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A B S T R A C T

The Multi-Objective Flexible Job Shop Scheduling Problem (MOFJSP) is a complex challenge in manufacturing,
requiring balancing multiple, often conflicting objectives. Traditional methods, such as Multi-Objective
Evolutionary Algorithms (MOEA), can be time-consuming and unsuitable for real-time applications. This
paper introduces a novel Graph Reinforcement Learning (GRL) approach, named Preference-Conditioned GRL,
which efficiently approximates the Pareto set for MOFJSP in a parallelized manner. By decomposing the
MOFJSP into distinct sub-problems based on preferences and leveraging a parallel multi-objective training
algorithm, our method efficiently produces high-quality Pareto sets, significantly outperforming MOEA methods
in both solution quality and speed, especially for large-scale problems. Extensive experiments demonstrate
the superiority of our approach, with remarkable results on large instances, showcasing its potential for
real-time scheduling in dynamic manufacturing environments. Notably, for large instances (50 × 20), our
approach outperforms MOEA baselines with remarkably shorter computation time (less than 1% of that of
MOEA baselines). The robust generalization performance across various instances also highlights the practical
value of our method for decision-makers seeking optimized production resource utilization.
1. Introduction

Job Shop Scheduling Problem (JSSP) is a fundamental Combinato-
rial Optimization Problem (COP), which is used to model a wide range
of scheduling problems prevalent in various industries, including manu-
facturing systems, supply chain, and transport systems [1]. A significant
variant of the JSSP is the Flexible Job Shop Scheduling Problem (FJSP),
which allows operations to be processed on any machine within an
eligible set. This flexibility makes the FJSP more suitable for scenarios
where task-resource relationships are decentralized and adaptable [2].
While the single-objective FJSP has been extensively studied, in prac-
tice, Decision-Makers (DM) often need to consider trade-offs among
multiple objectives to meet specific requirements. This makes the Multi-
Objective FJSP (MOFJSP) more aligned with real-world scenarios and
increasingly attractive for research attention [3].

Computing optimal solutions for FJSP and JSSP is known to be
NP-hard [4]. Therefore, most research on the MOFJSP has focused
on meta-heuristic approaches, especially Evolutionary Algorithms (EA),
due to their ability to find high-quality solutions at reasonable costs [1].

∗ Correspondence to: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guang Zhou, China.
E-mail addresses: chupengamos@gmail.com (C. Su), gangchen@scut.edu.cn (G. Chen), melhxie@scut.edu.cn (L. Xie).

1 These authors contributed equally to this work.

Notable success has been achieved with classical Multi-Objective Evo-
lutionary Algorithms (MOEA) like Non-Dominated Sorting Genetic Al-
gorithm II (NSGA-II) and Decomposition-based Multi-Objective Evolu-
tionary Algorithm (MOEA/D) [5,6]. However, these methods become
increasingly time-consuming as scheduling problem sizes grow, posing
challenges for real-time scenarios such as cloud manufacturing and
online food delivery [2,7].

Deep reinforcement learning (DRL) is a sub-field of machine learn-
ing that integrates reinforcement learning (RL) [8,9] with deep learning
techniques. It has found widespread application across various do-
mains, including gaming [10], robotics [11], finance [12], and coop-
eration research [8,9,13]. DRL has emerged as a promising approach
for solving production scheduling problems, offering a novel perspec-
tive on dynamic scheduling challenges with real-time demands and
uncertainties [7]. For the MOFJSP, Luo et al. [14] first proposed a
DRL-based method that employs a vector state representation and Pri-
ority Dispatching Rules (PDRs) as actions. Moreover, the Hierarchical
Deep Reinforcement Learning (HDRL) technique effectively balanced
conflicting objectives by leveraging a high-level DRL agent responsible
for objective selection and a low-level agent handling scheduling action
generation. Multiple subsequent studies [14–16] have referenced this
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HDRL-based approach to address other complex MOFJSP variants.
Despite the good optimized result obtained by the above approaches, it
exhibit certain limitations. On the one hand, the effectiveness of PDRs-
based action space heavily relies on the quality of the predefined PDRs
set, which may miss promising ones, resulting in limited performance.
On the other hand, HDRL-based approaches provide solutions that bal-
ance multiple conflicting objectives but lack the ability to approximate
a Pareto set comprising a range of Pareto optimal solutions.

Graph Reinforcement Learning (GRL), which combines Graph Neu-
ral Network (GNN) and DRL, shows promise for solving the FJSP [2].
Compared to a PDRs-based action setting, GRL-based techniques offer
improved exploration capabilities by extracting spatial embeddings of
FJSP and directly outputting operation/machine as actions. Recent
studies by Song et al. [2], and Lei et al. [17] propose GRL-based
methods that represent FJSP as a disjunctive graph (DG), achieving
optimization results comparable to meta-heuristics. However, while
GRL holds potential for solving FJSP and its variants, a clear research
gap exists in adapting GRL to address the MOFJSP effectively.

To further address the MOFJSP, it seems natural to consider com-
bining the HDRL approach from Luo et al. [14] with GRL. However, as
mentioned earlier, HDRL-based methods face challenges in generating
a Pareto set for fixed MOFJSP instances, indicating a need to revisit the
idea of combining GRL and HDRL for MOFJSP optimization. Therefore,
there is a pressing need to develop novel GRL-based techniques that can
effectively generate the Pareto set for MOFJSP instances, bridging this
research gap.

To this end, this paper presents a novel end-to-end Preference-
Conditioned GRL (PGRL) approach that can quickly approximate the
entire Pareto set for MOFJSP without further search procedures. Specif-
ically, the MOFJSP is decomposed into sub-problems with various pref-
erences, each corresponding to one possible combination of objectives.
A preference-conditioned scheduling model with two encoder–decoder
structures is proposed for operation selection and machine assignment.
To incorporate discrepancies in preferences, the preference-conditioned
scheduling model exploits a hypernetwork to generate the parame-
ters for the preference-conditioned decoder. Furthermore, we design a
multi-objective training algorithm based on Evolution Strategies (ES)
to train the model and a preference parallel inference algorithm to
accelerate inference. Experimental results on both synthetic instances
and realistic benchmarks demonstrate the effectiveness of the pro-
posed method in efficiently computing the Pareto set for MOFJSP
instances.

In addition to the above methodological novelty, the proposed
method holds significant practical value. Its neural architecture ex-
hibits a size-agnostic nature, allowing the scheduling model to effi-
ciently solve instances of varying sizes once trained. Moreover, the
trained model efficiently solves large-scale MOFJSP instances, out-
performing traditional MOEA and providing superior schedules. This
makes it an excellent choice for DM seeking to optimize the utilization
of production resources. Our main contributions are summarized as
follows:

• We propose a novel end-to-end GRL-based method that can ef-
ficiently approximate the Pareto set for MOFJSP. The proposed
method allows DM to obtain any preferred trade-off solution
without any search effort.

• A PGRL scheduling model is designed to solve all sub-problems
of MOFJSP. The proposed model comprises two encoder–decoder
components, with the decoder being preference-conditioned to
enable adjustments on sub-problem preferences.

• We develop an efficient parallel ES [10] training algorithm to
train the single preference-conditioned model to solve sub-
problems with different preferences, and a parallel inference
2

algorithm to increase computational speed significantly.
• Extensive experiments are conducted on synthetic instances and
public benchmarks. The results indicate that our approach
achieves comparable solutions to MOEA methods for small in-
stances and outperforms them for larger ones. Additionally, the
proposed method exhibits significantly faster solution speed due
to our proposed parallel inference algorithm.

The remainder of this article is organized as follows. Section 2
summarizes the related work. Section 3 describes the formulation of
the MOFJSP and prerequisite backgrounds. Section 4 introduces the
proposed method in detail. Section 5 provides experimental results and
analysis. Finally, further discussions and conclusions are presented in
Sections 6 and 7, respectively.

2. Related work

This section overviews two categories of methods relevant to the
underlying study. The first aspect covers previous heuristic-based stud-
ies for MOFJSP, for which we refer the readers interested to [1,4] for a
detailed review. The second aspect focuses on DRL-based approaches.

2.1. Meta-heuristic approach for MOFJSP

The FJSP is a highly complex problem and has been proven NP-
hard; as a result, for both the FJSP and the MOFJSP, most studies have
concentrated on utilizing heuristic methods to obtain high-quality so-
lutions within a reasonable time instead of using exact methods to find
optimal solutions [1]. The methods reported for tackling the MOFJSP
can be categorized into two paradigms: priori and posteriori [3].

Earlier studies have utilized the priori paradigm to tackle the
MOFJSP. This approach transforms multiple objectives into a single
objective by applying a weighted sum approach. Then, it employs
a meta-heuristic algorithm to optimize the above single weighted-
sum objectives. For instance, Li et al. [18] also introduce a hybrid
tabu search algorithm to address the MOFJSP with the weighted-sum
objective. However, the priori approach is limited because it relies on
the DM to pre-determine weighted factors for each objective [3]. In
practice, it may be difficult for the DM to express their preferences
on each objective before seeing any solutions, which leads to frequent
queries from the DM to look for a desirable solution. Therefore, this
limitation may result in intensive labor and considerable computation
time [19].

For the posteriori paradigm, a group of Pareto optimal solutions
(Pareto set) is generated and asks DM to select the most preferred
one from the above group. In contrast to the priori approach, the
posteriori approach does not require subjective inputs from the DM.
Instead, it presents a set of optimal solutions that showcase the trade-
off between conflicting objectives. These advantages have recently
led to an increased recognition and adoption of multi-objective op-
timization among researchers [3]. Deng et al. [20] proposed a bee
evolutionary guiding nondominated sorting genetic algorithm II with a
two-stage optimization mechanism to solve MOFJSP. Huang et al. [21]
presented a teaching-and-learning-based hybrid genetic-particle swarm
optimization algorithm to address the MOFJP, which contains Genetic
Algorithm (GA), bi-memory, and discrete Particle Swarm Optimization
(PSO) three modules. The algorithm allows GA and discrete PSO mod-
ules to search for solutions and exchange information, leading to high-
quality MOFJSP solutions. Dai et al. [22] developed an enhanced GA to
minimize energy consumption and makespan for MOFJSP with trans-
portation constraints. Yazdani et al. [23] proposed a hybrid algorithm
for the MOFJSP with dual-resource constraints by combining NSGA-II
and Non-Dominated Ranking Genetic Algorithm (NRGA). By incorpo-
rating controlled elitism, their approach aimed to enhance the diversity
of solutions. An et al. [24] proposed an improved non-dominated sort-
ing biogeography-based optimization algorithm to address MOFJSP.

