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A B S T R A C T

This study, has developed a novel structural dynamics decoupling method based on TPA. This approach
effectively facilitates fault diagnosis and tracing in multistage gearbox systems. Initially, the research explores
the relationship between the transfer function of systems with rigid link decoupling and the coupled system’s
frequency response function. Compared with Huangfu et al. (2023) , the signal measurement points are
reduced. The MWI (Yu et al., 2023) is employed to solve the inverse problem of bearing force identification.
Subsequently, the decoupled frequency response and bearing forces are multiplied to calculate the path
contribution, determining the dominant fault transfer path and thereby facilitating fault tracing in gearboxes.
The effectiveness of this method is validated through numerical simulations and experimental studies, with
fault characteristic enhancement exceeding 200%. To evaluate the method’s universality and robustness,
experiments on diverse gearbox systems under varying conditions show enhanced fault characteristics across
three fault types, confirming its generalizability.
1. Introduction

Transfer Path Analysis (TPA) is extensively utilized for analyz-
ing and addressing vibration and noise issues in complex mechanical
ystems, with extensive experimental validation confirming its effec-
iveness [1–3]. TPA is capable of identifying and quantifying excitation
ources, analyzing the energy transfer pathways to the target point, and
ccurately assessing and ranking the contributions of different transfer
aths [4,5]. By controlling and improving these paths, vibration and
oise can be maintained within predetermined targets, facilitating fault
racing and diagnosis in mechanical systems. Following the ‘‘source-

path-receiver’’ model’s inception, TPA has evolved significantly. The
PA family primarily encompasses traditional TPA [6,7], Operational

TPA (OPA) [8–10], OPAX [11], Component-based TPA [12,13], and
he Global Direct Transfer Rate method [14,15], also known as ad-
anced TPA. Despite traditional TPA’s high accuracy, methodological
aturity, and information richness, its complex testing process and

ignificant assembly errors lead to suboptimal analysis efficiency [16].
To improve the analytical efficiency of traditional TPA, rapid advance-
ments have been made in dynamic decoupling methods leveraging
dynamic substructure technology [17]. Dynamic substructure technol-
ogy is crucial for the evaluation of dynamic behavior in mechanically
complex structures that are not amenable to holistic analysis. These
techniques enable the construction of dynamic models for extensive,
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intricate systems through the integration of dynamic models of their
respective subsystems and substructures [18]. To alleviate the workload
in acquiring substructural dynamic characteristics, researchers have
developed various methods, broadly classified into in-situ decoupling
methods [19–21] and standard decoupling methods [22–24]. In-situ
decoupling methods typically entail decoupling substructures on a
smooth surface and representing them as a series of interconnected
links, while standard decoupling methods necessitate substructures
possessing predetermined, a priori characteristics.

Gearboxes serve as vital components in various mechanical systems,
ensuring the smooth transfer of power. However, their complex nature
makes diagnosing faults a challenging endeavor. In recent years, the
application of TPA methodologies has emerged as a promising approach
in tracing gearbox faults. By dissecting the intricate pathways through
which vibration energy propagates, TPA facilitates the identification
and isolation of fault signals, thereby enhancing diagnostic precision
and fault tracing. When applying TPA to fault signal identification, the
standard decoupling methods (also known as physics-based methods)
assumes that vibration signals obtained from gearbox housing are
not affected by the transfer path, namely transfer path effects should
be nullified [25–27]. These physics-based methods aimed at reveal-
ing fault-specific characteristics concealed within the signal transfer
process. In these methods, Frequency Response Function (FRF) and
https://doi.org/10.1016/j.measurement.2024.115992
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interface forces serve as the preferred metrics in characterizing transfer
aths. While the decoupling of the FRF from gearbox housing, partic-
larly in complex gear systems, poses a formidable challenge due to
he complex structure and working conditions. Additionally, the time-

intensive nature of testing and the potential alteration of assembly
onditions during physical decoupling present further complications.

As a result, in-situ decoupling methods (also known as visual decou-
pling methods) for gear transfer systems have attracted increasing
research interest [19,28]. In 2018, Wang et al. [29] developed a
ovel TPA method that relies on in-situ measurement of frequency
esponse functions, systematically examining the interaction between
oupled and decoupled transfer functions, specifically in the context of
utomotive body vibrations. In 2023, Huangfu et al. [30] introduced

a specialized in-situ TPA technique for gear systems, designed to fa-
cilitate effective fault tracking and mitigate the contaminating effects
of gear system transfer paths. However, their approach in prevailing
studies models the connection between active and passive parts as a
parallel combination of springs and dampers, a simplification that may
overlook certain physical characteristics [17,28,31]. Moreover, the in-
situ measurement process for decoupling gearbox system frequency
responses requires a substantial number of measurement points to
construct decoupled transfer functions using transfer rate matrices. This
undoubtedly increase some measurement difficulties related to deter-
mination of transfer functions of components. This also necessitates
extensive measurement equipment, escalating both time and financial
expenditures, and possibly increasing the risk of measurement errors.

In the pursuit of extracting comprehensive fault information
through transfer path analysis theory, it is critical to accurately iden-
tify the bearing interface forces in gearbox systems. Present research
methodologies primarily encompass three approaches: direct mea-
surement [32], the parameter load method [11], and the inverse
identification method [33]. Direct measurement in gear systems is
challenging due to the necessity of integrating force sensors at the
bearing locations, a process often fraught with practical difficulties.
The parameter load method, reliant on vibration signals from active
parts, encounters obstacles in gear rotor systems, where installing
accelerometers is problematic due to their rotational nature. The in-
verse identification method, more suitable for gear systems, eliminates
the need for additional measurement instruments. In Ref. [30], the
Tikhonov regularization technique is employed to acquire reasonable
olutions by introducing a regularization parameter. It may provide bet-

ter identification accuracy for large matrix dimensions (experimental
results show that the limit is around 100) or extremely severe ill-
conditioned problems. However, this approach has its limitations, it
is easy to cause systematic deviation introduced by the regular term.
Yu et al. [34] have proposed a methodology for identifying bearing
forces in gear systems, focusing on bearing forces as opposed to housing
responses for gear fault detection. This method addresses the ill-posed
inverse problem inherent in positive matrix formulation using the
Maximumly Weighted Iteration (MWI). This property ensures that the
time-domain waveforms of bearing dynamic forces can be correctly
reconstructed through the identified spectra, without being affected by
the systematic deviation introduced by the regular term.

For further alleviate some measurement difficulties related to de-
termination of transfer functions of components, also to accurately
identify the bearing force, we propose a method for virtual decoupling
frequency response functions, combined with Maximumly Weighted
Iteration(MWI) [34,35] to identify bearing forces, and an enhanced
transfer path analysis method for fault tracing in multistage gearbox
systems. This method proposed herein supplements existing gearbox
fault tracing techniques, providing a solid foundation for fault tracing
nd diagnosis based on the generalized virtual decoupling approach.
dditionally, path contributions constructed using transfer functions

rom virtual decoupling and bearing forces from the MWI facilitate fault
nformation tracing. A physically interpretable signal decomposition
ethod is also introduced to amplify fault characteristics. This study
resents several valuable conclusions that contribute to both the theory
nd practice of fault diagnosis in multistage parallel gear systems:
• A novel structural dynamics decoupling method has been devel-
oped, eliminating the need for physical disassembly of complex
gearbox systems. This significantly simplifies the maintenance
process, reduces the likelihood of assembly errors, and minimizes
measurement complexities, thus providing a more efficient and
reliable diagnostic tool for industrial applications.

• The application of MWI offers clear advantages over traditional
Tikhonov regularization, especially in terms of solution stability
and consistency. This provides a more robust and reliable ap-
proach for analyzing fault signatures, ensuring high accuracy in
real-world scenarios.

• Experimental results demonstrate that fault indicators for various
fault types were amplified by over 200%, allowing for more
sensitive detection of early-stage faults. This substantial amplifi-
cation not only enhances diagnostic precision but also extends the
system’s fault detection capabilities.

• The method has shown strong generalization and robustness
across different gearbox systems and operational conditions. The
significantly enhanced fault features for multiple fault types un-
der various experimental conditions confirm that the proposed
method is versatile and effective, providing a reliable diagnostic
solution for diverse industrial settings.

