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Temporal Logic Inference for Fault Detection
of Switched Systems With Gaussian
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Abstract— In this article, we present a method for constructing
the fault detector in the form of signal temporal logic (STL)
formulas, which can be understood by human users and formally
proven to detect faults with probabilistic satisfaction guarantees,
for a class of switched nonlinear systems with partially unknown
dynamics. First, the partially unknown internal dynamics are
approximated by the Gaussian process with stability guarantees.
Second, a novel temporal logic inference algorithm is proposed
to find the fault detector, which takes advantage of the internal
properties of temporal logic and searches for the optimal formula
along a partially ordered direction. Moreover, the algorithm is not
allowed for missing faults but allowed for false alarms during the
temporal logic inference process. In addition, we simulate finitely
many trajectories with Chua’s circuit and infer the temporal logic
formulas with the Gaussian optimization. The results show that
the proposed method can find a temporal logic formula to detect
the faulty trajectory with a probability guarantee.

Note to Practitioners—The method proposed in this article
can be used to detect faults for switched systems with partially
unknown dynamics. STL is used to describe the behaviors of
the system, which acts as a classifier and detector, such that
all normal behaviors of the system will satisfy the description,
while the faulty behaviors will violate the description. Moreover,
STL formulas can be understood by human operators, which is
important for the timely response to faulty events. For example,
the normal behavior of a smart grid can be described as follows:
“if the smart grid is safe, it should reach 9 kV within 15 min when
the voltage to region A is above 12 kV,” which can be expressed
with STL. Due to the unknown dynamics, the Gaussian process
regression is applied to estimate the model and the region that
is robust to noises.

Index Terms— Fault detection, Gaussian process, partially
ordered direction, signal temporal logic (STL), switched system,
temporal logic inference.
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I. INTRODUCTION

IN RECENT years, an increasing number of researchers
pay attention to the study of fault diagnosis and prognosis

for cyber–physical systems (CPSs) and have reported many
impressive results [1]–[5]. CPSs are often modeled as switched
nonlinear systems. These systems with partially unknown
dynamics have played increasing roles in the operation of
critical infrastructures, such as autonomous systems [6], [7]
and power grids [8], [9]. Due to complex operational envi-
ronments, these systems are vulnerable to external attacks or
disruptions [10]. Faults often occur in these systems, weaken
the system’s performance, destroy the system stability, and
cause catastrophe accidents. Moreover, the interpretability
of the fault detection process is important to understand
the operation status of the systems and take fault-recovery
actions quickly when a potential fault. Therefore, accurately
and timely detecting the faults with a human-understandable
approach for these systems are critical tasks in practical
applications.

Model-based fault detection for switched systems has been
widely studied [11], [12]. The basic idea of these fault
detection systems is to estimate a residual signal and, based
on this signal, determine a residual evaluation function to
compare it with a predefined threshold. When the residual
estimation function has a value higher than the threshold,
an alarm is triggered [13], [14]. However, almost all of
the existing fault detection approaches are about switched
linear systems [15], [16]. Up until now, very few results of
fault detection for switched nonlinear systems with unknown
dynamics have appeared [17]. One of the main reasons is that
the linear matrix inequalities (LMIs) are usually no longer
effective for nonlinear systems. In [18], the observer-based
actuator fault detection of uncertain nonlinear systems was
considered, in which the design of an observer is the key step
in fault detection. In [19], the nonlinear switched system is
first transferred into a Takagi–Sugeno fuzzy switched model
by using fuzzy IF-THEN rules; then, the fault detector is
designed based on the persistent dwell-time switching signal
and the quasi-time-dependent Lyapunov function technique.
However, the linear observers may not well estimate the states
of nonlinear systems. To address the unknown dynamics of the
systems, Tang and Zhao [17] used the radial basis function
neural networks to estimate the unknown internal dynamics;
then, based on the estimated dynamics, a switched nonlinear
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observer is developed. However, no guarantee can be obtained
from the neural network-based observer. Therefore, how to
choose the form of the observer for switched nonlinear systems
with unknown dynamics is very crucial.