They also developed a hybrid neighborhood search structure, elite
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storage strategy, and improved mutation operators for further per-
formance enhancement. Caldeira and Gnanavelbabu [3] designed a
multi-objective discrete Jaya algorithm for the MOFJSP. Their proposed
approach integrates a neighborhood search technique, where a dynamic
mutation operator and an improved crowding distance measure are
employed to enhance and balance the exploitation and exploration.
Soto et al. [25] introduced an exact Parallel Branch and Bound (PBB)
algorithm for solving the MOFJSP. Chen et al. [26] presented a multi-
objective immune algorithm combined with a Q-learning algorithm for
the MOFJSP with fuzzy processing time and variable processing speeds.
The proposed algorithm demonstrated promising results in extensive
experiments, showing the prominence of combining deep reinforcement
learning and traditional heuristic methods. Meng et al. [27] proposed
a method that combines a mixed integer linear programming model
and a multi-objective hybrid shuffled frog-leaping algorithm to address
the MOFJSP with controllable processing times. As mentioned above,
in the posteriori paradigm, numerous research studies have focused on
developing handcrafted and specialized meta-heuristic algorithms to
obtain high-quality solutions for the MOFJSP. However, a drawback
of methods based on the posteriori paradigm is that approximating
the Pareto set necessitates extensive search iterations, resulting in
time-consuming processes.

In recent years, there has been an increasing trend to use RL as
a component of EA/MOEA, called Reinforcement Learning-Assisted
Evolutionary Algorithm (RL-EA), to improve performance [28–31],.
Han et al. [32] proposed a new multi-objective differential evolutionary
algorithm. It applied an adaptive reference point activation mecha-
nism based on RL to adjust reference points dynamically, leading to
better solution quality and efficiency than fixed reference points. Hu
et al. [33] introduced a co-evolutionary differential evolution algorithm
assisted by DRL to solve constrained optimization problems, which
employs DRL to evaluate the population state and select suitable parent
populations and corresponding archives for mutation. It demonstrates
competitiveness and robustness compared to other state-of-the-art al-
gorithms. Zhao et al. [34] presented a hyperheuristic approach using
Q-learning to select appropriate low-level heuristics. The experiment
demonstrates that Q-learning-assisted hyperheuristic outperforms other
algorithms regarding efficiency and quality. Even though the RL-EA can
enhance the coverage speed of EA/MOEA, its essence of massive search
iterations to obtain a good solution has stayed the same, resulting
in inapplicable in solving scheduling problems with high real-time
requirements.

2.2. DRL method for FJSP and MOFJSP

In the past few years, there have been several advancements in the
application of DRL-based methods for FJSP/MOFJSP, allowing for the
rapid generation of high-quality solutions end-to-end. Table 1 provides
an overview of the state-of-the-art studies and their differences. The
critical issue in DRL-based scheduling methods is state representa-
tion [2]. Consequently, we have categorized recent studies into four
paradigms based on the state representation method and scheduling
problem type, as summarized in Table 1: (1) Vector-based DRL for
FJSP, (2) Vector-based DRL for MOFJSP, (3) Graph-based DRL for
FJSP, and our method, which is (4) Graph-based DRL for MOFJSP.

2.2.1. Vector-based DRL for FJSP
This paradigm involves using vectors (manually engineered fea-

tures) as states. These manually engineered features are then fed into
Multilayer Perceptron (MLP), and finally, the PDRs are outputted as
scheduling actions. Luo [35] proposed seven generic features to rep-
resent the state of dynamic FJSP with randomly job insertions and
used a Double Deep Q Network (DDQN) agent to select the most
suitable scheduling action from designed composite PDRs. Han and
Yang [36] introduced a modified pointer network to encode manually
designed features and select the action from the PDRs set, generating
3

real-time scheduling solutions. Liu et al. [37] presented a hierarchical
and distributed DRL method with specialized state and action repre-
sentations to address the dynamic FJSP. Gui et al. [38] proposed a
DRL-based method for dynamic FJSP, in which single PDRs aggregate
the scheduling actions, and the model is trained by Deep Deterministic
Policy Gradient (DDPG).

In general, the vector-based DRL for the FJSP paradigm utilizes
manually designed features as states and PDRs as actions, leading to
high interpretability by human experts [42]. However, the performance
of scheduling agents heavily relies on the quality of the predefined
PDRs set. Moreover, using PDRs as scheduling actions only covers
a subset of operations space, limiting the exploration capability and
resulting in relatively less competitiveness [42].

2.2.2. Vector-based DRL for MOFJSP
Based on the vector-based DRL for the FJSP paradigm, researchers

introduced the HRL method to tackle MOFJSP further. Luo et al. [14]
proposed a two-hierarchy DQN scheduling framework for solving the
dynamic MOFJSP with two objectives. The proposed framework con-
tains two scheduling agents: the higher-level agent acting as a con-
troller to determine temporary optimization goals. A low-level agent
selects a scheduling action from composite PDRs set to optimize the
temporary optimization goals. Luo et al. [15] presented a hierarchical
multi-agent deep reinforcement learning method to handle dynamic
partial-no-wait MOFJSP with new job insertions and machine break-
downs. This approach comprises an objective agent, a job agent, and
a machine agent. The objective agent serves as a higher controller
that periodically sets temporary objectives, while the job and machine
agents act as lower actuators by selecting job and machine assignment
rules to achieve these objectives. Wu et al. [16] employed a dual-layer
DRL-based method for dynamic scheduling of multi-objective flexible
job shop, focusing on minimizing delay time sum and makespan.

In summary, this paradigm incorporates the status representation,
action space, and neural network design from the Vector-based DRL
for the FJSP paradigm. As a result, it inherits the benefits of high
interpretability but also faces limitations in exploration capability.
To solve MOFJSP, the HRL is further utilized to trade off multiple
objectives. The HRL approach involves a high-level agent selecting
temporary optimized objectives while a low-level agent solves the
operation sequencing and machine allocation problems. However, it
is essential to note that although this HRL-based approach can output
a relatively good solution for multi-objective optimization, it cannot
generate a Pareto set for fixed MOFJSP instances.

2.2.3. Graph-based DRL for FJSP
The well-known Disjunctive Graph (DG), which describes each op-

eration’s features and the problem’s structural information, has been
applied in recent studies to represent the state. These studies have
shown promising results in leveraging GNN since it can capture the in-
herent structure of the FJSP and is size-agnostic. Because this paradigm
combines GNN and DRL, it is also called GRL. Lei et al. [17] proposed
a multi-action decision-making framework that combines DG and GNN
for learning operation embeddings. In addition, an MLP is employed to
facilitate the passing of machine messages. Song et al. [2] designed a
heterogeneous graph to represent FJSP. They also introduced a hetero-
geneous GNN for learning embeddings of operations and machines for
decision-making. Wang et al. [40] proposed a dual-attention network
comprising several operation message blocks and machine massage at-
tention blocks. Furthermore, their method achieves better optimization
performance than traditional and DRL-based methods. Zhang et al. [41]
used the Proximal Policy Optimization (PPO) algorithm containing
an Actor-Critic network to solve the FJSP under machine processing
time uncertainty. They designed a GNN-based network that inputs a
processing information matrix and outputs PDRs as action.

Without loss of generality, the graph-based DRL paradigm directly
uses the pair of operations and machines as scheduling action, which
leads to more competitive exploration [42]. The trained model is also
size-agnostic; it can generalize to varying sizes and unseen instances,

showing strong generalization ability [2,17].
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Table 1
Recent studies on solving JSSP/FJSP based on end-to-end DRL method.

Work State
representation

Problem Neural
network

Action
space

Dynamic events Pros and cons

Luo (2020) [35]

Vector FJSP MLP

PDRs New job insertions
High interpretability;
Theoretically limited exploration;

Han and Yang (2021) [36] PDRs None
Liu et al. (2022) [37] PDRs New job insertions
Gui et al. (2023) [38] PDRs New job insertions

Luo et al. (2021) [14]
Vector MOFJSP MLP

PDRs New job insertions High interpretability;
Theoretically limited exploration;
Unable to calculate Pareto set for fixed
instance;

Luo et al. (2021) [15] PDRs New job insertions;
Machine breakdown

Wu et al. (2023) [16] PDRs New job insertions

Lei et al. (2022) [17]

Graph FJSP GNN

Operations and
machines

None Theoretically more
competitive exploration;
Strong generalization ability;
Poor interpretability

Song et al. (2022) [2] Operations and
machines

None

Lei et al. (2023) [39] Operations and
machines

New job insertions

Wang et al. (2023) [40] Operations and
machines

None

Zhang et al. (2023) [41] PDRs Variable processing
times

Our method Graph MOFJSP GNN Operations and
machines

None The pros and cons remain the same as
the above GRL method, while also
offering the advantage of fast Pareto set
computation for MOFJSP instances.
2.2.4. Graph-based DRL for MOFJSP
According to the above-related works, the Graph-based paradigm

has achieved an excellent result in solving FJSP. Therefore, extending
the graph-based method to address MOFJSP is valuable since MOFJSP
is more consistent with real-world applications.

Recently, DRL technologies have been increasingly applied to ad-
dress Multi-Objective Combinatorial Optimization (MOCO) problems
such as Multi-Objective Traveling Salesman Problem (MOTSP) [19,43–
48], Multi-Objective Vehicle Routing Problem (MOVRP) [19,43,48],
and Multi-Objective Knapsack Problem (MOKP) [43], yielding remark-
able achievements in efficiently obtaining the Pareto set. However,
there is a notable lack of research on applying DRL to solve multi-
objective scheduling problems, particularly MOFJSP. Existing DRL
methods for MOCO cannot be directly adapted to MOFJSP due to in-
ompatible model architectures and significant computational burdens. The

single encoder–decoder architecture used in current DRL methods for
MOCO is insufficient to handle the composite nature of MOFJSP, which
consists of operation sequencing and machine assignment problems.
Furthermore, the dynamic nature of scheduling problems necessitates
node embedding at each decision step, increasing the computational
burden during training and inference. Consequently, the advantage of
DRL in terms of solving speed is diminished when applied to MOFJSP.

To our knowledge, no studies exist to solve the MOFJSP via graph-
based end-to-end DRL method that can efficiently output the Pareto
set. This work proposes an end-to-end GRL-based method to quickly
approximate the Pareto set of MOFJSP. The proposed PGRL scheduling
model contains two encoder–decoder architectures to overcome the
challenges posed by incompatible model architecture. Additionally, we
proposed a parallel training and inference algorithm to alleviate the
significant computational burden.