2. Theoretical fundamental

In Transfer Path Analysis (TPA) technology, there are two different
types of methods. The first type involves methods using load response,
and the second type is based on output signal measurements. This paper
focuses only on the methods based on load response and studies the
‘Source-Path-Receiver’’ model within the TPA framework, assuming
that the link between the active part (Source) and the passive part
Receiver) allows only translational vibrations. In a gear system, the
ear rotor system, bearing interface, and the housing are referred to

as the active part, interface part, and passive part, respectively (as
shown in Fig. 1). The meshing positions between gear pairs are treated
as two excitation sources, with the gearbox housing acting as the
eceiver, and the bearing forces as the contact forces between the active
nd passive parts. The essence of the TPA method is to obtain the
ecoupled frequency response and bearing forces between the bearing
nterface and the gearbox housing. In literature [30], Huangfu and

others successfully conducted fault diagnosis of gearbox systems using a
transfer path analysis method based on in-situ measurements. However,
his method views the linkage between the active and passive parts
s a parallel connection of springs and dampers, overlooking some
hysical characteristics. The paper then introduces a new and improved
irtual decoupling method, known as the Link-Preserving Decoupling
ethod, for fault tracing and diagnosis in gearbox systems. This method

erives two types of decoupled frequency responses corresponding to
ifferent measurement points (i.e., the 𝐇𝑐 ,𝑚𝑝 and 𝐇𝑐 ,𝑝𝑝 based methods
hown in Fig. 2), both effectively facilitating fault tracing and diagnosis.
ompared to literature [30], the second decoupled frequency responses

reduces the number of measurement points, significantly lowers the
omputational load, and saves time costs.

For gearbox systems, modeling the transfer function under working
onditions as 𝐇 and the dynamic forces of bearings as 𝐅 allows for

a more effective representation of the gear’s fault state. The specific
process of fault tracing and diagnosis in gearboxes proposed in this
paper can be briefly described as follows: First, considering the mass
effect of elastic links between the active and passive parts of the
gearbox, a decoupled transfer path analysis is conducted to construct
the decoupled transfer function matrix 𝐇. Then, using the MWI, the
inverse problem composed of the test signal 𝑥 and H under different
conditions is solved to estimate the different transfer paths 𝐅 in the
actual gearbox system. Next, the estimated 𝐅 under fault conditions
is multiplied by the corresponding decoupled transfer function to ob-

tain the contributions of different transfer paths. By comparing these
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Fig. 1. The gearbox decoupling system.
Fig. 2. Gearbox transfer path model. The symbol a denotes the interface nodes located on the side of the rotor, while the p represents the interface nodes located on the side of
the house. The symbol m represents the measurement point on the side of the house. (a) The transfer function 𝐇c,mp is measured at the house ‘m’; (b) The transfer function 𝐇c,pp
is measured at the house ‘p’.
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contributions, the dominant transfer paths of the fault frequency is
etermined, achieving gearbox fault tracing. Finally, based on the
bove research, a signal decomposition method is proposed to enhance
ault characteristics, effectively realizing fault tracing and diagnosis.
his process is illustrated in Fig. 3. In subsequent research, we will

discuss the details of this method in depth.

2.1. The lumped parameter model for a coupled system

Use a simple lumped parameter model to explain the coupling of
lastic links to active and passive subsystems. Fig. 2 shows an example

of a lumped parameter system, where the primary and secondary sub-
systems are connected by springs and dampers. This model represents
he most compact form of a lumped parameter system, with active and
assive sides being interlinked. Each linkage is considered a parallel
connection of a spring and a damper. The motion equation for a finite-
imensional, multi-degree-of-freedom linear structure can be written
s:

𝐌�̈� + 𝐂�̇� +𝐊𝑠 = f (1)
where 𝐌, 𝐂, and 𝐊 matrices respectively represent the mass, damping,
nd stiffness of the system. Specific experimental parameters are shown
n Table 1. f and s represent the generalized coordinate vector and the

generalized force vector. The generalized coordinates of the lumped
parameter model are:

𝐪 =
[

𝑥1, 𝜃1, 𝑥2, 𝜃2, 𝑥3, 𝜃3, 𝑥4, 𝑥5, 𝑥6, 𝑥7
]

(2)
where 𝑥𝑖 and 𝜃𝑖 respectively represent the linear displacement and
ngular displacement of the 𝑖th part of the lumped parameter model.
he structure of the above matrices is as follows:

𝑐 𝑜𝑢𝑝 ( )
𝐌 = diag 𝑚1, 𝐽1, 𝑚2, 𝐽2, 𝑚3, 𝐽3, 𝑚4, 𝑚5, 𝑚6, 𝑚7 (3)
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Fig. 3. The flow chart of the proposed method.
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where 𝑚𝑖 and 𝐽𝑖 stand for the mass and moment of inertia of the 𝑖th
art of the lumped model, respectively.

𝐊𝑐 𝑜𝑢𝑝 = [

𝐾𝑐 𝑜𝑢𝑝
1 , 𝐾𝑐 𝑜𝑢𝑝

2
]

(4)

where

𝐾𝑐 𝑜𝑢𝑝
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘14 + 𝑘1(𝑡) 𝑟𝑏1𝑘1(𝑡) −𝑘1(𝑡) 𝑟𝑏2𝑘1(𝑡) 0
𝑟𝑏1𝑘1(𝑡) 𝑟2𝑏1𝑘1(𝑡) −𝑟𝑏1𝑘1(𝑡) 𝑟𝑏1𝑟𝑏2𝑘1(𝑡) 0
−𝑘1(𝑡) 𝑟𝑏1𝑘1(𝑡) 𝑘1(𝑡) + 𝑘2(𝑡) −𝑟𝑏2𝑘1(𝑡) + 𝑟𝑏3𝑘2(𝑡) −𝑘2(𝑡)
𝑟𝑏2𝑘(𝑡) 𝑟𝑏1𝑟𝑏2𝑘1(𝑡) −𝑟𝑏1𝑘2(𝑡) + 𝑟𝑏3𝑘2(𝑡) 𝑟2𝑏2𝑘1(𝑡) + 𝑟2𝑏3𝑘2(𝑡) −𝑟𝑏3𝑘2(𝑡)

0 0 −𝑘2(𝑡) −𝑟𝑏3𝑘2(𝑡) 𝑘2(𝑡)
0 0 𝑟𝑏4𝑘2(𝑡) 𝑟𝑏3𝑟𝑏4𝑘2(𝑡) −𝑟𝑏4𝑘2(𝑡)

−𝑘14 0 0 0 0
0 0 −𝑘25 0 0
0 0 0 0 −𝑘36
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐾coup
2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −𝑘14 0 0 0
0 0 0 0 0

𝑟𝑏4𝑘2(𝑡) 0 −𝑘25 0 0
𝑟𝑏3𝑟𝑏4𝑘2(𝑡) 0 0 0 0
−𝑟𝑏4𝑘2(𝑡) 0 0 −𝑘36 0
𝑟2𝑏4𝑘2(𝑡) 0 0 0 0

0 𝑘14 + 𝑘47 0 0 −𝑘47
0 0 𝑘25 + 𝑘57 0 −𝑘57
0 0 0 𝑘36 + 𝑘67 −𝑘67
0 −𝑘47 −𝑘57 −𝑘67 𝑘47 + 𝑘57 + 𝑘67 + 𝑘07

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where 𝑘𝑖𝑗 is the stiffness between part 𝑖 and 𝑗. 𝑟𝑏𝑖 stand for base radius
of 𝑖th gear. 𝑘𝑖(𝑡) represents the time-variable meshing stiffness of gear
pair 𝑖.

