415 W/Hz within
1667.02–1744.91 Hz.

d) Rolling element fault: The behavior of the signal has
to satisfy at least one of the descriptions of these three atomic
formulas: ϕ1, ϕ2, and ϕ3. ϕ1 means that the power density
is eventually larger than or equal to 0.3415 W/Hz within
15.63–109.10 Hz. ϕ2 means that the power density is
eventually larger than or equal to 0.4134 W/Hz within
716.69–825.74 Hz. ϕ3 means that the power density is
eventually larger than or equal to 0.0539 W/Hz within
1776.07–1853.97 Hz.
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TABLE V
wSTL FORMULAS FOR FOUR BEARING STATES IN THE SCUT DATASET

Fig. 12. TLN’s feature maps after trained with the SCUT dataset. In this experiment, the feature maps are the power spectra of the vibration signals.

The power spectra for the four bearing states are presented
in Fig. 13. Since frequency-domain data are s used in this
experiment, TFPGs are no longer used to show the propagation
of the fault events. What the wSTL formulas describe are the
frequency bands in which the power is concentrated, indicating
that the proposed model captures the signal’s characteristic
frequencies.

C. Comparisons With Other Methods

To verify the adaptability of TLN, we chose another public
dataset, the machinery failure prevention technology (MFPT)
dataset, to test the model. This dataset is composed of four
sets of bearing vibration signals.

1) Baseline Conditions: The data are collected at 270 lbs
of load and a sampling rate of 97 656 Hz for 6 s.

2) Outer Race Fault: The data are collected at 270 lbs of
load and a sampling rate of 97 656 Hz for 6 s.

3) Outer Race Fault: The data are collected at 7 different
loads and a sampling rate of 48 828 Hz for 3 s.

4) Inner Race Fault: The data are collected at 7 different
loads and a sampling rate of 48 828 Hz for 3 s.

The shafts all rotated at 25 Hz. Therefore, the signals within
this dataset can be categorized into three states: normal, inner
ring fault, and outer ring fault.

TABLE VI
COMPARATIVE RESULTS OF THE CWRU AND MFPT DATASETS

We selected normal data, inner ring fault data with a
load of 50 lbs, and outer ring fault data with a load of
300 lbs from the MFPT dataset for model training and testing.
Data preprocessing and model configuration are the same in
Section V-A. After obtaining the test accuracy, we compare
the experimental results of TLN on the CWRU and MFPT
datasets with other methods, which are presented in Table VI.
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Fig. 13. Signal power spectra in four states. Black dashed blocks frame the fault events, and 20 power spectra are plotted for each bearing state.

In [26], zero-crossing (ZC) is used for extracting fea-
tures from raw signals, followed by classification using
a feedforward artificial neural network (ANN). Verstraete
et al. [27] use short-time Fourier transform (STFT), wavelet
transform (WT), and Hilbert–Huang transform (HHT) to gen-
erate time–frequency images of the signals, and then feed
them into a deep convolutional CNN (DCNN) for fault
diagnosis. In [28], a new approach named second-order time-
reassigned multisynchrosqueezing transform (STMSST) based
on Gaussian-modulated linear group delay (GLGD) converts
1-D signals into 2-D images for feature extraction, and these
time–frequency images are input into a CNN for classification.
Zuo et al. [29] use local mean decomposition (LMD) to extract
features, encoding them into spikes for classification through
a spiking neural network (SNN). The test accuracy of TLN
is 98.86%, which is above ANN, DCNN with WT, and HHT.
Although the proposed model’s accuracy is 2.27% and 1.04%
lower than the best-performing models on the CWRU and
MFPT datasets, it is interpretable, which is a characteristic
that the aforementioned models do not have. Zhang et al.
[13] use CNN and principal component analysis (PCA) to
extract feature vectors from vibration signals and then cluster
them using the fuzzy C-means (FCMs) algorithm. Rao et al.
[30] use the algorithm unrolling technique to unroll the
convolutional version of the iterative shrinkage-thresholding
algorithm (CISTA) into a neural network called CISTA-Net,
and then add a residual block at the network’s input to create
ResCISTA-Net. It can be seen that the accuracy of TLN is
higher than that of ResCISTA-Net. Both the methods proposed
in [13] and [30] can extract interpretable features, whereas
TLN can also identify interpretable logical relationships and
propagation between the features, allowing fault events to be
intuitively understood.

D. Discussion
TLN’s primary advantage lies in its ability to elucidate

the temporal dynamic properties inherent in time-series data.
This is particularly crucial in bearing fault diagnosis, where

understanding how faults evolve over time is key to effective
prediction and prevention. TLN’s approach to interpreting
time-series data goes beyond static analysis, offering deeper
insights into the sequential and temporal patterns that the
traditional models might overlook. While TLN offers advanced
interpretability in temporal dynamics, it currently does not
match the accuracy and efficiency of other deep learning
models. In the context of bearing fault diagnosis, where
quick and precise detection is essential, this presents a
challenge. The intricate nature of TLN’s temporal analy-
sis, though insightful, may contribute to this discrepancy
in performance. Integrating advanced signal-processing tech-
niques could enhance TLN’s accuracy. These techniques
can help in better capturing the complexities of time-series
data, potentially improving TLN’s diagnostic capabilities.
Future improvements for TLN should aim at refining its
ability to analyze temporal dynamics more efficiently without
compromising on interpretability. Optimizing the network’s
architecture and incorporating signal-processing methods are
viable pathways. Exploring hybrid models that combine the
temporal interpretability of TLN with the accuracy of conven-
tional deep learning models could also be beneficial.

VI. CONCLUSION

In this article, we rigorously define a formal language
named weighted temporal logic and propose a deep learning
architecture called TLN for interpretable fault diagnosis of
rolling element bearings. TLN can symbolize vibration signals
and map them to a wSTL formula. To further validate the
interpretability of the model, timed failure propagation graphs
(TFPGs) are used to describe the logical relationship and prop-
agation between fault events in the time domain. Experiments
on three datasets and comparisons with other models show that
the proposed method has good performance for fault diagnosis
and interpretability. The experimental results also show that
TLN can extract the impulse patterns of a signal in either the
time or frequency domains, which is better than other methods
in terms of accuracy and interpretability.
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