. Preliminaries

This section introduces the necessary background knowledge of
he proposed method, including the definition of the Multi-objective
ombinatorial Optimization Problem (MOCO), the formulation for
OFJSP and its DG representations, and the decomposition strategy
ith preference-based scalarization.

.1. Multi-objective combinatorial optimization problem

A MOCO problem can be defined as follows:

in𝒇 (𝑥) = (𝑓 (𝑥), 𝑓 (𝑥),… , 𝑓 (𝑥)) (1)
4

𝑥∈ 1 2 𝑚
where  is a discrete search space, and 𝒇 (𝑥) is an objective vector
consisting of 𝑚 objectives. MOCO is reduced to a Single-Objective
Combinatorial Optimization (SOCO) when 𝑚 = 1. Because the in-
dividual objectives conflict with each other, no single solution can
optimize all objectives simultaneously. As a result, practitioners aim to
identify Pareto optimal solutions (Pareto set) instead, which is defined
as follows:

Definition 1 (Pareto Dominance). A solution 𝑥1 ∈  dominates another
solution 𝑥2 ∈  (denoted as 𝑥1 ≺ 𝑥2) if and only if 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) for
all 𝑖 ∈ 1,… , 𝑚 and ∃𝑗 ∈ {1,… , 𝑚}, 𝑓𝑗 (𝑥1) < 𝑓𝑗 (𝑥2).

Definition 2 (Pareto Optimality). A solution 𝑥 ∈  is Pareto-optimal if it
is not dominated by any other solution, i.e., ∄𝒙′ ∈  such that 𝑥′ ≺ 𝑥∗.

Definition 3 (Pareto Set/front). Solving an MOCO problem aims to
obtain a Pareto set consisting of all Pareto optimal solutions:  = {𝑥 ∈
 ∣ ∄𝑥′ ∈  ∶ 𝑥′ ≺ 𝑥}. The Pareto front  = {𝒇 (𝑥)|𝑥 ∈ } represents
the objective values of the Pareto set, with each 𝒇 (𝑥) considered as a
point in the objective space.

3.2. MOFJSP formulation and disjunctive graph

3.2.1. MOFJSP formulation
A standard (single-objective) FJSP involves 𝑛 jobs and 𝑚 machines,

constituting two sets  and , respectively. Each job 𝐽𝑖 ∈  comprises
𝑛𝑖 operations to be completed in a predefined order (the precedent
constraint) 𝑂𝑖1 → ⋯ → 𝑂𝑖𝑗 → ⋯ → 𝑂𝑖𝑛𝑖 . Each operation 𝑂𝑖𝑗 ∈ 𝐽𝑖
can be executed on any machine 𝑀𝑘 in a given compatible machine
set 𝑖𝑗 ⊆  with a processing time of 𝑝𝑖𝑗𝑘. Additionally, any machine
can only process one operation at a time. Solving FJSP is to determine
each operation 𝑂𝑖𝑗 ’s suitable machine and its start time to optimize
objectives such as makespan or tardiness.

Expanding FJSP to MOFJSP involves optimizing multiple objectives.
In this study, we focus on three objectives that are widely used by
previous studies [1]:

min
𝑥∈

𝒇 (𝑥) = (𝐶𝑚𝑎𝑥,𝑊𝑇 ,𝑊𝑐 ), (2)

The makespan: 𝐶 = max𝐶 , (3)
𝑚𝑎𝑥 𝑖,𝑗 𝑖𝑗
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The total workload: 𝑊𝑇 =
𝑚
∑

𝑘=1
w𝑘, (4)

The critical load: 𝑊𝑐 = max
1≤𝑘≤𝑚

w𝑘, (5)

where 𝐶𝑖𝑗 is the completion time of operation 𝑂𝑖𝑗 , w𝑘 is the workload
of machine 𝑀𝑘.

3.2.2. Disjunctive graph
An FJSP instance can be naturally represented by a DG  = (,,).

 =
{

𝑂𝑖𝑗 |∀𝑖, 𝑗
}

∪ {𝑆, 𝑇 } is the set of nodes of operations, including
two artificial nodes 𝑆 and 𝑇 (with zero processing time) denoting the
start and terminal of a schedule.  is the set of directed conjunctive
arcs indicating the precedent constraints.  =

⋃

𝑘 𝑘 represents the set
of undirected disjunctive arcs. 𝑘 is a clique that connects a series of
operations that can be processed on machine 𝑀𝑘. To illustrate, Fig. 1(a)
is a DG representation of an FJSP instance, and Fig. 1(c) displays the
corresponding DG representation of some feasible solutions, where the
direction of disjunctive arcs in each machine clique are determined.

3.3. Decomposition strategy and preference-based scalarization

3.3.1. Decomposition strategy
The decomposition strategy is a mainstream approach to solv-

ing multi-objective optimization problems [6]. It is simple, effective,
and has promoted much MOEA-based research, such as MOEA/D [6]
and its variants [49]. The decomposition strategy breaks down the
multi-objective optimization problem into multiple single-objective
sub-problems, where each sub-problem is a single-objective optimiza-
tion problem. The Pareto set can thus be obtained by solving all possible
combinations of sub-problems. In this paper, we employ the decompo-
sition strategy [6] as the basic framework to solve the MOFJSP.

3.3.2. Preference-based scalarization
The preference-based scalarization is the widely adopted method

for decomposing a multi-objective optimization problem into smaller
ones [50]. Commonly used preference scalarization methods are the
Weighted-Sum (WS) [51], the Weighted-Tchebycheff [52], and the
Penalty-based Boundary Intersection approach [53]. Formally, for a
MOCO with 𝑚 objectives, the preference vector of the 𝑖th sub-problem
is 𝜆𝑖 given 𝜆𝑖𝑗 ≥ 0 and ∑𝑚

𝑗=1 𝜆
𝑖
𝑗 . This study uses the WS, the simplest

yet effective decomposition approach, [51] to decompose the MOFJSP.
It uses the linear scalarization of 𝑚 objectives, which defines the
aggregation function to minimize the sub-problem associated with 𝜆𝑖

as:

min
𝑥∈

𝑔ws(𝑥|𝜆𝑖𝑗 ) =
𝑚
∑

𝑗=1
𝜆𝑖𝑗𝑓𝑗 (𝑥) (6)

Since 𝑔ws is a scalar objective function, the decomposed sub-problem
is the single-objective optimization problem. Using the WS-based Pref-
erence-based scalarization, we transit the MOCO (i.e., the objective
function is multi-dimensional) into a set of SOCO (i.e., the objec-
tive function is one-dimensional) that can approximate the original
problem.

4. Method

The overall framework of our method is depicted in Fig. 1. The
core of the framework is the PGRL scheduling model. The input com-
prises MOFJSP instances represented as a DG, along with preferences
𝜆 traversing from the Preference set  , and the output is the Pareto
Set consisting of Pareto optimal solutions corresponding to several
problems. The procedure for approximating the Pareto set using the
PGRL model is outlined as follows:

Step 1: The whole process begins by loading the trained PGRL
model and initializing the preference set using the structural weight
5

generate assignment method [54]. e
Step 2: Select a preference 𝜆𝑖 from the preference set  . The key to
generating the Pareto set is to find the solution for different preferences.
To this end, we make the PGRL model (with learnable parameters 𝜃)
aware of different preferences by employing a parameter generation
module that generates the parameters of the PGRL model conditioned
on the preference, i.e., 𝜃(𝜆𝑖).

Step 3: Exploit the model 𝜃(𝜆𝑖) to infer the solution of the MOFJSP
sub-problem. This process yields the Pareto optimal solution 𝑃𝑖 for the
𝑖th sub-problem of MOFJSP with preference 𝜆𝑖. Update the Pareto set:
 ←  ∪ 𝑃𝑖.

Step 4: Check if the process traverses all the preferences, which also
means all the sub-problems are solved. If Yes, output the Pareto set  ,
else return to step 2.

The preference set  is generated using the structural weight gener-
ate assignment method [54]. This method creates a set of preferences
in the form of WS, decomposing the MOFJSP into various structural
sub-problems. We kindly refer readers to Appendix A for detailed
information. Fig. 2 also provides an example featuring 15 preferences.

The following subsection will present the Markov Decision Process
(MDP) formulation (Section 4.1), policy parameterization (Section 4.2),
parallel training (Section 4.3), and parallel inference algorithms (Sec-
tion 4.4). The MDP formulation section outlines the input state, output
action, and feedback reward of the PGRL model. Policy parameteriza-
tion details the model composition, decision-making process, and how
the model adapts to different sub-problems based on their preferences.
The parallel training algorithm section explains the training procedure
of the PGRL model based on OpenAI-ES. During the inference phase,
the Parallel inference algorithm demonstrates how the PGRL model
acquires the Pareto set in a parallel manner, serving as a parallelized
version of the process for obtaining the Pareto set (Step 1–4).

4.1. MDP formulation of MOFJSP

As mentioned above, the proposed model must solve multiple
MOFJSP sub-problems, a regular FJSP instance with difference pref-
erence vector 𝜆𝑖. Solving the FJSP instance via DRL is to transform
it into a sequential decision-making problem. Specifically, the DRL
agent selects an operation at each decision step 𝑡 and assigns it to one
of its legal machines by considering the current state 𝑠𝑡 of the FJSP
environment. Then, the environment transits to the next decision step
𝑡 + 1 until all operations are assigned. The schedule can be computed
given the complete assignment. Therefore, in our case, it involves
making multiple actions (operation selection and machine assignment).
The action space in this MDP formulation is two-dimensional. This type
of MDP with a multi-dimensional action space is referred to as multiple
MDPs [55]. We present the formal definition as follows:

4.1.1. State representation
At each decision step 𝑡, the state is represented as 𝑠𝑡 = (𝑠𝑜𝑡 , 𝑠

𝑚
𝑡 ), where

𝑠𝑜𝑡 denotes the state of the operation selection model and 𝑠𝑚𝑡 represents
the state of the machine selection model. The state 𝑠𝑜𝑡 is defined as a DG
(𝑡) = ((𝑡),,𝑢(𝑡)), where 𝑢(𝑡) represents the assigned directions of
disjunctive arcs that determine the processing sequence of operations
on the same machine. Here, (𝑡) denotes the set of all operation nodes
t decision step 𝑡. The raw features of each operation node are as
ollows:

∙ Estimated lower bound of completion time 𝐿𝐵𝑡(𝑂𝑖𝑗 ).
∙ Scheduling status: binary value representing whether 𝑂𝑖𝑗 has

scheduled (1) or not (0) till step 𝑡.