𝐂𝑐 𝑜𝑢𝑝 = [

𝐶𝑐 𝑜𝑢𝑝
1 , 𝐶𝑐 𝑜𝑢𝑝

2
]

(5)

where

𝐶𝑐 𝑜𝑢𝑝 =
1
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐14 + 𝑐1(𝑡) 𝑟𝑏1𝑐1(𝑡) −𝑐1(𝑡) 𝑟𝑏2𝑐1(𝑡) 0
𝑟𝑏1𝑐1(𝑡) 𝑟2𝑏1𝑐1(𝑡) −𝑟𝑏1𝑐1(𝑡) 𝑟𝑏1𝑟𝑏2𝑐1(𝑡) 0
−𝑐1(𝑡) 𝑟𝑏1𝑐1(𝑡) 𝑐1(𝑡) + 𝑐2(𝑡) −𝑟𝑏2𝑐1(𝑡) + 𝑟𝑏3𝑐2(𝑡) −𝑐2(𝑡)
𝑟𝑏2𝑐(𝑡) 𝑟𝑏1𝑟𝑏2𝑐1(𝑡) −𝑟𝑏1𝑐2(𝑡) + 𝑟𝑏3𝑐2(𝑡) 𝑟2𝑏2𝑐1(𝑡) + 𝑟2𝑏3𝑐2(𝑡) −𝑟𝑏3𝑐2(𝑡)

0 0 −𝑐2(𝑡) −𝑟𝑏3𝑐2(𝑡) 𝑐2(𝑡)
0 0 𝑟𝑏4𝑐2(𝑡) 𝑟𝑏3𝑟𝑏4𝑐2(𝑡) −𝑟𝑏4𝑐2(𝑡)

−𝑐14 0 0 0 0
0 0 −𝑐25 0 0
0 0 0 0 −𝑐36
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

coup
2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −c14 0 0 0
0 0 0 0 0

rb4c2(t ) 0 −c25 0 0
rb3rb4c2(t ) 0 0 0 0
−rb4c2(t ) 0 0 −c36 0
r2b4c2(t ) 0 0 0 0

0 c14 + c47 0 0 −c47
0 0 c25 + c57 0 −c57
0 0 0 c36 + c67 −𝑐67
0 −𝑐47 −𝑐57 −𝑐67 𝑐47 + 𝑐57 + 𝑐67 + 𝑐07

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where 𝑐𝑖𝑗 is the stiffness between part 𝑖 and 𝑗. 𝑐𝑖(𝑡) represents the
time-variable meshing stiffness of gear pair 𝑖.

The theoretical FRF of the overall system (coupled system) can be
xpressed as:

𝐇𝑐 𝑜𝑢𝑝 = 𝜔2 (−𝜔2𝐌𝑐 𝑜𝑢𝑝 + 𝑗 𝜔𝐂𝑐 𝑜𝑢𝑝 +𝐊𝑐 𝑜𝑢𝑝)−1 (6)

where 𝐂𝑐 𝑜𝑢𝑝 and 𝐊𝑐 𝑜𝑢𝑝 are the time-averaged damping and stiffness
matrices of the coupled system, respectively. When analyzing the modal
characteristics of gear systems, a widely accepted strategy is to average
the damping and stiffness matrices over time [30].

However, as mentioned earlier, there is interest in the transfer
unction within the passive subsystem. Given the lumped parameter

model, this subsystem’s transfer function can be easily derived:
( )
𝐇𝐷 𝑒𝑐 𝑜𝑢𝑝 = 𝜔2 −𝜔2𝐌𝐷 𝑒𝑐 𝑜𝑢𝑝 + 𝑗 𝜔𝐂𝐷 𝑒𝑐 𝑜𝑢𝑝 +𝐊𝐷 𝑒𝑐 𝑜𝑢𝑝 −1 (7)
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For the passive part, the mentioned matrices have the following
structure:

𝐌𝐷 𝑒𝑐 𝑜𝑢𝑝 = diag
(

𝑚4, 𝑚5, 𝑚6, 𝑚7
)

𝐷 𝑒𝑐 𝑜𝑢𝑝 =
⎡

⎢

⎢

⎢

⎢

⎣

𝑘47 0 0 −𝑘47
0 𝑘57 0 −𝑘57
0 0 𝑘67 −𝑘67

−𝑘47 −𝑘57 −𝑘67 𝑘47 + 𝑘57 + 𝑘67 + 𝑘07

⎤

⎥

⎥

⎥

⎥

⎦

;

𝐂𝐷 𝑒𝑐 𝑜𝑢𝑝 =
⎡

⎢

⎢

⎢

⎢

⎣

𝑐47 0 0 −𝑐47
0 𝑐57 0 −𝑐57
0 0 𝑐67 −𝑐67

−𝑐47 −𝑐57 −𝑐67 𝑐47 + 𝑐57 + 𝑐67 + 𝑐07

⎤

⎥

⎥

⎥

⎥

⎦

The following section will discuss how to obtain the frequency
esponse function of the passive system using the decoupling method.

2.2. The decoupling method

In real-life applications, obtaining the decoupled transfer function of
the passive part of the system is challenging. The ultimate goal of the
ink-preserving decoupling method is to use the frequency response of
he coupled system to predict the frequency response of the passive
art. This section aims to improve the accuracy of the decoupled
ransfer function estimation when the link quality is effective. We
pply the decoupled transfer functions method based on in-situ transfer
unctions [29] for analysis, and the main contents of this method are

introduced below. A typical mechanical system, as shown in Fig. 3,
has its active and passive parts connected in parallel by springs and
ampers, considering only translational vibrations. The relationship
etween external force 𝐅 and system response 𝐗 is as follows:

𝐗(𝜔) = 𝐇(𝜔)𝐅(𝜔) 𝑜𝑟 𝐅(𝜔) = 𝐙(𝜔)𝐗(𝜔) (8)

where 𝐇(𝜔) is the system transfer function matrix, and 𝐙(𝜔) is the
system dynamic stiffness matrix. From here on the dependency on
frequency is omitted for clarity.

When focussing on the link connection points, Splitting 𝐙 in a first
part containing the systems 𝐙𝑑 ,𝑝𝑝 and 𝐙𝑑 ,𝑎𝑎, and a second part contain-
ing the link parameters, and the results can be found in literature [28]
s follows.

⎛

⎜

⎜

⎜

⎜

⎝

∗ ∗ 0 0
∗ 𝐙𝑑 ,𝑝𝑝 0 0
0 0 𝐙𝑑 ,𝑎𝑎 ∗
0 0 ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎠

𝐇 +

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 𝐋′ −𝐋′ 0
0 −𝐋′ 𝐋′ 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

𝐇 = 𝐈 (9)

In this expression 𝐙−𝟏 = 𝐇. The matrix consists of a measurable part
and an unmeasurable part, and the unmeasurable part is represented by
*. For presentational reasons a more symbolic expression is introduced:

⎛

⎜

⎜

⎝

𝐙1 +
⎡

⎢

⎢

⎣

0 0 0
0 𝐋 0
0 0 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

𝐇 = 𝐈 (10)

with

𝐙1 =

⎛

⎜

⎜

⎜

⎜

⎝

∗ ∗ 0 0
∗ 𝐙𝑑 ,𝑝𝑝 0 0
0 0 𝐙𝑑 ,𝑎𝑎 ∗
0 0 ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎠

𝑎𝑛𝑑 𝐋 =
[

𝐋′ −𝐋′

−𝐋′ 𝐋′

]

(11)

Pre-multiplying Eq. (10) by 𝐇1 yields:

𝐇1

⎛

⎜

⎜

⎝

𝐙1 +
⎡

⎢

⎢

⎣

0 0 0
0 𝐋 0
0 0 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

𝐇 = 𝐇1 (12)

where: 𝐇1 = 𝐙−1
1 .

Sorting can obtain:
 s
𝐇1 =
⎡

⎢

⎢

⎣

∗ ∗ ∗
∗ �̂� ∗
∗ ∗ ∗

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐈 0 0
∗ 𝐈 − 𝐋�̂� ∗
0 0 𝐈

⎤

⎥

⎥

⎦

−1

=
⎡

⎢

⎢

⎣

∗ ∗ ∗
∗ �̂� ∗
∗ ∗ ∗

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

𝐈 0 0
∗ (𝐈 − 𝐋�̂�)−1 ∗
0 0 𝐈

⎤

⎥

⎥

⎦

(13)

Taking into consideration the block structure of 𝐙1, the expression
can be written as follows:

𝐙1 =

⎛

⎜

⎜

⎜

⎜

⎝

∗ ∗ 0 0
∗ 𝐙𝑑 ,𝑝𝑝 0 0
0 0 𝐙𝑑 ,𝑎𝑎 ∗
0 0 ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎠

= �̂�(𝐈 − 𝐋�̂�)−1 (14)

It can clearly be observed that the middle section containing 𝐇𝑑 ,𝑝𝑝
nd 𝐇𝑑 ,𝑎𝑎 results in

[

𝐇𝑑 ,𝑝𝑝 0
0 𝐇𝑑 ,𝑎𝑎

]

= �̂�(𝐈 − 𝐋�̂�)−1 (15)

Taking into considering the structure of 𝐋:

𝐋 =
[

𝐋′ −𝐋′

−𝐋′ 𝐋′

]

=
[

𝐋′ 0
0 𝐋′

] [
𝐈 −𝐈

−𝐈 𝐈

]

(16)

Eq. (14) is modified as follows:
[

𝐇𝑑 ,𝑝𝑝 0
0 𝐇𝑑 ,𝑎𝑎

]