On the other hand, data-driven methods do not depend
extensively on the model of the system and can build
black-box data models without prior knowledge of the sys-
tems, such as the neural network-based method in [17]. How-
ever, these black-box data models lack the ability to capture
and interpret the system knowledge, which is important for
operators to understand the operation status of the system and
take fault-recovery actions promptly when a fault occurs [20].
One feasible solution would be using the logic-based method
to increasing the interpretability of the fault detector. In recent
years, there has been increasing interest in describing fault
behaviors of CPS with temporal logic and using a temporal
logic for monitoring tasks [10], [21], [22]. In these works,
the temporal logic formulas are used as observers that learned
offline with labeled data sets and used online to detect
the faults. Since temporal logic formulas describe temporal
patterns between events in a form close to humans’ way
of reasoning, they can be intelligible and easily acceptable
by humans. Using temporal logic for fault detection and
monitoring tasks needs to infer a temporal logic formula,
which has attracted extensive attention among researchers.
For example, Chen et al. [10] formulated the temporal logic
inference problem as a Markov decision process and solved it
with a reinforcement learning algorithm. Bombara et al. [23]
introduced a decision-tree approach to infer temporal logic
formulas for classification. However, these methods do not
provide guarantees for the results, i.e., a feasible temporal
logic formula to detect the fault cannot be guaranteed even
if there exists one. Moreover, existing learning-based tem-
poral logic inference ignores the models of the systems and
cannot provide probability guarantees for the fault detection
results.

A. Contributions and Advantages

In this article, we focus on inferring temporal logic to
diagnose the faults of switched systems with partially unknown
dynamics. The proposed logic inference algorithm searches
for the optimal formula based on a partially ordered relation,
which only allows false alarm but does not allow missing
fault. Thus, we call the searching method a safe temporal
logic inference. Safe temporal logic inference does not search
optimal formula with reinforcement learning strategy as in [10]
but using a partially ordered relation to guide the search. The
contributions of this article are twofold as follows.

1) Fault Detection for Switched Systems With Partial
Unknown Dynamics With Probability Guarantee: We
modify the methods in [24] and [25] and extend previous
works to allow temporal logic to be applied to monitor-
ing tasks for switched systems with unknown dynamic
and uncertainties. To capture the unknown dynamics
and uncertainties, we use the Gaussian process that
is robust to uncertainties to approximate the unknown
dynamics and estimate the region of attraction (ROA)

with probability guarantees, which will be used for
temporal logic inference.

2) Safe Temporal Logic Inference for Fault Detection: We
propose a novel temporal logic inference algorithm,
which guarantees that the detector can be found if
it exists. Moreover, instead of searching the optimal
formula via brute force or REINFORCE, the proposed
method finds the optimal formula via partially ordered
direction; thus, the proposed temporal logic inference
algorithm obeys a safe manner during the inference
procedure. Particularly, the monitoring system will not
miss fault but allows false alarm at any time even when
the estimated model is not accurate but allows false
alarms during logic inference procedure.

This article is organized as follows. Section II introduces
the preliminary knowledge and assumptions made in this
article. Section III provides the main theoretical results and the
solutions for the problem. Section IV demonstrates the perfor-
mance of the proposed method with Chua’s circuit-switched
system. Section V concludes this article.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a nonlinear, closed-loop continuous-time
switched system S with dynamics

ẋ(t) = hm(x(t)) = fm(x(t))� �� �
known model

+ gm(x(t))� �� �
unknown model

y(t) = x(t) (1)

where x(t) ∈ Xm ⊂ X ⊂ R
q is the state at time t within a

connected set Xm , and m ∈ M is a mode among the mode
set M. Denote � a subset of M ×M, which contains the
switch event. If an event d = (m, m �) ∈ � takes place, then the
system switches from mode m to m �. The system dynamics
consist of a set of known models fm(x) ⊂ F and a set of
unknown models gm(x) ⊂ G. The latter accounts for unknown
dynamics and model uncertainties, where the uncertainties are
assumed to be Gaussian noises in this article. y(t) is the system
output, which assumes that the states are fully observable.