There is no graph structure in the machine’s state information,
hich is applicable for solving the FJSP [17]. Consequently, 𝑠𝑡𝑚 is a
raph where each node encapsulates the primary features of a machine,
nd no node is connected to another through arcs. The raw features of

ach machine node are defined as follows:
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Fig. 1. The framework of the proposed method. Preferences are assigned to the PGRL model to facilitate its adaptation in solving various sub-problems of instances. Subsequently,
the model ingests the problem instance as its input. It directly approximates Pareto optimal solutions through swift forward inferences, each offering distinct trade-offs.
Fig. 2. An example of preferences set  . Fifteen preferences generated by structural
weight generate assignment method.

∙ The processing time 𝑝𝑖𝑗𝑘 of selected operation 𝑂𝑖𝑗 for machine
𝑀𝑘

∙ Available time: the time when the machine 𝑀𝑘 has completed
all its assigned operations and is free.

∙ Received workload: the workload the machine 𝑀𝑘 has been
assigned.

4.1.2. Action
The action 𝑎𝑡 consists of an operation select action, 𝑎𝑜 ∈ 𝐴𝑜, and

a machine assign action, 𝑎𝑚 ∈ 𝐴𝑚. Thus, the action space can be
expressed as 𝐴 = 𝐴𝑜 × 𝐴𝑚. Here, 𝐴𝑜 represents the set of eligible
operations at decision step 𝑡, i.e., each job’s current ready-to-process
operation 𝑂𝑖𝑗 . Meanwhile, 𝐴𝑚 refers to the compatible machines 𝑀𝑘
for the selected operation 𝑎𝑜.

4.1.3. State transition
Once the agent passes action 𝑎𝑡 = [𝑎𝑡𝑜, 𝑎

𝑡
𝑚] to the environment, it

transits to the next state 𝑠𝑡+1. Specifically, the direction of disjunctive
arcs for action/operation 𝑎𝑡𝑜 is determined, and the features for all
operation nodes 𝑂𝑖𝑗 and machine nodes 𝑀𝑘 are updated accordingly.
After all operations are scheduled, the environment transits to terminal
state 𝑠𝑇 , as shown in Fig. 1(c).

4.1.4. Reward
This study utilizes ES for model training. It approximates the gra-

dient by applying a fitness function, which can be seen as the reward
6

for an episode. In the training section (4.3), the fitness function (re-
ward) will be introduced to facilitate describing the multi-objective ES
training algorithm.

4.1.5. Policy
The DRL policy defines a probability distribution over the action

set 𝐴 for each state 𝑠𝑡. Our model 𝜃(𝜆) = {𝜃𝑜(𝜆), 𝜃𝑚(𝜆)} defines a
preference-conditioned stochastic policy 𝜋𝜃(𝜆), which consists of two
policies: 𝜋𝜃𝑜(𝜆) for operation selection and 𝜋𝜃𝑚(𝜆) for machine selection.
At each decision step 𝑠𝑡, policy 𝜋𝜃𝑜(𝜆) selects a ready operation as action
𝑎𝑜, and then 𝜋𝜃𝑚(𝜆) assign a compatible machine for above selected
operation 𝑎𝑜 as action 𝑎𝑚.

4.2. Parameterizing the policy

The overall architecture of our preference-conditioned scheduling
model is based on a multi-pointer graph network [17], as shown in
Fig. 3. Moreover, unlike study [17] work for single-objective FJSP, our
model is preference-conditioned, which is suitable to solve different
MOFJSP sub-problems. It consists of two encoder–decoder structures
that parameterize the operation selection policy 𝜋𝜃𝑜(𝜆) and the machine
selection policy 𝜋𝜃𝑚(𝜆), respectively. At each decision step 𝑡, the oper-
ation selection policy 𝜋𝜃𝑜(𝜆) selects the operation first, followed by the
machine selection policy 𝜋𝜃𝑚(𝜆) assigning a compatible machine to the
operation selected above.

For MOFJSP, the preference-agnostic encoders are capable of trans-
ferring instances into generalized embeddings (e.g., embeddings for all
operations/machines), which the preference-conditioned decoder can
use to solve all sub-problems. In our model, only the decoders are
conditioned on the preference 𝜆:

𝜃𝑜(𝜆) = [𝜃𝑜_𝑒𝑛𝑐 , 𝜃𝑜_𝑑𝑒𝑐 (𝜆)] (7)

𝜃𝑚(𝜆) = [𝜃𝑚_𝑒𝑛𝑐 , 𝜃𝑚_𝑑𝑒𝑐 (𝜆)] (8)

Next, we present the details of the encoder and preference-
conditioned decoder.

4.2.1. Operation selection encoder
The state 𝑠𝑜𝑡 input into the operation selection encoder 𝜃𝑜_𝑒𝑛𝑐 is a

dynamic DG (𝑡) that evolves based on the environmental conditions at
decision step 𝑡. The graph (𝑡) = ((𝑡),,𝑢(𝑡)) captures both structural
and dynamic information, including precedence constraints of FJSP
and real-time messages of each operation node. Effectively extracting
crucial information from this DG is crucial for scheduling decisions.

This work applies the Graph Isomorphic Network (GIN) [56], which has
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Fig. 3. The proposed PGRL model architecture. The model selects the next processing
operation 𝑂𝑖𝑗 from the feasible operations first, then its processing machine 𝑀𝑘. The
raw features in the machine selection encoder’s input include the processing time 𝑝𝑖𝑗𝑘
of selected operation 𝑂𝑖𝑗 for machine 𝑀𝑘. Note that the machine selection decoder
takes as input the embeddings of the complete DG ℎ(𝑡), computed by the operation
selection encoder.

shown solid discriminative power, to extract embeddings. GIN performs
iterations of updates to generate 𝑝-dimensional embeddings for each
node 𝑣(𝑣 ∈ 𝑉 ) in a graph  = (𝑉 ,𝐸). The update at iteration 𝑙 can be
summarized as follows:

ℎ(𝑙)𝑣 = 𝑀𝐿𝑃 (𝑙)
𝜃𝑙

(

(

1 + 𝜀(𝑙)
)

⋅ ℎ(𝑙−1)𝑣 +
∑

𝑢∈ (𝑣)
ℎ(𝑙−1)𝑢

)

(9)

where ℎ(𝑙)𝑣 indicates the embeddings of node 𝑣 at iteration 𝑙, and ℎ0𝑣
denotes the raw features of each node 𝑣. 𝑀𝐿𝑃 𝑙

𝜃𝑙
is an Multilayer

Perceptron (MLP) with parameter 𝜃𝑙 for iteration 𝑙. It follows by batch
normalization [57]. Here, 𝜀𝑙 is a arbitrary number, both parameters 𝜃𝑙
and arbitrary number 𝜀𝑙 can be learned. Besides,  (𝑣) refers to the set
of neighbor nodes of node 𝑣.

After 𝐿 rounds of updates, the operation selection encoder produces
the graph pooling vector ℎ ∈ R𝑝 as the representation for the entire
graph . This vector is obtained by averaging the node embeddings:
ℎ = 1∕|𝑉 |

∑

𝑣∈𝑉 ℎ𝐿𝑣 .
The aforementioned network, GIN, is utilized to extract embeddings

of the DG of FJSP. At the decision step 𝑡, given the state 𝑠𝑜𝑡 : (𝑡) =
((𝑡),,𝑢(𝑡)), it outputs the embeddings of each operation node ℎ(𝐿)𝑂𝑖𝑗

(𝑡)
and the embeddings of the entire DG ℎ(𝑡).

4.2.2. Machine selection encoder
Since each machine node 𝑀𝑘 encapsulates the primary features

without any structural connections between them, so we utilize a
simple fully connected layer for encoding the state 𝑠𝑚𝑡 , resulting in the
embedding vector ℎ𝑀𝑘

(𝑡) for each machine node and the mean pooling
vector: 𝑢(𝑡) = 1∕||

∑

||

𝑘=1 ℎ𝑀𝑘
(𝑡).

4.2.3. Preference-based decoder
There are two key problems concerning the design of the preference-

based decoder.
The first is how to generate the preference-conditioned parameters

𝜃𝑜_𝑑𝑒𝑐 (𝜆) and 𝜃𝑚_𝑑𝑒𝑐 (𝜆).
Inspired by studies [43,58], this work adopts hypernetwork [59]

to generate the decoder parameters conditioned on the input 𝜆. As
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shown in Fig. 3, two hypernetworks, 𝜑𝑜 and 𝜑𝑚, are responsible for
generating operation and machine selection decoder parameters, re-
spectively. Additionally, the compression approach in the study [59]
is applied to control the model size. The procedure for generating
the preference-conditioned decoder based on the hypernetwork is as
follows:

Initially, the MLP takes the input preference 𝜆 and produces hidden
embeddings as output.

𝑒ℎ(𝜆) = 𝐌𝐋𝐏(𝜆|𝜑ℎ) (ℎ ∈ {𝑜, 𝑚}) (10)

𝑒ℎ(𝜆) = [𝑒𝑥1ℎ , 𝑒𝑦1ℎ ,… , 𝑒𝑥𝑙ℎ , 𝑒𝑦𝑙ℎ ,… , 𝑒𝑥𝐿ℎ , 𝑒𝑦𝐿ℎ ] (11)

where 𝑒𝑥1ℎ , 𝑒𝑦1ℎ is the hidden embedding with the same dimension, which
is used to generate the parameters for the decoder 𝑙 layer. Next, the
hidden embeddings are mapped to the decoder parameters via linear
projection.