=
[

�̂�𝑝𝑝 �̂�𝑝𝑎
�̂�𝑎𝑝 �̂�𝑎𝑎

] ([
𝐈 0
0 𝐈

]

−
[

𝐋′ 0
0 𝐋′

] [
𝐈 −𝐈

−𝐈 𝐈

]

×
[

�̂�𝑝𝑝 �̂�𝑝𝑎
�̂�𝑎𝑝 �̂�𝑎𝑎

])−1

(17)

Executing the matrix product between the brackets yields:
[

𝐇𝑑 ,𝑝𝑝 0
0 𝐇𝑑 ,𝑎𝑎

]

−
[

𝐇𝑑 ,𝑝𝑝𝐿′ 0
0 𝐇𝑑 ,𝑎𝑎𝐿′

]

=
[

�̂�𝑝𝑝 − �̂�𝑎𝑝 �̂�𝑝𝑎 − �̂�𝑎𝑎
�̂�𝑎𝑝 − �̂�𝑝𝑝 �̂�𝑎𝑎 − �̂�𝑝𝑎

] [
�̂�𝑝𝑝 �̂�𝑝𝑎
�̂�𝑎𝑝 �̂�𝑎𝑎

]

(18)

The first row of Eq. (17), gives rise to the following expression:
[

𝐇𝑑 ,𝑝𝑝 0
]

−𝐇𝑑 ,𝑝𝑝𝐋′ [�̂�𝑝𝑝 − �̂�𝑎𝑝 �̂�𝑝𝑎 − �̂�𝑎𝑎
]

=
[

�̂�𝑝𝑝 �̂�𝑝𝑎
]

(19)

In this expression the left part results in

𝐇𝑑 ,𝑝𝑝 = �̂�𝑝𝑝 +𝐇𝑑 ,𝑝𝑝𝐿′
(

�̂�𝑝𝑝 − �̂�𝑎𝑝

)

(20)

The right part of Eq. (18) leads to

𝐇𝑑 ,𝑝𝑝𝐿′ = −�̂�𝑝𝑎

(

�̂�𝑝𝑎 − �̂�𝑎𝑎

)−1
(21)

Merging the expression given by Eq. (20) into Eq. (19) yields:

𝐇𝑑 ,𝑝𝑝 = �̂�𝑝𝑝 − �̂�𝑝𝑎

(

�̂�𝑝𝑎 − �̂�𝑎𝑎

)−1 (
�̂�𝑝𝑝 − �̂�𝑎𝑝

)

(22)

According to Eq. (43) in Ref. [29], the following relationship exists:

[

𝐇𝑑 ,𝑚𝑝 0
]

(

𝐈 −
[

𝐋′ −𝐋′

−𝐋′ 𝐋′

]−1 [𝐇c,pp 𝐇c,pa
𝐇c,ap 𝐇c,aa

]

)

=
[

𝐻𝑐 ,𝑚𝑝 𝐻𝑐 ,𝑚𝑎
]

(23)

The second decoupled frequency response can be obtained:

𝐇𝑑 ,𝑚𝑝 = 𝐇𝑐 ,𝑚𝑝 −𝐇𝑐 ,𝑚𝑎(𝐻𝑐 ,𝑎𝑎 −𝐇𝑐 ,𝑝𝑎)−1(𝐇𝑐 ,𝑎𝑝 −𝐇𝑐 ,𝑝𝑝) (24)

Taking into account the above, if the point ‘m’ on the passive
side is considered as the target degree of freedom, the decoupled
frequency response can be obtained from Eq. (24), with the corre-
ponding scenario illustrated in Fig. 2(a). Conversely, if the interface
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degree of freedom ‘p’ on the passive side is selected as the target, the
ecoupled frequency response is derived from Eq. (22), as depicted

in Fig. 2(b). It is evident that Eq. (22) requires the measurement of
fewer quantities compared to Eq. (24), making the transfer function
derived from Eq. (22) more advantageous for experimental purposes.
This benefit extends to reducing the number of sensors needed and
simplifying the measurement process. To substantiate this conclusion,
we provide an experimental validation with practical examples in the
following sections.

In light of the preceding discussion, the selection of the point of
nterest on the passive side significantly influences the decoupling
rocess in frequency response analysis. When point ‘m’ on the passive
ide is targeted, the decoupled frequency response is obtained from
q. (24), as illustrated in Fig. 2(a). Alternatively, targeting the interface

degree of freedom ‘p’ on the passive side yields the decoupled frequency
esponse from Eq. (22), depicted in Fig. 2(b). Notably, Eq. (22) neces-

sitates measuring fewer quantities than Eq. (24), rendering the transfer
unction from Eq. (22) more practical for experimental applications.
his advantage is further amplified by the reduced need for sensors and
he simplification of the measurement process. The subsequent sections
f this paper will provide experimental validation of these assertions,
upported by practical examples.

The generalized virtual decoupling method introduced herein en-
bles the determination of the frequency response of decoupled sub-
ystems without system disassembly. This method demonstrates low
ensitivity to the points of force application and sensor placement.
n instances of experimentally inaccessible areas, proximal points can
e selected, albeit with the understanding that this might introduce
inor deviations from the actual conditions, which are generally within

cceptable limits [28].
However, the accuracy of Frequency Response Functions (FRFs)

[36] derived using virtual decoupling methods during experiments can
e a challenge, as they may deviate from the true conditions. To
pproximate the true FRFs as closely as possible, it is often necessary
o conduct multiple measurements at closely located points. A critical
ask is to establish a quantitative measure for the similarity between the
requency responses, employing representative normalized values to
valuate their accuracy across specific frequency ranges. This approach
nables a deterministic assessment of the accuracy of the decoupled
requency responses. In this study, we utilize the Frequency Response
ssurance Criterion (FRAC) as a metric to quantify the similarity be-

ween the frequency responses obtained from both physical and virtual
ecoupling methods.

𝐹 𝑅𝐴𝐶 =
|

|

|

∑𝑁𝑓
𝑗=1

(

𝐇𝑚(𝜔𝑗 )𝐻 ⋅𝐇𝑀 (𝜔𝑗 )
)

|

|

|

2

[

∑𝑁𝑓
𝑗=1

(

𝐇𝑚(𝜔𝑗 )𝐻 ⋅𝐇𝑚(𝜔𝑗 )
)

] [
∑𝑁𝑓

𝑗=1
(

𝐇𝑀 (𝜔𝑗 )𝐻 ⋅𝐇𝑀 (𝜔𝑗 )
)

]

(25)
where the superscript 𝐇 represents the Hamiltonian transformation
(i.e., the transpose of complex conjugations), the subscripts m and M
indicate two points that are located very close together and 𝑁𝑓 and 𝜔
represent discrete numbers and circular frequencies in the frequency
domain, respectively.

2.3. Identification of bearing force

According to the gearbox transfer path modeling shown in Sec-
tion 2.2, the bearing force can be identified using the vibration response
signal and the coupled transfer function matrix. In most cases, transfer
unction matrices are ill-conditioned matrices. In order to solve the

ill-conditioned inverse problem in dynamics, the iterative weighted de-
composition and the ill-conditioned coefficient matrix of the weighted
control system are used to avoid the matrix inversion in the process
of solving and reconstruction. The theory of the Maximumly Weighted
teration (MWI) [35] to identify the bearing force is given below.
Fig. 4. The errors of solving inverse problems by MWI and Tikhonov for different
atrix dimensions.

Taking the result of Eq. (24) as an example, the result of Eq. (22) is
imilar. The vibration response at the measuring point is modified as:

𝐇𝑇
𝑑 ,𝑚𝑝xm = 𝐇𝐓

d,𝑚𝑝𝐇𝑑 ,𝑚𝑝𝐅 (26)

Due to inherent rounding errors in computational systems and the
resence of observational noise in practical inverse problems, distur-

bances become unavoidable. Consequently, it becomes imperative to
devise numerical techniques aimed at mitigating the ill-conditioning
inherent in inverse problems. For the cases that m < p, the 𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝
does not exist, and the least square cannot be used to solve the ill-
conditioned problem. Considering the singular value decomposition
of 𝐇𝑑 ,𝑚𝑝, i.e., 𝐇𝑑 ,𝑚𝑝 = 𝐔𝐒𝐕∗, in which 𝐒 is a diagonal matrix of
singular values, 𝐔 and 𝐕 are unitary matrices, and the superscript ‘*’
denotes conjugate transpose. Among the most renowned approaches is
Tikhonov regularization. This method replaces the linear system by the
regularized system:

(𝐇𝑇
𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝 + 𝜆𝐈)𝐅 = 𝐇𝑇

𝑑 ,𝑚𝑝𝑥 (27)
where 𝐈 indicates a unit matrix. By performing singular value decom-
osition on 𝐇𝑑 ,𝑚𝑝 and substituting it into Eq. (27), the regularization

solution 𝐅 can be expressed as:

𝐅 = 𝐕(𝐒∗𝐒 + 𝜆𝐈)−1𝐒∗𝐔∗𝐱 (28)
where 𝜆 denotes the regularization parameter. To our knowledge,

ikhonov regularization uses 𝜆 to regulate the small singular values.
However, for seriously ill-conditioned matrix, too small singular values
will lead to rounding in the computing process, and the generalized
inverse cannot give a satisfactory solution.