A. Postfault Dynamic Model

There are two kinds of events in the definition of switched
systems: external events and internal events. We only con-
sider the switchings triggered by external events (faults,
state-dependent switches, and so on). Specifically, we consider
two types of common faults: parameter faults, that is, faults
that manifest in passive or switching elements and sensor
faults, that is, faults that cause the measured values in y(t)
to deviate from the actual values of x(t) [26].

1) Parameter Faults: Generally, parameter faults are com-
mon in real applications, which manifest as additive deviations
�hm(x(t)) from the nominal hm(x(t)) in (1). Thus, the state
dynamics in the faulted condition can be modeled as

ẋ(t) = hm(x(t))+�hm(x(t)). (2)

With algebraic manipulation, we can rewrite (2) as the sum
of (1) and product of time-varying scalar component fault
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magnitude function ηm(x(t)) and the time-invariant vector
fault signature Pi , that is

ẋ(t) = fm(x(t))+ gm(x(t))+ ηm(x(t))Pi (3)

where i = 1, 2, . . . , I is the number of possible types of faults.
2) Sensor Faults: Sensor faults manifest as affine deviations

in the output readout values, which can be rewritten as the
sum of the nominal sensor reading and the product of a scalar
sensor fault magnitude function ζ j(x(t)) and a vector sensor
fault signature Q j That is, the output readout map in the
faulted condition can be modeled as

y(t) = x(t)+ ζ j(x(t))Q j (4)

where j = 1, 2, . . . , J and J is the number of possible types
of sensors faults.

During the temporal logic inference process, we need to
learn partially unknown dynamics. This needs further assump-
tions to restrict the type of the models. Since we want to
estimate the model with uncertainties, we assume that the
unknown model gm(·) has low complexity, as measured under
the norm of a reproducing kernel Hilbert space (RKHS) [27].
This assumption enables us to estimate the ROA that is
relevant to the inference process with the Gaussian process
for the exploration analysis [28], and the assumption can be
defined formally as follows.

Assumption 1 (Well-Calibrated Model): Let μm,n(·) and
�m,n(·) denote the posterior mean and covariance matrix
functions of the statistic model of the dynamics (1) conditioned
on n noisy measurements under mode m. With σm,n(·) =
trace(�m,n(·))1/2, there exists a βm,n > 0 such that, with
probability at least (1 − δ), it holds that, for all n ≥ 0 and
x ∈ Xm , ||hm(x)− μm,n||1 ≤ β

1/2
m,nσm,n(x) for m ∈M.

This assumption ensures that we can estimate the model
with bounded confidence intervals with a given probability.
In the following, we assume that the system is stable in normal
states, and there exists a Lyapunov function among the ROA,
in which the system can be described with this Lyapunov
function. We assume the following.

Assumption 2 (Lyapunov Function): A fixed and twice
continuously differentiable Lyapunov function Vm(x) is given
for m ∈ M. Moreover, there exists a constant γ such that
((∂Vm(x))/∂x)( fm(x) + gm(x)) < 0 for all x ∈ X , where
Vm(γ ) = {x ∈ Xm|Vm(x) < γ }.
Assumption 2 implies that the system is asymptotically stable
within a region defined by Vm(γ ), which indicates that the
states of the system will be bounded under normal modes.

B. Signal, Trace, and Trajectory

Given a time domain N := 0, 1, . . . , a discrete-time,
continuous-valued signal is a function s ∈ F(N, R

n), where
F(N, R

n) denotes the set of all functions from N to R
n.

Here, we use s(t) to denote the value of signal s at time
t and s[t] to denote the suffix of signal s from time t ,
i.e., s[t] = {s(τ )|T ≥ τ ≥ t}, where T is the duration of
the signal. In this article, the signal s(t) denotes the observed
states of the system S at time t , and we assume that the states

Fig. 1. Illustration of a trajectory of the system S .

of the system are fully observable. Now, we define the trace
of system S with respect to the signal s[0].