𝑊 𝑙
𝜃ℎ_𝑑𝑒𝑐

= 𝑊 𝑥𝑙 𝑒𝑥𝑙ℎ + 𝑏𝑥𝑙 (ℎ ∈ {𝑜, 𝑚}) (12)

𝑏𝑙𝜃ℎ_𝑑𝑒𝑐
= 𝑊 𝑦𝑙 𝑒𝑦𝑙ℎ + 𝑏𝑦𝑙 (ℎ ∈ {𝑜, 𝑚}) (13)

where 𝑊 𝑙
𝜃ℎ_𝑑𝑒𝑐

and 𝑏𝑙𝜃ℎ_𝑑𝑒𝑐
represent the weights and biases, respectively,

of layer 𝑙 in the preference-conditioned decoder. In other words, 𝜃ℎ_𝑑𝑒𝑐
is defined as the set {𝑊 𝑙

𝜃ℎ_𝑑𝑒𝑐
, 𝑏𝑙𝜃ℎ_𝑑𝑒𝑐

|∀𝑙}. The hypernetwork 𝜑ℎ consists
of 𝐌𝐋𝐏(𝜆|𝜑ℎ) and the trainable parameters {𝑊 𝑥𝑙 , 𝑏𝑥𝑙 ,𝑊 𝑦𝑙 ,𝑊 𝑦𝑙

|∀𝑙}.
The remaining key problem is how preference-conditioned decoders work

for decision-making.
Both the operation selection decoder 𝜃𝑜_𝑑𝑒𝑐 (𝜆) and machine selection

decoder 𝜃𝑚_𝑑𝑒𝑐 (𝜆) employ the same structure, which is an MLP. They
take the embeddings of operation or machine as input and output the
scheduling selection action 𝑎𝑡 = {𝑎𝑜𝑡 , 𝑎

𝑚
𝑜 }. The decision-making process

follows a similar approach as described in [17]:
First, the two decoders are applied to calculate the score for each

operation/machine node as follows:

𝑠𝑐𝑟(𝑂𝑖𝑗 (𝑡)) = 𝐌𝐋𝐏𝜃𝑜_𝑑𝑒𝑐(𝜆) ([ℎ
(𝐿)
𝑂𝑖𝑗

(𝑡), ℎ(𝑡)]) (14)

𝑠𝑐𝑟(𝑀𝑘(𝑡)) = 𝐌𝐋𝐏𝜃𝑚_𝑑𝑒𝑐(𝜆) ([ℎ𝑀𝑘
(𝑡), ℎ(𝑡), 𝑢(𝑡)]) (15)

where [⋅, ⋅] is the vector concatenation operator. Then, they all use the
softmax function to calculate the operation/machine selection prob-
ability distribution, respectively. Finally, selecting action 𝑎𝑡 can be
determined through sampling or a greedy approach. The proposed
model is trained using ES, requiring a greedy action selection during
training and testing. An action mask [17] is also applied to block illegal
actions.

4.3. Multi-objective training via evolution strategies

We propose a multi-objective training algorithm for the proposed
PGRL model based on OpenAI-ES [10], a highly parallelizable and
efficient reinforcement learning approach. The ES-based training al-
gorithm consists of two phases: (1) randomly perturbing the policy
parameters and evaluating the perturbed policy, and (2) aggregating
the evaluations (using the fitness function) from all episodes to compute
stochastic gradient estimates and update the policy. The fitness function
for evaluating the proposed model 𝜃(𝜆𝑖), considering a specific prefer-
ence 𝜆𝑖, can be derived from (6) after solving an MOFJSP sub-problem:

𝐹 (𝜃(𝜆𝑖)) = −(𝜆𝑖1𝐶𝑚𝑎𝑥 + 𝜆𝑖2𝑊𝑇 + 𝜆𝑖3𝑊𝑐 ). (16)

Algorithm 1 presents the ES-based parallel multi-objective train-
ing algorithm (For clearance, we ignore 𝜆 during parameter updates
and data transmissions between CPU workers). The CPU workers are
responsible for evaluating the policy after perturbation by running
episodes, where the master gathers empirical data from the CPU work-
ers, updates the model, and communicates it back to the CPU workers.
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During each training step, the master randomly samples preference
weights 𝜆𝑖 from the Dirichlet distribution 𝛬. The master sends the
model and 𝜆𝑖 to the CPU workers (line 5). Each CPU worker follows
hese steps: (1) generating a random FJSP instance 𝑠 (line 8), (2) per-
urbing the parameters of the received model (lines 9–11), (3) assigning
he preference weights to the perturbed model, i.e., generating decoder
arameters conditioned on specific 𝜆𝑖 (line 12), and (4) applies the

model to solve the instance according to Algorithm 2, and finally,
evaluating the performance using (16) (lines 13–14). This process is
repeated 𝐼 times for all CPU workers, and the perturbed random
seeds and evaluations (fitness function) are sent back to the master.
Subsequently, the master updates the model based on the received data
(line 19).

The training preferences sample from Dirichlet distribution [48] in-
stead of a random sample can further enhance the learning of boundary
solutions [48]. The detailed details of the Dirichlet distribution are
provided in Fig. 7.

By sequentially training the PGRL model to optimize sub-problems
with possible preferences, as outlined above, it can learn to accommo-
date all preferences effectively.

Algorithm 1: Training Procedure with Parallelized ES
Input: Learning rate 𝛼, noise standard deviation 𝜎, preference

distribution 𝛬, FJSP instances distribution , number of
training steps 𝑈 , number of CPU workers 𝐶, number episodes
of per CPU worker on one training step 𝐼

1 Initialize the master model parameters 𝜃 = {𝜃𝑜, 𝜃𝑚}
2 Initialize each CPU worker model parameters 𝜃𝑐 = {𝜃𝑐,𝑜, 𝜃𝑐,𝑚} for

𝑐 = 1, ..., 𝐶
3 for 𝑖 = 1 to 𝑈 do
4 𝜆𝑖 ← SamplePreference(𝛬)
5 Send 𝜃 and 𝜆𝑖 to each CPU worker
6 for each CPU worker 𝑐 = 1 to 𝐶 do
7 for 𝑗 = 1 to 𝐼 do
8 Sample a FJSP instance 𝑠 from 
9 Randomly generate a random seed 𝛽𝑗
10 Sample 𝜖𝑗 ∼  (0, 1) with random seed 𝛽𝑗
11 𝜃𝑐 ← 𝜃 + 𝜎𝜖𝑗
12 Assign 𝜆𝑖 to 𝜃𝑐 (𝜆) to get 𝜃𝑐 (𝜆𝑖)
13 𝑃 ← Solve-FJSP(𝜃𝑐 (𝜆𝑖), 𝑠) according to Algorithm 2
14 The fitness function 𝐹𝑗 (𝜃𝑐 (𝜆𝑖)) is calculated according to

Eq. (16).
15 end
16 Send 𝐹𝑗 and 𝛽𝑗 for 𝑗 = 1,..., 𝐼 to the master
17 end
18 Reconstruct all perturbations 𝜖𝑘 using random seed 𝛽𝑘 for

𝑘 = 1, ..., 𝐶 × 𝐼
19 Set 𝜃 ← 𝜃 + 𝛼 1

𝑛𝜎

∑𝐶×𝐼
𝑘=1 𝐹𝑘𝜖𝑘

20 end
Output: The model parameter 𝜃

Algorithm 2: Solve-FJSP Algorithm via 𝜃(𝜆𝑖)
Input: preference conditioned model 𝜃(𝜆𝑖) with specify 𝜆𝑖 and FJSP

instance 𝑠
1 Initialize 𝑠𝑡 based on sampled FJSP instance (𝑠𝑡 = {𝑠𝑜𝑡 , 𝑠

𝑚
𝑡 })

2 while 𝑠𝑡 is not terminal do
3 Greedily pick 𝑎𝑜𝑡 based on 𝜋𝜃𝑜(𝜆𝑖)(⋅|𝑠

𝑜
𝑡 )

4 Greedily pick 𝑎𝑚𝑡 based on 𝜋𝜃𝑚(𝜆𝑖)(⋅|𝑠
𝑚
𝑡 )

5 The environment receive 𝑎𝑡 = {𝑎𝑜𝑡 , 𝑎
𝑚
𝑡 } transit to 𝑠𝑡+1

6 𝑠𝑡 ← 𝑠𝑡+1
7 end
8 Obtain Pareto optimal solution 𝑃 = (𝐶𝑚𝑎𝑥,𝑊𝑇 ,𝑊𝑐 )
Output: 𝑃

4.4. Preference parallel inference

We observed that solving each MOFJSP sub-problem using the
proposed model is independent of one another. This observation mo-
tivates using a parallel approach to accelerate the inference process.
We proposed the PGRL preference parallel inference procedure (Algo-
rithm 3), which exhibits high parallelism and negligible communication
8

overhead. Initially, the master sends the FJSP instances and preference
weights to the CPU workers (line 2), which then solve their respective
MOFJSP sub-problems (lines 11–13) and transmit the solutions back
to the master (line 14). The preference set  is generated using a
tructured weight assignment approach [54].

Algorithm 3: PGRL Preference Parallel Inference
Input: Trained model parameter 𝜃, FJSP instance 𝑠, preference set  ,

number of CPU worker 𝐶
1 Initialize Pareto set  = ∅
2 Send model parameter 𝜃 and FJSP instance 𝑠 to each CPU worker
3 while  ≠ ∅ do
4 if | | ≥ 𝐶 then
5 Take 𝐶 𝜆 from the , send each of them to individual

workers
6 end
7 else
8 Take remaining 𝜆 from the , send each of them to

individual workers
9 end
10 for each CPU worker do
11 Assign 𝜆𝑖 to 𝜃(𝜆) to get 𝜃(𝜆𝑖)
12 Initialize 𝑠𝑡 based on FJSP instance 𝑠 (𝑠𝑡 = {𝑠𝑜𝑡 , 𝑠

𝑚
𝑡 })

13 𝑃 ← Solve-FJSP(𝜃𝑐 (𝜆𝑖), 𝑠) according to Algorithm 2
14 Send Pareto optimal solution 𝑃 to master
15 end
16  =  ∪ {𝑃 } // Collect the Pareto optimal solutions sent by the CPU

workers and put them into the Pareto set.
17 end

Output: Pareto set 

5. Experiments

In this section, we conduct extensive experiments to evaluate the
proposed PGRL method on multiple benchmarks. We consider several
baselines, including various conventional, widely-used, efficient MOEA
algorithms and state-of-the-art ones for MOFJSP. First, we introduce
the experimental setup. Subsequently, we compare the in-distribution
performance, generalization performance across different problem sizes
and distributions, and computational efficiency of different approaches
using synthetically generated instances and public FJSP benchmarks,
respectively. Finally, we empirically analyze the time complexity of the
proposed method.

5.1. Experiment settings

5.1.1. Training and testing instances
The proposed method is trained and tested on synthetic instances of

various sizes. The instance generation method is similar to the approach
employed in the study [17]. Specifically, the value of 𝑝𝑖𝑗𝑘 are randomly
sampled from a uniform distribution 𝑈 [1, 99], except when set to zero to
indicate that machine 𝑀𝑘 cannot process operation 𝑂𝑖𝑗 . Additionally,
the number of operations for each job is set equal to the number of
machines for simplicity. For example, consider a 3 × 3 FJSP/MOFJSP
nstance represented in Table 2. This instance involves three jobs,
here each job consists of three operations. The processing times for
ach operation are provided, and a value of 0 indicates that a particular
achine cannot perform a specific operation.