Then the bearing force 𝐅 is identified by weighted iterative al-
orithm. First, a weighted decomposition of 𝐅 is performed, that is,
= 𝐖f. Plug in the above formula:

𝐇𝑇
𝑑 ,𝑚𝑝𝑥𝑚 = 𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝𝐖𝑓 (29)
where 𝐖 represents a specially selected non-singular weighted matrix,
which can be used to control the pathological degree of 𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝, by
acting on the column space of the coefficient matrix 𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝, directly
regulates its numerical singularity. The significance of weighting is to
change the coefficient matrix in the process of solving and avoid matrix
inversion in the process of reconstruction.

For simplicity, let the weighting matrix be 𝐖 = diag(W1,W2,… ,
W𝑚), where m is a positive integer greater than or equal to 2. In order
to find an acceptable weighting matrix, some constraints should be
satisfied.
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Next, we analyze the least upper bound of the inverse error identical
ith Yu [34] to give guidelines about choosing 𝐖. The selection of

the weighted matrix 𝐖 is based on the principle of error propagation
and amplification, aiming to minimize the upper bound of the error.
let 𝐀 = 𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝, 𝐘 = 𝐇𝑇
𝑑 ,𝑚𝑝𝑥𝑚, 𝛿𝐘, 𝛿𝐀, 𝛿𝐅 represent the output error,

the error of the coefficient matrix 𝐀, and the input error respectively.
Assuming that the error is limited, ⃖⃖⃗𝐘, ⃖⃖⃗𝐀, ⃖⃗𝐅 is used to represent the
output, coefficient matrix and input obtained by actual measurement.
Then the minimum upper bound of the relative error of the unweighted
matrix can be expressed as:
‖𝛿𝐅‖
‖𝐅‖

≤ k(⃖⃖⃗𝐀)‖𝐀‖ ‖𝛿𝐘‖
‖𝐀‖ ‖𝐘‖ + 𝐤(⃖⃖⃗𝐀)‖𝛿𝐀‖

‖𝐀‖
(30)

where k(
→

𝐀) = ‖

→

𝐀‖ ‖
→

𝐀
†
‖ is the condition number of the matrix

→

𝐀. The
ondition number is usually used to assess the ill-condition degree of
he matrix.

Proof. From the definition
→

𝐘 =
→

𝐀
→

𝐅, namely:

𝐀 + 𝛿𝐘 =
→

𝐀(𝐅 + 𝛿𝐅) (31)

𝐘 + 𝛿𝐘 = (𝐀 + 𝛿𝐀)𝐅 +
→

𝐀𝛿𝐅 (32)

From the definition 𝐘 = 𝐀𝐅, namely:
→

𝛿𝐅 = 𝛿𝐘 − 𝛿𝐀𝐅 (33)

Multiply both sides by the generalized inverse matrix of
→

𝐀:

𝛿𝐅 =
→

𝐀
†
𝛿𝐘 −

→

𝐀
†
𝛿𝐀𝐅 (34)

Considering compatibility conditions and triangle inequality of
Eq. (32):

‖𝛿𝐅‖ ≤ ‖

→

𝐀
†
‖‖𝛿𝐘‖ + ‖

→

𝐀
†
‖‖𝛿𝐀‖‖𝐅‖ (35)

The least upper bound of the relative error can be reached when
‖𝐘‖ = ‖𝐀‖‖𝐅‖:
‖𝛿𝐅‖
‖𝐅‖

≤ ‖

→

𝐀‖‖
→

𝐀
†
‖

‖𝛿𝐘‖
‖𝐘‖

+ ‖

→

𝐀
†
‖‖𝛿𝐀‖ (36)

From the definition of condition number k (
→

𝐀) = ‖

→

𝐀‖‖
→

𝐀
†
‖, Eq. (34)

an be written as:
‖𝛿𝐅‖
‖𝐅‖

≤ 𝑘(
→

𝐀)‖𝐀‖ ‖𝛿𝐘‖
‖𝐀‖ ‖𝐘‖ + 𝑘(

→

𝐀)‖𝛿𝐀‖

‖

→

𝐀‖
(37)

The proof is finished.

Multiplying the weighted matrix 𝐖 and the matrix
→

𝐀, we can obtain
the upper bound of the identification error using Eq. (28) as below:
‖𝛿𝐅‖
‖𝐅‖

≤ k( ⃖⃖⃖⃖⃖⃖⃗𝐀𝐖)
‖𝐀‖ ‖𝛿𝐘‖
‖𝐀‖ ‖𝐘‖ + k( ⃖⃖⃖⃖⃖⃖⃗𝐀𝐖)

‖𝛿𝐀‖
‖𝐀‖

(38)

To ensure that the upper bound of the recognition error is re-
uced after weighted iteration, comparing Eq. (37) with Eq. (38), the

following constraints are given [35]:

k( ⃖⃖⃖⃖⃖⃖⃗𝐀𝐖) < k(⃖⃖⃗𝐀)k( ⃖⃖⃖⃖⃖⃖⃗𝐀𝐖)
‖𝐖‖ ‖𝐀‖
‖

‖

‖

𝐖⃖⃖⃗𝐀‖‖
‖

≤ k(⃖⃖⃗𝐀)‖𝐀‖
‖

‖

‖

⃖⃖⃗𝐀‖‖
‖

(39)

Based on constraints Eqs. (28)–(30), for 1-norm, the weighted ma-
rix in the form of column standardization is proposed:
𝐖 = 𝑑 𝑖𝑎𝑔(𝑊1, 𝑊2,… , 𝑊𝑚), 𝑊𝑖 =

√

√

√

√(
𝑚
∑

𝑗=1

|

|

|

𝑎𝑖𝑗
|

|

|

2
)−1, 𝑖 = 1, 2,… , 𝑚 (40)

where 𝑎𝑖𝑗 represents the elements of matrix 𝐀. To further address the
ssue of ill-conditioned, especially in cases where the number of output

channels is less than the number of input channels (underdetermined
problems), add a term 𝛼f to both sides of the equation:

Next, add a term 𝛼f to both sides of the equation:

𝐇𝑇
𝑑 ,𝑚𝑝𝑥𝑚 + 𝛼 𝑓 = (𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝𝐖 + 𝛼)𝑓 (41)
where 𝛼 is the weighting factor, which can be calculated by Lcurve
riterion or generalized cross-validation (GCV) method [36]. This ad-

dition helps to avoid rank deficiency in the coefficient matrix, thereby
stabilizing the numerical solution process. When 𝛼 > 0, the patholog-
ical degree of the symmetric matrix 𝐇T

d,mp𝐇𝑑 ,𝑚𝑝𝐖 is further reduced.
Assuming convergence to f after k iterations, Eq. (41) is rewritten into
a coefficient matrix of the following iteration form:

𝐇𝑇
𝑑 ,𝑚𝑝𝑥𝑚 + 𝛼 𝑓𝑘 = (𝐇𝑇

𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝𝐖 + 𝛼)𝑓 (𝑘+1) (42)

Finally, the identified bearing force is further expressed as:

𝐅 = 𝐖fk (43)

In summary, the steps of calculating bearing force according to the
WI can also refer to Algorithm 1. The algorithm first initialize the

formula and weighted matrix in Line 3 and Line 4, then an iterative
process is used to find the optimal force estimation in Line 6–9. To
test the accuracy of the proposed MWI approach, the incersion errors
are calculated for 100 different inputs to represent the accuracy of
Tikhonov and MWI, as shown in Fig. 4. The primary advantage of
MWI over Tikhonov regularization lies in the consistency of the solu-
tion, as demonstrated in Ref. [35]. This characteristic ensures that the
time-domain waveforms of bearing dynamic forces can be accurately
reconstructed from the identified spectra, free from the systematic
bias introduced by the regularization term. Although Tikhonov reg-
ularization may yield higher identification accuracy for large matrix
dimensions or highly ill-conditioned problems, it lacks the solution
consistency offered by MWI.
Algorithm 1 Maximumly Weighted Iteration for bearing force
identification
1: Input: Vibration response signals 𝑥𝑚; Transfer function matrix

𝐇𝑑 ,𝑚𝑝; The maximumly number of iterations K.
2: Output: Bearing force 𝐅 = 𝐖𝑓 .
3: Initialize the formulae: 𝐇𝑇

𝑑 ,𝑚𝑝𝑥𝑚 = 𝐇𝑇
𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝𝐖𝑓

4: Initialize the weighted matrix 𝐖 in Eq. (31), considering the
constraints in Eq. (28)-(30).