Definition 1 (Trace): A trace of the system S is a labeled
signal denoted as ξ = {(m(t), s(t))|0 ≤ t ≤ T }, where m(t)
is the mode of the system at time t , s(t) is the state of the
system at time t , and T is the duration of the signal.
Here, we use ω(ξ, t) = s(t) to map a trace to a signal and
ω(ξ) to denote s[0]. The signal s combines all system states
of the trace. The trace of the system does not indicate the
event switching time, while it is important for fault detection.
We assume that there is a minimum dwell time for each event
and define the event trajectory as follows.

Definition 2 (Trajectory): A trajectory of the event of the
system S is denoted as sξ = {(mi , x i , ei )}Qi=0, where mi is
the i th mode of the trajectory for the system, ei is the dwell
time of model mi , Q is the total number of modes, and the
following holds.

1) ∀i ∈ N, s.t. 0 ≤ i ≤ Q: x i ∈ X is the initial state at
mode mi ∈M. The state of the system is governed by
the dynamics defined in (1) with initial state x i .

2) ∀i ∈ N, s.t. 0 ≤ i ≤ Q: ei ≥ emin, where emin is the
minimal dwell time, and the event occurring time for
mode mi can be calculated as

�i−1
l=0 el for i �= 0 and

zero for i = 0.
3) ∀i ∈ N, s.t. 0 ≤ i < Q: (mi , mi+1) ∈ �.
A trajectory is a sequence of mode, state, and duration.

Here, we use α(ξ) = sξ to map a trace to a trajectory. Given an
estimation of the unknown function gm(·) with the Gaussian
regression model ĝm(·), the system dynamics is assumed to
admit a unique global solution �mi (x i , τ ), where �mi satisfies
((∂�mi (x i , τ ))/∂ t) = fmi (x(t))+ ĝmi (x(t)), and �mi (x i , 0) =
x i . Namely, we use �mi (x i , τ ) to denote the state of the system
for a simulated signal s at time t = τ +�i−1

j=0 e j , τ ≤ ei in
mode mi starting from initial state x i . �mi (x i , τ ) is also called
the continuous flow of the dynamic system S. We use �(sξ , t)
to denote the simulated signal based on trajectory sξ at time t
and use �(sξ ) to denote the whole signal.

Example 1: Fig. 1 gives an example of a trajectory of the
system with Q = 4. The dwell time for each mode are
e0, e1, e2, e3, and e4. The system changes its mode at initial
state x0, x1, x2, x3, and x4, respectively. The trajectory of the
system can be denoted as sξ = {(mi , x i , ei )}4i=0.

C. Signal Temporal Logic

In this section, we introduce the concept of signal temporal
logic (STL) [29] and its quantitative semantic.
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Definition 3: STL is a temporal logic defined over signals.
Its syntax is defined recursively as

ϕ ::= 	|μ|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|♦Iϕ|�Iϕ (5)

where 	 stands for the Boolean constant true, and μ is a
predicate over a signal, which can be defined as l(s(t)) ∼ c
with l ∈ F(Rn, R) being a function, ∼∈ {≤,≥}, and c ∈ R

being a constant. The Boolean operators ¬, ∨, and ∧ are
negation (“not”), disjunction (“or”), and conjunction (“and”),
respectively. The temporal operators ♦ and � stand for “Even-
tually” and “Always,” respectively. I is a time interval of the
form I = [a, b], where a and b are nonnegative finite real
numbers.

STL is equipped with a quantitative semantics called robust-
ness degree ρ : � × F(R+, R

n) → R, which maps an STL
formula ϕ ∈ � and a signal s ∈ F(R+, R

n) to a real number.
ρ(ϕ, s) indicates how far a signal s is away from satisfying
STL formula ϕ and is defined in [29]. The robustness is sound,
meaning that ρ(ϕ, s, t) > 0 implies that signal s satisfies ϕ at
time t , denoted as s[t] |� ϕ, and ρ(ϕ, s, t) < 0 implies that
signal s violates ϕ at time t , denoted as s[t] � ϕ. In the rest
of this article, we denote the robustness of specification ϕ at
time 0 with respect to signal s by ρ(ϕ, s) for short.