The PGRL model, trained on small instances, is tested on large-
cale synthetic unseen instances to assess its generalization capability
cross various problem sizes. In addition to randomly generated in-
tances, we evaluate the performance of the proposed method using
arious well-known published FJSP benchmarks. These benchmarks
nclude three instances from Kacem et al. [60], ten mk instances from
randimarte [61], ten sfjs instances from Fattahi et al. [62], two mfjs

nstances from Fattahi et al. [62], a dataset labeled as ‘‘la (rdata)’’
ith 40 instances from Hurink et al. [63], and a dataset labeled as ‘‘la

vdata)’’ with 40 instances from Hurink et al. [63]. These benchmarks
ncompass problem instances of diverse sizes, ranging from 2 × 2 to
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Table 2
An example of 3 × 3 FJSP/MOFJSP instance
𝑝𝑖𝑗𝑘 𝐽1 𝐽2 𝐽3

𝑂11 𝑂12 𝑂13 𝑂21 𝑂22 𝑂23 𝑂31 𝑂32 𝑂33

𝑀1 0 68 0 0 46 0 0 60 47
𝑀2 47 24 0 46 0 56 33 0 0
𝑀3 0 56 83 0 67 36 45 92 0
5

s
t
a
t
t
t
t
t
p
u
m

5

t
a
H
i
l
H
t

5

a
S
t
s
p
i
i

d
a
t
v
o
t

30 × 10, and are generated from distributions different from those
used during training. Testing on these benchmarks further validates the
proposed method’s efficacy when confronted with out-of-distribution
scenarios.

5.1.2. Parameter configuration
This study sets the number of GIN layers of the operation selection

encoder 𝜃𝑜_𝑒𝑛𝑐 to 2. In each GIN layer, 𝑀𝐿𝑃 (𝑙)
𝜃𝑙

contains 2 hidden
layers with hidden dimensions 128. Both the operation action selection
decoder 𝜃𝑜_𝑑𝑒𝑐 (𝜆) and the machine action selection decoder 𝜃𝑚_𝑑𝑒𝑐 (𝜆)
have two hidden layers with hidden dimensions 128. These decoders
are preference-conditioned, and their weights and biases of each layer
are generated according to Eq. (10) and Eq. (12), respectively. The
MLP used to generate the hidden embeddings in the hypernetwork has
two hidden layers with hidden dimension 256. The dimensions of the
hidden embeddings 𝑒𝑥1ℎ , 𝑒𝑦1ℎ are all set to 2.

For the training process, we have set the learning rate 𝛼 to 1 × 10−3

and the noise standard deviation 𝜎 to 0.01. The number of training steps
𝑈 is chosen as 200, while the number of CPU workers 𝐶 is set to 10,
and each CPU worker performs 10 episodes per training step 𝐼 = 10.
Detailed discussions on the setting of the above hyperparameters can
be found in Appendix C. Additionally, we have employed a scaling
parameter of 0.2 for the Dickey Distribution, which is used to generate
sample training preference weights. This value has shown promising
performance in various multi-objective optimizations [58].

During the inference phase, we employ 3 CPU workers, taking into
account the GPU memory limitations of our experimental setup. We set
the control parameter 𝑝 to 4 for the structured weight assignment ap-
proach. This configuration leads to a preference set with 15 preferences,
striking a balance between the solutions’ quality and the inference
time’s efficiency. The proposed method is implemented in PyTorch,
running on a workstation equipped with an Intel i9-7940X CPU and
three Nvidia Titan Xp GPUs.

5.1.3. Baselines and performance evaluation metrics
Baselines. We consider four well-known MOEA-based algorithms, in-
cluding NSGA-II [5], MOEA/D [6], NSGA-III [64] and RVEA [65]. For
a fair comparison, the baseline MOEA algorithms are implemented
in the same environment as the proposed method to verify that a
learned PGRL model is superior to a hand-crafted MOEA competitor.
We also compare with the recent state-of-the-art approaches for solving
MOFJSP, namely, INSBBO [24], PBB [25] TL-HGAPSO [21], and BEG-
NSGA-II [20]. The details of the above baselines can be found in
Appendix E.

Performance evaluation metrics. In this paper, we adopt two indicators
to assess the performance of each method.

(1) Hypervolume (HV) metric: HV [66] is a commonly used metric
to evaluate the performance of multi-objective methods. Let 
be the set of Pareto optimal solutions obtained by an algorithm,
and the HV metric is defined as:

𝐻𝑉 () = VOL(
⋃

𝑥∈
[𝑓1(𝑥), 𝑟∗1] ×⋯ × [𝑓𝑚(𝑥), 𝑟∗𝑚]) (17)

where VOL(⋅) represents the Lebesgue measure, 𝒇 = (𝑓1,… , 𝑓𝑚)
denotes an attained objective vector, 𝒓∗ = (𝑟∗1 ,… , 𝑟∗𝑚) and is a
reference objective vector. In our experiments, 𝒓∗ is set to a
relatively large value compared to the objective vector obtained
9

s

by all methods. The larger the hypervolume, the better the
solution set tends to be, which means the algorithm achieves a
better approximation to the Pareto front.
We also utilize Tukey’s Honestly Significant Difference (HSD)
Test with a 0.05 significance level to analyze the differences
between the HV results produced by the algorithms under com-
parison. The symbols ‘‘+/−/=’’ indicate whether the results of
the PGRL are superior to, inferior to, or equal to those of the
compared algorithm, respectively.

(2) Gap metric: Gap measures the ratio of the HV difference relative
to our method.

𝐺𝑎𝑝 =
𝐻𝑉𝑐 −𝐻𝑉𝑜𝑢𝑟𝑠

𝐻𝑉𝑜𝑢𝑟𝑠
(18)

A positive value of Gap indicates that the corresponding method
is better than the proposed method, while the opposite value is
worse.

.2. Performance on synthetic instances

In this section, we report and analyze the performance of PGRL on
ynthetic datasets. The training curves (Fig. 9 in Appendix D) show
hat the proposed method is stable during training. It converges on
ll three training sizes. Remarkably, the training process demonstrates
hat the DRL agent can rely solely on its own experiences to learn
o acquire a high-quality scheduling policy to solve MOFJSP without
he need of human intervention. For testing, we first evaluate the
rained policies on the synthetic instances of the same size as during
raining and large-scale unseen ones. Then, a run-time analysis will be
rovided. Finally, the trained model is compared with MOEA baselines
nder a reasonable time limit to simulate the time constraints for real
anufacturing scenarios.

.2.1. Performance on synthetic instances of training size
Table 3 gathers the statistical results on synthetic instances for each

raining size. Among the methods compared, NSGA-III and NSGA-II
chieved the highest HV values for the 6 × 6 and 10 × 10 size instances.
owever, for the 15 × 15 instances, the proposed PGRL method exhib-

ted the highest HV value, demonstrating its superior performance on
arge-size instances. Additionally, Tukey’s HSD Test confirms that the
V values of PGRL are statistically significantly comparable to those of

he MOEA algorithms across all training sizes.

.2.2. Generalization performance on large-sized synthetic instances
This study further investigates the ability of the proposed size-

gnostic policy to handle larger instances unseen in the training data.
pecifically, the policy trained on 10 × 10 instances is directly applied
o 20 × 20, 30 × 20, and 50 × 20 instances, and the results are
ummarized in Table 4. Tukey’s HSD Test results indicate that the pro-
osed method remains statistically comparable for large-size instances,
ndicating that the patterns learned from smaller and medium-sized
nstances are still effectively generalized to large-scale problems.

Across small-scale to large-scale instances, the statistical analysis in-
icates a comparable performance between the proposed PGRL method
nd MOEA-based approaches, with a performance difference of less
han 2%. While the proposed model initially exhibits slightly lower HV
alues than MOEA baselines on small (6 × 6 and 10 × 10) instances, it
utperforms them on larger instances. This difference may be attributed
o the MOEA method’s tendency to converge to local optima in the

earch space of large MOFJSP instances.
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Table 3
Statistical results on synthetic instances of training size.

Method 6 × 6 10 × 10 15 × 15

HV Gap Time HV Gap Time HV Gap Time

NSGA-II 0.4510= 1.46% 5.07 s 0.2530= 0.99% 13.03 s 0.4013= −0.16% 42.45 s
MOEA/D 0.4516= 1.53% 11.06 s 0.2529= 0.94% 23.95 s 0.4014= −0.16% 65.17 s
NSGA-III 0.4520= 1.70% 4.73 s 0.2530= 0.95% 12.01 s 0.4014= −0.15% 38.78 s
RVEA 0.4517= 1.62% 4.35 s 0.2523= 0.71% 11.67 s 0.4007= −0.32% 38.21 s

PGRL 0.4448 0.00% 0.09 s 0.2506 0.00% 0.10 s 0.4020 0.00% 0.35 s

The best results are marked with a gray background. The Time is the average running time for solving 100
random test instances.
Table 4
Statistical generalization result on large-sized synthetic instances.

Method 20 × 20 30 × 20 50 × 20

HV Gap Time HV Gap Time HV Gap Time

NSGA-II 0.2112= −0.10% 111.82 s 0.2555= −0.38% 233.11 s 0.1888= −0.15% 608.64 s
MOEA/D 0.2112= −0.09% 159.61 s 0.2555= −0.36% 327.47 s 0.1888= −0.15% 743.53 s
NSGA-III 0.2112= −0.10% 102.10 s 0.2556= −0.35% 212.22 s 0.1887= −0.19% 554.27 s
RVEA 0.2107= −0.31% 101.42 s 0.2550= −0.55% 211.57 s 0.1884= −0.37% 553.86 s

PGRL(10 ×10) 0.2114 0.00% 0.99 s 0.2564 0.00% 1.62 s 0.1891 0.00% 5.56 s

The best results are marked with a gray background. The Time is the average running time for solving 100 random test
instances. The PGRL(10 × 10) is the model trained on 10 × 10 instances mentioned in Table 3.
Table 5
Statistical results on the large-size instances in real-time.