5: Chose the weighted factor 𝛼 by GCV.
6: for k=1,2,...,K. do
7: 𝐇𝑇

𝑑 ,𝑚𝑝𝑥𝑚 + 𝛼 𝑓𝑘 = (𝐇𝑇
𝑑 ,𝑚𝑝𝐇𝑑 ,𝑚𝑝𝐖 + 𝛼)𝑓 (𝑘+1)

8: 𝑓𝑘 ← 𝑓 .
9: Until 𝑘 ≥ 𝐾

10: end for

3. Transfer path contribution and simulation verification

In the section, we investigate the properties of physical decoupling
and virtual decoupling and compare the performance of bearing forces
identification between the proposed virtual decoupling method and
the method shown in [30]. Taking the dynamic model of a two-stage
parallel shaft gear transfer system as an example, the specific process
f transfer path analysis is illustrated. Simultaneously, the effectiveness

of the proposed decoupling method is validated through numerical
examples, in which a lumped parameter dynamic model shown in Sec-
tion 2.1 is used to provide theoretical coupled and decoupled frequency
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Fig. 5. Comparison of FRF between the physical decoupling and two virtual decoupling methods. (1) 𝐇𝑑 ,𝑚𝑝: (a) 𝐇47, (b) 𝐇57, (c) 𝐇67; (2) 𝐇𝑑 ,𝑝𝑝: (d) 𝐇47, (e) 𝐇57, (f) 𝐇67.
Table 1
Main parameters of the numerical example.

Parameters Value Parameters Value

Number of teeth 𝑍1 = 28, 𝑍2 = 40, 𝑍3 = 34, 𝑍4 = 34 Density (kg/m3) 7850
Young’s modulus (GPa) 210 Radius of the shaft (mm) 24
Poisson’s ratio 0.3 Module (mm) 3
Face width (mm) 16 Pressure angle (◦) 20
Addendum coefficient 1 Bottom clearance coefficient 0.3
Mass (kg) 𝑀4 = 1, 𝑀5 = 2, 𝑀3 = 3, 𝑀7 = 23.5 Damping ratio 0.02
Damp (N s/m) 𝑐36 = 1𝑒4, 𝑐25 = 1𝑒4, 𝑐14 = 1𝑒4 Stiffness (N/m) 𝑘36 = 1𝑒7, 𝑘25 = 1𝑒7
Damp (N s/m) 𝑐47 = 1𝑒3, 𝑐57 = 1𝑒3, 𝑐67 = 1𝑒3 Stiffness (N/m) 𝑘14 = 1𝑒7
Stiffness (N/m) 𝑘57 = 1𝑒8, 𝑘67 = 1𝑒8 Stiffness (N/m) 𝑘47 = 1𝑒8
Fig. 6. Compared with Ref. [30], bearing forces identified in a single-stage gearbox system through theoretical identification and two algorithmic identifications: (a) 𝐅1; (b) 𝐅2.
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Fig. 7. Bearing forces identified in a two-stage gearbox system through theoretical identification and two algorithmic identifications: (a,d) 𝐅4; (b,e) 𝐅5; (c,f) 𝐅6.
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response functions (using Eqs. (6) and (7)). The parameters of the
numerical examples are shown in Table 1.

The frequency response function of physical decoupling can be
btained from the matrix of the non-source part (using Eq. (6)). Virtual
ecoupling refers to calculating the decoupled frequency response using
he matrix of the entire coupled system. The method proposed in this
aper calculates the virtual decoupled frequency response using the
atrix of the entire coupled system when the matrix of the passive part

s unknown (using Eqs. (22) and (24)). The obtained virtual decoupled
frequency response is compared with the frequency response obtained
from physical decoupling, as shown in Fig. 5. It is found that the
two are basically consistent, thereby validating the generalized virtual
decoupling method proposed in this paper.

As shown in Fig. 3(left), there are three transfer paths connecting
he active part and the passive part. Measuring the vibration response

at masses 4, 5 and 6 can determine the interface force 𝐅. Theoretically,
the bearing force subjected to the three masses can be expressed as:

𝐅4 = k14(x1 − x4) + c14(ẋ1 − ẋ4)

𝐅5 = k25(x2 − x5) + c25(ẋ2 − ẋ5)

𝐅6 = k36(x3 − x6) + c36(ẋ3 − ẋ6)

(44)

here k represents the meshing stiffness matrix between the two masses,
 represents the damping matrix between the two masses, and 𝑥 repre-

sents the displacement matrix between the two degrees of freedom.
In the process of solving the inverse problem, the bearing forces

identified by the proposed MWI and Tikhonov are compared and
analyzed. Similar to literature [30], the bearing force identified in the
first-stage gearbox is first given. As shown in Fig. 6, in the comparison
etween the bearing force obtained theoretically and the identified

bearing force, it can be seen that both methods can achieve the ideal
accuracy of identifying bearing force, and the error is within a small
mplitude range, which makes little contribution to the system. How-
ver, in the high frequency part, the MWI is more accurate than the
ikhonov method to identify bearing forces of different paths. In the

two-stage gear box, as shown in Fig. 7, the accuracy of the bearing
forces 𝐅4 and 𝐅5 identified by the two methods is close to each other.
rom the identified bearing force 𝐅6, it is obvious that the proposed
WI is more accurate in the high frequency part. To sum up, the

verage relative error for MWI is one order of magnitude, and that
or Tikhonov is 1–3 orders of magnitude. Then, the noise-robustness of
 c
Table 2
Relative errors of the Tikhonov and MWI for different signal to ratio.

Random noise 0.0001 0.001 0.01

Tikhonov 1.92% 17.28% 325.53%
MWI 0.05% 0.11% 7.62%

MWI to random noise is also tested. For different noise level, the mean
alue and standard deviation of the noise are equal to the random noise
alue in Table 2. The relative error results of Table 2 point to the same

conclusion: MWI is more robust to noise than the Tikhonov, especially
for the matrix with a higher ill-conditioned degree. This also proves the
uperiority of the MWI in solving ill-conditioned matrix problems.

According to the virtual decoupled transfer function and recognition
bearing force obtained above, path contribution can quantitatively
reflect the contribution of each transfer path. Therefore, the vibration
response at the measuring point ‘m’ or ‘p’ can be expressed as the
superposition of the contributions of each transfer path:

𝐗𝑚 = 𝐇𝑑 ,𝑚𝑝𝐅 =
𝑛
∑

𝑖
𝐇𝑑 ,𝑚𝑝𝑖𝐅𝑖 𝑜𝑟 𝐗′

𝑚 = 𝐇𝑑 ,𝑝𝑝𝐅′ =
𝑛
∑

𝑖
𝐇𝑑 ,𝑝𝑝𝑖𝐅′

𝑖 (45)

4. Experimental verification

In this section, we experimentally validated the effectiveness of the
roposed method in the practical diagnosis of faults in gearbox systems.
he two-stage parallel-axis gearbox test rig, as shown in Fig. 8, and the

gearbox parameters listed in Table 1 were utilized for the experiments.
Vibration signals were measured using six triaxial accelerometers (DH-
1A339E), with these locations marked in yellow. Gears on the shaft
ould be replaced, corresponding to three types of faults: chipped tooth,
ocalized wear, and tooth fracture. The characteristic frequencies of

gear faults were defined as the meshing frequencies modulated by the
shaft and the faulty gear pair.