D. Fault Detection With Signal Temporal Logic

In this article, we define the behaviors B of a switched
system S as the collection of all possible traces of S. We define
the set of normal modes as MN and the set of faulty modes
as MF , respectively. In addition, we have M =MN ∪MF .
A trace ξ = {(m(t), s(t))|0 ≤ t ≤ T } ∈ B is normal if and
only if ∀i , mi ∈ MN and mi ∈ α(ξ). Similarly, a trace is
faulty if ∃i, mi ∈MF and mi ∈ α(ξ). Here, we denote the set
of all normal behaviors as BN and all faulty behaviors as BF ,
respectively. We say the fault of system is detectable if BN ∩
BF = ∅. However, a fault is detectable does not indicate that it
can be detected by an STL formula unless it is STL-detectable.
An STL formula ϕ defines a language, which defines a set of
trajectories as follows.

Definition 4: Given an STL formula ϕ, and σ ∈ R, the
σ -language of ϕ of system S is defined as the following set:

L(ϕ, σ ) := {ξ ∈ B|ρ(ϕ, ω(ξ)) ≥ σ }. (6)

If σ1 ≥ σ2, then L(ϕ, σ1) ⊆ L(ϕ, σ2). In a Boolean sense, if a
trace ξ ∈ BN , then there exists a signal s with respect to the
trace ξ , and s satisfies the formula, denoted as s[0] = ω(ξ) |�
ϕ, i.e., ω(ξ) ∈ L(ϕ, 0) and s[0] ∈ L(ϕ, 0). In the rest of this
article, we use L(ϕ) to denote L(ϕ, 0) for short. Given an
STL formula ϕ and a signal s with length L, L(ϕ) ⊂ R

n(L+1),
which n is the dimension of the signal. With the rectangular
predicates, the bounded-time language becomes a finite union
of hyperrectangles. The formula ϕ then can be regarded as
an external observation map, which maps the behaviors of the
switched system S to the space of the language defined by ϕ.
Therefore, if all normal behaviors of the system satisfy formula
ϕ, we have BN ⊂ L(ϕ). In contrast, if all faulty behaviors of
the system violate ϕ, we have BF ⊂ L(¬ϕ). Based on this

observation, we can define the concept of STL-detectability as
follows.

Definition 5 (STL-Detectable System): A system S is
STL-detectable if and only if there exists an STL formula ϕ
such that: 1) ∀ξ ∈ BN , ω(ξ) � ϕ and 2) ∀ξ ∈ BF , ω(ξ) � ϕ.
Intuitively, an STL-detectable system indicates that faulty and
normal behaviors can be classified with an STL formula. Due
to the properties of the rectangular predicates used in the
STL formula, a system that is STL-detectable means that the
normal behaviors are among a polytope, which is a finite
union of hyperrectangles, and the faulty behaviors are outside
the polytope. The STL-detectable system requires that there
exists a hyperplane that can separate the faulty and normal
behaviors. However, in many practical systems, due to the
existence of noises and uncertainties, it is almost impossible
for us to find a hyperplane that can perfectly classify the two
kinds of behaviors. In these cases, we hope to find an STL
formula that can classify the behaviors correctly with a given
probability. We define (σ, δ)-diagnosable to address this issue
as follows.