Method 20 × 20 30 × 20 50 × 20

HV Gap Time HV Gap Time HV Gap Time

NSGA-II 0.0842+ −61.81% 22.95 s 0.0963+ −62.90% 23.18 s 0.0153+ −92.82% 20.50 s
MOEA/D 0.0986+ −55.02% 22.60 s 0.1156+ −55.41% 23.07 s 0.0180+ −91.34% 24.39 s
NSGA-III 0.0700+ −68.36% 20.82 s 0.0939+ −63.88% 22.22 s 0.0133+ −93.72% 24.58 s
RVEA 0.0782+ −64.38% 23.16 s 0.1157+ −55.31% 28.58 s 0.0401+ −80.11% 24.75 s

PGRL(10 ×10) 0.2114 0.00% 0.99 s 0.2564 0.00% 1.62 s 0.1891 0.00% 5.56 s

The best results are marked with a gray background. The Time is the average running time for solving 100 random test
instances. The PGRL(10 ×10) is the model trained on 10 × 10 instances mentioned in Table 3.
5.2.3. Run time analysis
Tables 3 and 4 list the average run time of the proposed method

and MOEA baselines. We can observe from the results that the PGRL is
significantly faster than MOEA baselines. Furthermore, as the instance
size increases, the running time of MOEA baselines is exponentially
increased, while the proposed PGRL maintains a short computational
time (only a few seconds for the 50 × 20 instances). The reason for the
significant difference in running time is that MOEA obtains the Pareto
set through an exhaustive search, while PGRL fastly approximates the
Pareto set through the neural network, which is one of the main
advantage of our method.

5.2.4. Performance on large-sized instances in real-time
In the previous experiment, we set a generation number of 100

for the MOEA method to obtain high-quality solutions, costing a sig-
nificant amount of time. However, there is a growing need for online
or near-line scheduling in real-world scenarios. To simulate this case,
we evaluate the performance of different methods constrained on a
reasonably limited running time.

Specifically, we select the best results of all the MOEA methods
within a 20-second horizon. As shown in Table 5, the results indicate
that our method significantly outperforms the MOEA approach in terms
of quality and speed. Our method approximates the Pareto solution fast,
whereas the MOEA method necessitates multiple iterations to achieve
the solution with similar quality. The swift advantage of our proposed
method makes it desirable in many real-world real-time scheduling
applications.

5.3. Performance on public benchmarks

This subsection further evaluates the generalization performance
10

of the trained policies on the public benchmarks often used in the
community by directly applying the trained policies. It is worth noting
that PGRL is trained on data generated from different distributions from
that of the public benchmarks. That is, we are testing the zero-shot
generalization performance of PGRL. We compare PGRL with MOEA
baselines and state-of-the-art ones. Results are summarized in Tables 6
and 7. For the baselines, INSBBO [24], TL-HGAPSO [21], and BEG-
NSGA-II [20] are handcraft meta-heuristic algorithms to solve MOFJSP.
PBB [25] is a parallel exact method (based on branch and bound) for
MOFJSP, which uses the NSGA-II to initialize its upper bound. For
MOEA baselines, since their performance is comparative with each
other, we removed the NSGA-II and MOEA/D for simplicity.

The first part of Tables 6 and 7 present the results of baselines,
and the lower part showcases the results of our method. Table 6
highlights three key findings: (1) Tukey’s HSD Test results indicate
that the proposed method’s performance is statistically comparable to
the MOEA baselines and state-of-the-art studies, suggesting that the
learned policies generalize effectively to out-of-distribution instances.
(2) Our method retains the efficiency advantage, while search-based
methods such as the MOEA baselines and state-of-the-art studies require
a much longer time to achieve high-quality solutions. (3) Regarding
the average HV value, the proposed PGRL method showcases inferior
performance in small-sized problems (kacem and mk) compared to the
comparison method. However, it matches or surpasses the comparison
method in larger-sized problems (la-rdata). Specifically, on the kacem
dataset, INSBBO and BEG-NSGA-II exhibited the best performance. On
the mk dataset, INBBO outperformed others, with the proposed method
and MOEA baselines surpassing TL-HGAPSO. On the larger la-rdata
datasets, the performance of our proposed method closely aligns with
that of the MOEA baselines, albeit slightly inferior to NSGA-III and

superior to RVEA.
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Table 6
Statistical results on the public benchmarks-Part I.

Method kacem mk la (rdata)

HV Gap Time HV Gap Time HV Gap Time

BEG-NSGA-II 0.1728= 4.82% 42.30 s 0.2107= 1.32% 736.86 s / / /
TL-HGAPSO 0.1701= 3.19% 7.00 s 0.2017= −3.13% 264.90 s / / /
INSBBO 0.1728= 4.82% / 0.2142= 3.22% / / / /

NSGA-III 0.1694= 2.77% 4.85 s 0.2073= 0.03% 20.81 s 0.0120= 0.66% 23.11 s
RVEA 0.1696= 2.60% 4.41 s 0.2058= −0.85% 20.32 s 0.0118= −1.57% 26.35 s

PGRL(10 ×10) 0.1645 0.00% 2.78 s 0.2076 0.00% 2.26 s 0.0119 0.00% 2.41 s

The best results are marked with a gray background. ‘/’ means not given by the state-of-the-art studies. The PGRL(10
×10) is the model trained on 10 × 10 instances mentioned in Table 3.
Table 7
Statistical results on the public benchmarks-Part II.

Method sfjs mfjs la (vdata)

HV Gap Time HV Gap Time HV Gap Time

PBB 0.1334= 2.66% 13.43 s 0.0922= 5.58% 63.96 h / / /

NSGA-III 0.1328= 1.94% 4.50 s 0.0906= 3.81% 2.98 s 0.0121= −0.85 23.05 s
RVEA 0.1332= 2.41% 4.83 s 0.0906= 3.67% 2.55 s 0.0117= −3.65 23.23 s

PGRL(10 ×10) 0.1312 0.00% 0.21 s 0.0873 0.00% 0.31 s 0.0121 0.00% 2.40 s

The best results are marked with a gray background. ‘/’ means not given by the state-of-the-art studies. The PGRL(10
×10) is the model trained on 10 × 10 instances mentioned in Table 3.
a
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Table 7 displays statistical results for public benchmarks different
rom Table 6. Several key findings stand out. Firstly, Tukey’s HSD Test
esults show that our method is comparable to baselines. Secondly,
hile PBB demonstrates outstanding performance on the sfjs and mfjs

nstances, its efficiency is compromised due to the nature of the exact
lgorithm, leading to significantly longer computation times. Last but
ot least, our proposed method outperforms the MOEA baselines on
arge-size instances. This observed trend echoes the findings in Table 6,
ighlighting the method’s scalability and effectiveness across varying
roblem sizes.

In summary, the statistical results presented in Tables 6 and 7
emonstrate that the optimization outcomes achieved by the proposed
ethod are comparable to those of the MOEA baselines, as well as

he current state-of-the-art method for the MOFJSP. Furthermore, the
esults underscore the generalization capabilities of the trained pol-
cy, even in scenarios involving out-of-distribution and more intricate
OFJSP instances.

.4. Time complexity analysis

This study also analyzes the time complexity of the proposed
ethod for MOFJSP instances of varying sizes. To quantify this, we
erform a controlled variable experiment by manipulating the number
f operations, which allows us to investigate the impact of MOFJSP
nstance size on the running time. Fig. 4 illustrates the increasing
unning time trend as the MOFJSP instance size grows. The running
ime of NSGA-III demonstrates a significantly faster increase than
he proposed PGRL methods. We utilize a second-order polynomial
o fit all growth curves in Fig. 4. The fitting results reveal that (1)
he time complexity of all methods is 𝑂(||2). (2) the second-order

coefficients of NSGA-III are an order of magnitude higher than those of
PGRL, contributing to its faster runtime increase. (3) The PGRL-3-CPU’s
runtime is three times faster than that of PGRL-1-CPU. This difference
is minor for small instances but notable for larger ones, as evidenced
by the comparison of runtime on 100 × 20 instances: PGRL-1-CPU took
107.14s, while PGRL-3-CPU took only 38.75 s.

The time complexity of PGRL is 𝑂(||2) for two reasons. First, to
solve an FJSP instance with || operation nodes, the PGRL model
performs || forward inferences. Second, the GIN component’s time
complexity is 𝑂(||) for one forward inference [56], resulting in a total

2

11

time complexity of 𝑂(|| ). c
Fig. 4. The time complexity analysis on varying instance size. The result is the average
running time of solving 100 random instances. To be consistent, The PGRL-3-CPU uses
3 CPU workers for parallel inference. Meanwhile, the PGRL-1-CPU only uses 1 CPU
worker for parallel inference. The NSGA-III algorithm runs for 30 generations. A, B,
and C represent the fitting curve functions of NSGA-III, PGRL-1-CPU, and PGRL-3-CPU,
respectively.

This paper achieves superior solution speed by utilizing forward
inference rather than exhaustive search for obtaining the Pareto set. Ad-
ditionally, the proposed preference parallel inference algorithm reduces
computation time by solving sub-problems in parallel. Due to hardware
constraints, we only set the CPU workers to 3 for preference parallel
inference, which means the solution time can be further reduced.
Theoretically, setting the number of CPU workers equal to the size of
the preference set | |, that is, the hyperparameter 𝐶 in the parallel
inference algorithm 3 is equal to | |, can make the runtime for solving

MOFJSP comparable to that of a MOFJSP sub-problem.

. Discussion

The experimental results demonstrate exceptional performance of
he proposed GRL-based method, particularly for larger instances of
he MOFJSP, in terms of solution quality and speed. This preference-
onditioned approach serves as a learning-based counterpart to
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Fig. 5. A hierarchical action spaces structure for multi-action MOCO, which extends the PGRL model in this article to solve more complex MOCO with three or more decision
actions.
decomposition-based algorithms like MOEA/D, which handle various
trade-off preferences. Instead of relying on a finite set of solutions and
conducting extensive iterative searches, this study develops a single
learning-based model to simultaneously address sub-problems for all
preferences via forward inference, resulting in remarkable solution
speed.

The proposed method provides a single-model-for-all-preference so-
lution, offering significant application value. Unlike previous DRL-
based approaches, this method eliminates the need for instance-by-
instance training and testing, thanks to its size-agnostic model. Once
trained, the model can effectively solve unseen instances of varying
sizes. In addition to its practical applicability, this method holds poten-
tial for extension to address other multi-objective scheduling problems
or MOCO.

1. Our method demonstrates exceptional solution speed and low
time complexity, making it suitable for handling more complex
MOFJSP instances with dynamics and uncertainty.

2. The versatility of the proposed method allows for its exten-
sion to other intricate multi-objective scheduling problems, such
as Open Shop Scheduling Problem and Flow Shop Scheduling
Problem, as they can be represented as disjunctive graphs [67].