Six triaxial accelerometers were installed on both sides of the gear-
ox. Since axial forces could be neglected for spur gears, the experiment
nly involved the 𝑥 and 𝑦 directions. The two-stage parallel-axis gear
ystem comprised 12 transfer paths. Utilizing the proposed general-
zed virtual decoupling method, frequency response experiments were
onducted on the gearbox system, yielding the decoupled frequency
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Fig. 8. Two-stage parallel shaft gear test bed in the experiment.
d
r

response of the housing. An impact hammer (DH-LC02–3A102) was
sed to apply impact excitation, with a sampling frequency set at
000 Hz. The data acquisition device (DH8303) was employed to
ollect both excitation and response signals. The physical decoupling

test results were considered as the benchmark to validate the virtual de-
coupling method. Additionally, based on frequency response functions
and the vibration response of the gearbox housing, the MWI theory was
introduced for bearing force identification.

4.1. Virtual decoupling obtains FRF

In the virtual decoupling method proposed in this paper, 12 fre-
uency response parameters can be obtained from a single hammer

test. The frequency response matrices required for the two different
measurement points are not entirely the same. For 𝐇𝑑 ,𝑚𝑝, the coupled
requency response matrices that need to be measured include 𝐇𝑐 ,𝑎𝑎,
𝑐 ,𝑝𝑎, 𝐇𝑐 ,𝑝𝑝, 𝐇𝑐 ,𝑚𝑎, and 𝐇𝑐 ,𝑚𝑝. For 𝐇𝑑 ,𝑝𝑝, the coupled frequency response
atrices to be measured are only 𝐇𝑐 ,𝑎𝑎, 𝐇𝑐 ,𝑝𝑎 and 𝐇𝑐 ,𝑝𝑝. The coupled

requency response matrices 𝐇𝑐 ,𝑎𝑎, 𝐇𝑐 ,𝑝𝑎 and 𝐇𝑐 ,𝑝𝑝 each require a total
f 12 hammer tests along the 𝑥 and 𝑦 directions, while the matrices
𝑐 ,𝑚𝑎, and 𝐇𝑐 ,𝑚𝑝 require one hammer test each. Furthermore, according

o the reciprocity principle, the frequency response matrix 𝐇𝑐 ,𝑝𝑎 is
qual to 𝐇𝑐 ,𝑎𝑝. The frequency response functions obtained by the virtual
ecoupling method at measurement point ‘m1’, its neighboring points

M1’, and at measurement point ‘m2’ and its neighboring points ‘M2’
re shown in Fig. 9. The frequency response functions obtained at
easurement point p1, its neighboring points ‘p1’, and at measurement
oint ‘p2’ and its neighboring points ‘p2’ are shown in Fig. 10. The
orresponding similarity measured by the FRAC value introduced in
ection 2.2 is shown in Table 3. It can be observed that the two derived

types of decoupled frequency responses are close to their actual values,
and the FRAC values between adjacent measurement points are high,
indicating that the experimental results are quite accurate. To quantify
testing efficiency, Table 4 lists the time costs involved in each test
process. It is evident that the virtual decoupling method proposed in
this paper reduces the time by more than 70% compared to physical
decoupling. Choosing point ‘p’ as the measurement location (with 12 ∗
3 = 36 impacts), compared to point ‘m’ (with 12 ∗ 3 + 1 ∗ 2 = 38
Table 3
The frequency response assurance criterion of the target frequency response and the
real value.

m1/real value m1/M1 m2/real value m2/M2

FRAC(𝐇𝑐 ,𝑚𝑝) 0.63345 0.86507 0.88016 0.97531

p1/real value p1/p*1 p2/real value p2/p*2

FRAC(𝐇𝑐 ,𝑝𝑝) 0.62683 0.85227 0.80604 0.91434

Table 4
Test and calculation time statistics of object-understanding coupling and two virtual
decoupling.

Dismantle Hammering
test

Assemble Calculate Total time

Physical
decoupling

100 min 12 min 100 min 10 min 222 min

Virtual
decoupling(𝐇c,mp)

0 min 38 min 0 min 30 min 68 min

Virtual
decoupling(𝐇c,pp)

0 min 36 min 0 min 20 min 56 min

impacts), resulted in a reduction of two impacts. This led to a 33%
ecrease in computational load, consequently shortening the overall
equired time.

4.2. Transfer path contribution and fault tracing

To enhance the validity of the methodologies proposed in this
research for fault tracing and fault feature enhancement, a series of ex-
periments were conducted on a wind turbine gearbox fault simulation
test rig. These experiments involved the collection of vibration acceler-
ation signals from measurement points ‘m’ and ‘p’ on the gearbox under
stable operating conditions. Subsequently, bearing forces were deduced
by analyzing these signals using the decoupled frequency responses
derived from Eqs. (22) and (24). This research introduces three distinct
types of artificially induced faults: chipped tooth, localized wear, and
tooth fracture, as illustrated in Fig. 11. Specifically, a chipped tooth
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Fig. 9. Comparison of FRF obtained from real value and decoupled value: (a) 𝐇m1,p9, 𝐇M1,p9 and relevant real value; (b) 𝐇m2,p9, 𝐇M2,p9 and relevant real value.

Fig. 10. Comparison of FRF obtained from real value and decoupled value: (a) 𝐇p1,p, 𝐇p∗1,p and relevant real value; (b) 𝐇p2,p, 𝐇p∗2,p and relevant real value.

Fig. 11. Gearbox internal structure and different faults.
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Fig. 12. For FRF 𝐇c,mp, spectral kurtographs of different fault types at measuring point m: (a) Tooth fracture (b) Localized wear (c) Chipped tooth.
Fig. 13. For FRF 𝐇c,pp, spectral kurtographs of different fault types at measuring point p: (a) Tooth fracture (b) Localized wear (c) Chipped tooth.
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fault entails the removal of 70% of the tooth edge, the localized wear
fault involves a wear depth of 0.3 mm, and the tooth fracture fault is
characterized by the complete removal of a tooth’s height.

Different types of gear faults in gearbox systems are known to
roduce unique amplitude modulation effects in the frequency spec-

trum. To enhance the identification of these fault characteristics, this
study employs the spectral kurtosis technique. This technique helps
in pinpointing transient characteristics of the fault signals gathered at
measurement points ‘m’ and ‘p’, identifying a bandwidth centered at
frequency 𝜔𝑐 with a resonance band 𝑏𝜔, as depicted in Figs. 12 and 13.
Summation of path contributions for various fault types allows for the
isolation of the path contribution specific to a particular fault type, as
illustrated in Figs. 14 and 15.

To be more specific, we first provide an overview of three different
types of faults – chipped tooth, localized wear, and tooth fracture – in
Fig. 11. Additionally, Figs. 14 and 15 highlight the positions closest
to the faulty gear with different colors. For example, in Fig. 11, (a)
shows 12 transfer paths. In (b), the 6th transfer path has the highest
contribution, indicating that the nearest gear has a fault (corresponding
to Gear 2 in Fig. 14). However, the maximumly contribution is observed
n the 7th or 8th transfer paths, it suggests a fault in Gear 3. In (c), the

9th transfer path has the highest contribution, corresponding to Gear
4 in Fig. 11. Similarly, in (d), the 10th transfer path has the highest
contribution, also corresponding to Gear 4 in Fig. 11. The accurate
ecoupled transfer functions derived from both measurement points ‘p’

and ‘m’ confirm the utility of the virtual decoupling method based on
ransfer path analysis introduced in this paper. This approach offers a
istinct advantage in fault tracing by adaptively determining the fault
ocation based on the path contribution.

4.3. Fault feature enhancement

Most existing signal decomposition methods are data-driven and
ack emphasis on the physical interpretability of the decomposition
process. However, the generalized virtual decoupling method rooted
n transfer path analysis, as proposed in this study, provides a coherent
xplanation of the signal decomposition process. This method interprets
ibration signals collected at measurement points ‘m1’ and ‘p1’ as the
ggregate of 12 distinct absolute path contributions. By applying band-
ass filters designed using the resonance bands and center frequencies
reviously determined, the filtered output signals are then subjected to
emodulation via the Hilbert transform to produce the analytic signal.
he procedure of fault feature enhancement is illustrated by Algorithm

2. The virtual decoupled FRF identified bearing force, the algorithm
will lead to the enhanced faulty signal. The subsequent step involves
extracting the square envelope spectrum of this analytic signal, as
illustrated in Figs. 16 and 17.
Algorithm 2 Fault feature enhancement
1: Input: Virtual decoupling for FRF of each transfer path; Identifica-

tion of the bearing force signal.
2: Output: The square envelope spectrum of the reconstructed signal.
3: Calculate the contribution of each transfer path with identified

bearing force based on Eq.(36).
4: The reconstruction signal is obtained by multiplying the dominant

path FRF and its associated bearing force signal.
5: Design the bandpass filters with spectral kurtosis method.
6: Demodulation analysis of reconstructed signals with Hilbert

transform.
7: Quantify the fault feature enhancement effect.