Definition 6 ((σ, δ)-Diagnosable): Given an STL formula
ϕ, which introduces a language space L(ϕ), a set of normal
behaviors BN , a set of faulty behaviors BF , two real numbers
σ ∈ R

+ and δ ∈ (0, 1), and a metric dϕ among the language
space, the fault is (σ, δ)-diagnosable if, ∀ξ ∈ BN , ∀ξ̂ ∈ BF ,
there exists an STL formula such that

dϕ

�
ω(ξ, t), ω

�
ξ̂ , t

�� ≥ σ (7)

holds with probability at least (1− δ).
Remark 1: The idea of (σ, δ)-diagnosable borrows from

the concept of (δd, δm)-diagnosable in [30], which shows a
system is (δd, δm)-diagnosable if any fault can be detected δd

time units after its occurrence. δm is the observation accuracy
of the time intervals with respect to a specific metric. This
concept is further generalized to (δd, ε)-diagnosable to allow
continue time trajectories in [24]. In this article, the concept
is extended to allow uncertainties among the system. Thus,
the fault detection results allow probabilistic satisfaction.

We can build a switched estimator of the system from (1)
as follows:

ż(t) = fm(z(t))+ gm(z(t))

r(t) = dϕ(e(t)) (8)

where z(t) is an estimation of the state vector x(t) from (1),
e(t) = y(t) − z(t), and r(t) is the residual of the difference
between the measurement output y(t) and the estimated output
z(t) under metric dϕ . Fault detection is achieved by monitoring
the value of r(t) at each time step and comparing it with a
predefined fault-detection threshold γ . When ||r(t)||1 > γ ,
the algorithm detects a fault.

To detect the fault, we need a metric dϕ to measure the
distance between two signals and get the residual values,
which is defined as

dϕ(s, ŝ) = |ρ(ϕ, s)− ρ(ϕ, ŝ)| (9)

where s and ŝ are signals with respect to traces ξ and ξ̂ ,
respectively. ϕ is an STL formula, and | · | is the absolution
operator.
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Lemma 1: The function dϕ defined by (9) is a semimetric
on L(ϕ).

Proof: A semimetric function should have three condi-
tions: 1) ξ1 = ξ2 ⇒ dϕ(s1, s2) = 0; 2) dϕ(s1, s2) = dϕ(s2, s1);
and 3) dϕ(s1, s2) ≤ dϕ(s1, s3) + dϕ(s3, s2) [31]. It is obvious
that, when dϕ(s, ŝ) = |ρ(ϕ, s)− ρ(ϕ, ŝ)|, the three conditions
hold. Thus, the lemma has been proven. �

Lemma 1 shows that the distance between two signals can
be calculated with the robustness degree of the signals with
response to an STL formula. Based on Definition 6, the fault
is detectable if the minimum distance between faulty signals
and normal signals is larger than σ .

III. GAUSSIAN PROCESS WITH TEMPORAL LOGIC

A. Fault Detection With Gaussian Process

In this article, we try to find an STL formula ϕ such that
the associated metric dϕ used in (8) can detect the fault with
bounded error and bounded probability. In order to find the
admissible formula, we need to infer the structure and the
associated parameters safely such that missing fault can be
avoided. However, there are uncertainties among the model
in (1); we cannot infer the formula safely directly from the
model. Here, we use a set of simulated trajectories of the
system to approximate the behaviors and find the admissible
formula based on the approximation of the system. We denote
B̂ = {ξ1, ξ2, . . . , ξ N } as the set of traces that approximate B,
where α(ξ k) = {(mi,k, x i,k, ei,k)}Qi=0 and k ∈ {1, 2, . . . , N}.
Similarly, we denote B̂N and B̂F as the sets of trajectories
that approximate BN and BF , respectively. Using the idea
of Approximate Bisimulation, the behavior B can be approxi-
mated with B̂ [32]. This bisimulation relation can be defined
with the bisimulation function.

Definition 7 (See [33]): For each mode m ∈M, a contin-
uously differentiable function Am : Xm×Xm → R≥ is defined
as a bisimulation function if

Am(x, x̂) ≥ 0 ∀x, x̂ ∈ Xm,
∂Am(x, x̂)

∂x
hm(x)+ ∂Am(x, x̂)

∂ x̂
hm(x̂) ≤ 0. (10)

Note that the bisimulation function is nonincreasing with
respect to the flow. The following proposition can describe
this property formally.