3. The method provides a multi-action framework that can be
expanded to solve MOCO or MOFJSP problems with a multi-
action space. Fig. 5 illustrates an example where three sub-tasks
are present, constructing a hierarchical action space structure
with three layers of action selection. The white areas represent
the action selection network, the blue areas indicate the sub-
task action space and the green nodes represent discrete actions.
The yellow area represents the hypernetwork that adjusts each
action-selection layer based on sub-problem preferences. By sim-
ply changing the fitness function, the parallel ES-based training
algorithm can train this hierarchical structure model for various
complex MOCO or MOFJSP with multi-action, like MOFJSP with
AGV [68] and MOFJSP with crane transportation [69].

7. Conclusion

This paper introduces PGRL, a novel algorithm to effectively solve
the MOFJSP via a graph-based reinforcement learning method. PGRL
approximates the Pareto set directly, bypassing conventional search
mechanisms. Moreover, PGRL integrates parallel training and inference
algorithms, enhancing execution speed. Empirical evaluations show
that PGRL yields superior performance on larger-scale problems due
to its improved computational efficiency. Extending beyond the con-
fines of MOFJSP, PGRL shows potential for a broader spectrum of
complex, multi-objective scheduling and combinatorial challenges that
involve multiple actions. However, deploying this DRL-based approach
encounters difficulties in parameter tuning compared to MOEA systems,
primarily because the training process of the PGRL model demands the
12
accommodation of various sub-problems that exhibit NP-hard charac-
teristics. This complexity is further elucidated in detailed experiments
in Appendix C.

For future work, more robust DRL training algorithms can facilitate
parameter tuning while leveraging powerful models like the graph
transformer [70] can enhance MOFJSP solutions. Nevertheless, such
enhancements may prolong computing time, necessitating enhanced
parallel mechanisms implemented during the training and inference
phases. Furthermore, the approach’s low computational complexity
suits real-time MOFJSP scenarios with dynamic factors, such as random
job insertion and machine breakdown. Extending this method to real-
world production settings shows promise. At the same time, designing
reward functions for dynamic scenarios remains challenging.
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Appendix A. Structural weight generate assignment method

The study [54] proposed the structural weight generate assignment
method. This method enables the generation of evenly distributed
weights on the unit simplex, with a total of 𝑛 = 𝐶𝑚+𝑝−1

𝑝 preferences.
Here, 𝑚 represents the number of objectives, and 𝑝 is a parameter
that controls the number of preferences. For instance, in a three-
objective optimization problem, values of 4, 7, 10 and 13 are assigned
to 𝑝, resulting in the generation of 15, 36, 66 and 105 preferences,
respectively. Fig. 2 and Fig. 6 show the different preferences examples

generated by the structural weight generate assignment method.
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Fig. 6. Different number of uniform distributed preferences. The structural weight assignment method generates uniform distributed preferences, enabling the decomposition of
the multi-objective optimization problem into structured sub-problems.
Fig. 7. The Weights generated by the Dirichlet Distribution. Controlling 𝛼 in the Dirichlet distribution determines weight concentration: lower 𝛼 concentrates weights on edges,
while 𝛼 = 1 results in complete randomness.
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Appendix B. Dirichlet distribution

The Dirichlet distribution can be seen as an extension of the beta
distribution to higher dimensions [48]. It is characterized by its prob-
ability density function:

Dir(𝑋 ∣ 𝛼) = 1
𝐵(𝛼)

𝑀
∏

𝑖=1
𝑋𝛼𝑖−1

𝑖

𝐵(𝛼) =
∏𝑀

𝑖=1 𝛤
(

𝛼𝑖
)

𝛤
(

∑𝑀
𝑖=1 𝛼𝑖

)

here 𝑋 represents an 𝑀-dimensional variable that satisfies the con-
ition ∑𝑀

𝑖=1 𝑋𝑖 = 1, with 𝑋𝑖 > 0 for all 𝑖. Here, 𝛼 = (𝛼1,… , 𝛼𝑀 ), where
𝑀 > 0. The function 𝐵(𝛼) represents the multivariate Beta function,
nd 𝛤 (⋅) denotes the Gamma function.

As an example of the Dirichlet distribution, Fig. 7 presents the
esults of generating 1000 weight vectors in a 3-dimensional space with
arying values of the parameter 𝛼. When the 𝛼 values are set to (0.1,
.1, 0.1), the probability density is seen to congregate at the edges of
he triangle. As 𝛼 increases to (0.2, 0.2, 0.2), a small probability density
s distributed within the triangle, while a more significant amount is
till concentrated at the edges. Finally, as 𝛼 reaches (1, 1, 1), the
robability density becomes uniformly distributed over the triangular
egion.

ppendix C. Analysis and selection of hyperparameters in the
raining algorithm

In the parallel OpenAI-ES training algorithm (Algorithm 1), various
13

yperparameters are involved, including the number of CPU workers m
, the number of episodes per CPU worker 𝐼 , the number of training
teps U, the learning rate 𝛼, and the noise standard deviation 𝜎.

Following the principles of OpenAI-ES [10], and considering the
emory and CPU capacity limits, a larger number of CPU workers
and the number of episodes per CPU 𝐼 , the larger population size

for each training step in the parallel ES training algorithm and thus
enhancing the performance. Therefore, we set the number of CPU
workers 𝐶 to 10 and the number of episodes per CPU 𝐼 to 10 (the
limit of our computational resources). Additionally, we have designated
the number of training steps 𝑈 as 200 to ensure that the ES can
substantially explore for better performance.

Furthermore, we determined the optimal learning rate and noise
standard deviation through ablation experiments. Fig. 8 depicts the im-
pact of varying these hyperparameters on the model’s training process
for 10 × 10 MOFJSP instances. Specifically, we tested learning rates 𝛼
of [1 × 10−4, 5 × 10−4, 1 × 10−3, 1 × 10−2], and explored noise standard
eviations 𝜎 of [1 × 10−3, 5 × 10−3, 1 × 10−2, 5 × 10−2].

Upon analyzing the learning rate, it is evident from Fig. 8(a) that
ettings of 5 × 10−4 and 1 × 10−3 lead to effective convergence of
he model. Based on these observations, a learning rate of 1 × 10−3

as chosen for training the model across all problem sizes due to its
bility to ensure rapid convergence and deliver satisfactory results.
onversely, an excessively high learning rate, such as 1 × 10−2, can

ead to unstable convergence, ultimately undermining performance to
ield an average HV of zero. On the other hand, a lower learning rate
e.g., 1 × 10−4) may slow down the convergence process or potentially
rap the model in local optima, compromising its efficacy.

Turning to the noise standard deviation as illustrated in Fig. 8(b),
alues of 5 × 10−3 and 1 × 10−2 facilitate smooth convergence of the

−2
odel. We opted for a noise standard deviation of 1 × 10 as it
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Fig. 8. Sensitivity analyses of hyperparameters in our training process.
Fig. 9. The convergence curves of average HV values for each iteration during the training phase.
Table 8
The introduction and parameters setting of MOEA baselines.

Baselines Year Description Parameters setting

NSGA-II [5] 2002 Classic multi-objective optimization algorithm
based on non-dominated sorting and crowding.

pop_size=100, n_gen=100

MOEA/D [6] 2007 Well-known multi-objective optimization
algorithm based on decomposition.

pop_size=100, n_gen=100
n_partitions=15

NSGA-III [64] 2014 An enhanced of NSGA-II developed for multi-
objective optimization problems with more objectives.

pop_size=100, n_gen=100
n_partitions=12

RVEA [65] 2016 A reference direction based algorithm
used utilizing angle-penalized metric.

pop_size=100, n_gen=100
n_partitions=12
o
m
o
i
p
a
a
d
(

T
a
f

A

s

leads to better performance. According to the principles of the OpenAI-
ES algorithm [10], a relatively higher noise standard deviation can
enhance parameter space exploration. However, this approach may
sometimes result in unstable convergence, as evidenced by the curve
for the 1 × 10−4 setting in Fig. 8(b). Conversely, a very low noise
tandard deviation, such as 5 × 10−3, which leads to more stable con-
ergence, might also confine the model within local optima, limiting
ts performance potential.

ppendix D. The convergence curves of average HV for problem
f different sizes

This section shows the training curve of the average HV on the 100
alidation MOFJSP instances of all MOFJSP instances sizes, including
× 6, 10 × 10 and 15 × 15. The average training time for each scale

roblem is 0.58 h, 1.68 h, and 4.65 h.

ppendix E. The details of the compare baselines

The Table 8 presents the MOEA baselines in this paper. We em-
14

loyed pymoo [71] to implement these algorithms and executed them o
n the same hardware as our proposed method. The crossover and
utation operators for all MOEA algorithms are implemented based

n prior studies [72]. For all baselines, the population size (pop_size)
s set at 100, and the generation number (n_gen) is 100. The crossover
robability is 0.8, and the mutation probability is 0.05. In the case of
lgorithms requiring reference directions, such as MOEA/D, NSGA-III,
nd RVEA, we utilized the Das-Dennis method to generate reference
irections systematically. The Das-Dennis method’s partition number
n_partitions) in NSGA-III and RVEA is 12, while the MOEA/D is 15.

The state-of-the-art works for solving MOFJSP are shown in the
able 9. The hardware and software used by different studies, as well
s the open-source public benchmark, vary. We list them in the Table 9
or the interests of potential readers.

ppendix F. Supplementary data

Our code is available at https://github.com/Chupeng24/PGRL.
The detailed results of the public benchmark instances, serving as

upplementary data for this article, are available online on https://doi.

rg/10.1016/j.swevo.2024.101605.

https://github.com/Chupeng24/PGRL
https://doi.org/10.1016/j.swevo.2024.101605
https://doi.org/10.1016/j.swevo.2024.101605
https://doi.org/10.1016/j.swevo.2024.101605
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Table 9
The Implementation Details and test instance set of recent studies on MOFJSP.

Baselines Year Hardware and software specifications Test public benchmarks

BEG-NSGA-II [20] 2017 The algorithm was programmed by MATLAB R2014a and
ran on a PC with a 2.67 GHz CPU and 4G RAM.

kacam, mk

TL-HGAPSO [21] 2018 The algorithm was programmed by MATLAB and ran
on a PC with a 3.3 GHz CPU and 8G RAM.

kacam, mk

PBB [25] 2020 The algorithm was programmed by C++ and performed on
Inter CPU with 12 physical cores at a 2.30 GHz frequency.

mfjs, sfjs

INSBBO [24] 2021 The algorithm was programmed by MATLAB R2017b and
ran on a PC with a 3.9 GHz CPU.

kacam, mk
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