In the context of tooth fracture faults, the characteristic fault fre-
quency is identified as 𝑓1 = 10 Hz. For faults like localized wear and
chipped tooth, the characteristic fault frequency is 𝑓2 = 7 Hz. The
envelope spectrum analysis, as presented in this study, not only clearly
reveals the fault characteristic frequency 𝑓1 but also significantly ampli-
fies its amplitude compared to the original signal (see Fig. 16(a), (b)).

his amplification is also evident for the other fault types (localized
ear and chipped tooth), as shown in Fig. 16(c)–(f).
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Fig. 14. For FRF 𝐇c,mp, signal measuring points at different locations (a); Different fault type path contribution: (b) Localized wear; (c) Chipped tooth; (d) Tooth fracture.

Fig. 15. For FRF 𝐇c,pp, signal measuring points at different locations (a); Different fault type path contribution: (b) Localized wear; (c) Chipped tooth; (d) Tooth fracture.
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Fig. 16. For FRF 𝐇c,mp at 600 r/min, square envelope spectra of different faults and characteristic order spectra of their frequencies : (a),(b) Chipped tooth; (c),(d) Localized wear;
(e),(f) Tooth fracture.

Fig. 17. For FRF 𝐇c,pp at 600 r/min, square envelope spectra of different faults and characteristic order spectra of their frequencies : (a),(b) Chipped tooth; (c),(d) Localized wear;
(e),(f) Tooth fracture.
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Table 5
Two kinds of decoupled frequency response functions correspond to different kinds of
ault characteristics enhanced comparison.

Localized wear Tooth fracture Chipped tooth

𝐇c,mp 213% 836% 632%
𝐇c,pp 200% 211% 296%

The efficacy of the proposed method in enhancing and extract-
ing fault features is evident, suggesting its potential for significant
mpact in mechanical fault diagnosis. To quantify the fault feature
nhancement, the sum of the amplitudes of the first five characteristic
requencies in the envelope spectrum is used as a fault indicator. This
uantification, comparing the fault indices of the original and decom-
osed signals, underscores the characteristic enhancement achieved
hrough the proposed decomposition method. Table 5 details the mag-

nification values for each fault type when using measurement points
‘m1’ and ‘p1’. The enhancement of fault features exceeds 200% for all
types, demonstrating the method’s capability to extract features from

eak fault signals. This improved transfer path analysis method, thus,
arks a significant advancement in the field.

The detailed experimental setup and results demonstrating the uni-
ersality and robustness of the proposed method, tested on various
earbox systems under different operating conditions, can be found
n Appendix A. The enhancement of fault characteristics for three
istinct fault types is presented, illustrating the method’s strong gen-

eralization and robustness.

5. Conclusion

This study advances the field of gearbox fault diagnosis by intro-
ducing a new structural dynamics decoupling method based on Transfer
Path Analysis (TPA). Our approach not only diagnoses and tracks faults
in multi-stage gearbox systems with high efficiency but also provides a
robust framework for the identification of critical transfer paths that are
pivotal for fault detection. It successfully derives frequency response
functions that accurately identify a decoupled system, using these func-
ions alongside vibration response signals to solve the inverse problem

of bearing force identification through Maximumly Weighted Iteration
MWI) [35]. The MWI method exhibits considerable advantages over
he Tikhonov method, particularly in accuracy, noise robustness, the
tability and consistency of the solution. These attributes render MWI
 highly valuable tool for bearing force identification in engineering
pplications. The research identifies dominant transfer paths for fault
requencies, enabling effective tracing of gear faults such as wear,
ooth breakage, and corner collapse. A signal decomposition method
roposed in this study enhances fault characteristics, with tests showing
hat the fault indicator of various fault types are amplified by more than
00%, confirming the method’s precision in reflecting gearbox faults.
ignificantly, this method eliminates the need for physical disassem-
ly in multi-stage parallel gear systems, reducing signal measurement
oints. Finally, experiments were conducted on various types of gear-
ox systems under different operating conditions. The results indicated
 significant enhancement in the features of three distinct fault types,
urther validating the method’s generalization and robustness.
Future Outlook:
1. The bearing interface is a crucial contact point for the transfer of

vibrational energy in gear transfer systems, and there is currently
a lack of in-depth study on the signal attenuation and energy
transfer processes at the bearing interface. Subsequent research
will involve establishing an energy attenuation model for the
bearing interface and studying the vibration transfer mechanism
at the bearing interface.

2. The method proposed in this paper is primarily aimed at parallel-
axis gear transfer systems and is not applicable to planetary
Table 6
The fault characteristic frequencies corresponding to different gearbox rotational speeds

Rotation frequency(r/min) 600 500 400 300

𝑓1 (Hz) 10 8.33 6.67 5
𝑓2 (Hz) 7 5.83 4.669 3.5

gear systems. In planetary gear systems, due to the pass-through
effect of the planetary gears, the transfer path has time-variant
characteristics. One of the future research directions is to carry
out time-variant transfer path analysis for planetary gear transfer
systems.
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Appendix A. Suggested experimental procedures for evaluating
gearbox systems

The primary objective of this appendix is to provide guidance for
conducting comprehensive experiments on different types of gearbox
systems under various operating conditions. we have conducted com-
parative experiments at rotational speeds of 300, 400, 500, and 600
r/min, as shown in the Figs. 18–20 and the Table 6. The fault character-
istics of the three different fault types have been significantly enhanced,
indicating that the method used in this paper has good generality and
robustness.

Appendix B. Selection of weight factors in the MWI algorithm

We have selected the weighted iterative factor, 𝛼, to be greater than
0. This choice is based on our analysis, which indicates that a positive

effectively improves the conditioning of the matrix and enhances
he performance of the MWI algorithm. For giving positive definite

symmetric matrix 𝐴, when 𝛼 is greater than 0, the condition number of
matrix 𝐴 + 𝛼 𝐸 is less than that of matrix 𝐴.

Proof. Suppose 𝜆𝑖 is a 𝑖th eigenvalue of matrix 𝐴+ 𝛼 𝐸, and 𝜆′𝑖 is a 𝑖th
eigenvalue of matrix 𝐴, then:
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Fig. 18. For FRF 𝐇𝑐 ,𝑝𝑝 at 300 r/min, square envelope spectra of different faults and characteristic order spectra of their frequencies : (a),(b) Chipped tooth; (c),(d) Localized wear;
(e),(f) Tooth fracture.

Fig. 19. For FRF 𝐇𝑐 ,𝑝𝑝 at 400 r/min, square envelope spectra of different faults and characteristic order spectra of their frequencies : (a),(b) Chipped tooth; (c),(d) Localized wear;
(e),(f) Tooth fracture.
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Fig. 20. For FRF 𝐇𝑐 ,𝑝𝑝 at 500 r/min, square envelope spectra of different faults and characteristic order spectra of their frequencies : (a),(b) Chipped tooth; (c),(d) Localized wear;
(e),(f) Tooth fracture.
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By comparison formula (B.1) with formula (B.2), we get the follow-
ing formula:

𝜆𝑖 − 𝛼 = 𝜆′𝑖 ⇒ 𝜆𝑖 = 𝜆′𝑖 + 𝛼 (B.3)

Because 𝛼 is greater than 0 and 𝐴 is a positive definite symmetric
matrix, 𝐴 + 𝛼 𝐸 is a positive definite symmetric matrix too. The re-
lation between matrix 𝐴, maximumly eigenvalue 𝜆max, and minimum
eigenvalue 𝜆min meet the following constriction:

cond(𝐴) = 𝜆max(𝐴)
𝜆min(𝐴)

(B.4)

According to formula (3) and (4), then

cond(𝐴 + 𝛼 𝐸) = 𝜆max + 𝛼
𝜆min + 𝛼

cond(𝐴 + 𝛼 𝐸) − cond(𝐴) = 𝜆max + 𝛼
𝜆min + 𝛼

−
𝜆max
𝜆min

=
(𝜆max + 𝛼)𝜆min − 𝜆max(𝜆min + 𝛼)

=
𝛼 𝜆min − 𝛼 𝜆max =

𝛼(𝜆min − 𝜆max)

(𝜆min + 𝛼)𝜆min (𝜆min + 𝛼)𝜆min (𝜆min + 𝛼)𝜆min
So, cond(𝐴 + 𝛼 𝐸) < cond(𝐴).

Data availability

The data will be made available on request.
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