Proposition 1 (See [33]): For ∀x, x̂ ∈ Xm, m ∈ M,
the bisimulation function evaluated along the flows of
initial conditions x0 and x̂0 is nonincreasing, i.e., for
any t2 ≥ t1 ≥ 0, it is Am(�m(x0, t1),�m(x̂0, t1)) ≥
Am(�m(x0, t2),�m(x̂0, t2)).

Based on Assumption 2, there exists a Lyapunov func-
tion for each mode. If we denote the Lyapunov function
as Vm(x) = [x T Mm x]1/2, where Mm is a positive matrix;
then, according to the above definition, we can construct a
bisimulation function based on the following condition.

Lemma 2: Given the system described by (1), Am(x, x̂) =
Vm(x− x̂) = [(x− x̂)T Mm(x− x̂)]1/2 is a bisimulation function
if, for any x, x̂ ∈ Xm

Mm ≥ 0, (x − x̂)T
�
MT

m + Mm
�
(hm(x)− hm(x̂)) ≤ 0. (11)

Proof: If Mm ≥ 0, then, ∀x, x̂ ∈ Xm , we have Am(x, x̂) =
[(x − x̂)T Mm(x − x̂)]1/2 ≥ 0. If

(x − x̂)T
�
MT

m + Mm
�
(hm(x)− hm(x̂)) ≤ 0 (12)

it follows that, ∀x, x̂ ∈ Xm :

∂Am(x, x̂)

∂x
hm(x)+ ∂Am(x, x̂)

∂ x̂
hm(x̂)

= (x − x̂)T
�
MT

m + Mm
�
(hm(x)− hm(x̂))

2
	
(x − x̂)T Mm(x − x̂)


1/2 ≤ 0. (13)

Therefore, Am(x, x̂) = [(x − x̂)T Mm(x − x̂)]1/2 is a bisimu-
lation function of the system described by (1). �

Here, we define Bm(x, γ ) � {x̂ |Vm(x− x̂) < γ } as the (spa-
tial) robust neighborhood of x , and γ denotes the (spatial)
robustness radius. Based on Proposition 1, the trajectories
starting with an initial state among the neighborhood of x
will stay inside the neighborhood. The property means that
the trajectories starting from a neighborhood will share similar
properties. However, since gm(x) is unknown, we cannot check
whether the condition in (11) holds. Moreover, in many cases,
(11) does not hold for all x ∈ Xm but a subset of Xm . There-
fore, finding the maximum neighborhood radius is an issue and
should be addressed when using this neighborhood concept.
The following lemma and theorem provide the conditions of
the bisimulation function for the system in (1).

Lemma 3 ([34, Lemma 5]): Let Xτ ⊂ Xm be a discretiza-
tion of Xm with |x − [x]τ | ≤ τ/2 for all x ∈ Xm , where
[x]τ denotes the closest point in Xτ to x ∈ Xm . Choosing
βm,n according to [34, Lemma 1], the following holds with
probability at least (1− δ) for all x ∈ Xm and all n > 1:

|V̇m(x)− μV̇m ,n−1([x]τ )| ≤ β1/2
m,nσV̇m ,n−1([x]τ )+ Lτ (14)

where L is a Lipschitz constant number in [34], and

μV̇m ,n(x) = ∂Vm(x)

∂x

�
μm,n(x)+ fm(x)

�
σV̇m ,n(x) =

����∂Vm(x)

∂x

����σm,n(x). (15)

μm,n(x) and σm,n(x) are the GP predictions of the unknown
model gm(x), which can be obtained based on the measure-
ment of gm(x).
Lemma 3 provides a probability bound on V̇ in the continuous
domain Xm by using the GP confidence intervals (15) on
the discrete set Xτ . With this result, we have the following
theorem.

Theorem 1: Consider a nominal trajectory sξ =
{(mi , x i , ei )}Qi=0 of a switched system S in (1) and a
discretization of Xmi ; Ami is a bisimulation function,
and the switched system is asymptotically stable for all
y ∈ Bmi (x i , γ i ) ∩ Xτ with probability at least (1− δ) if

μV̇mi ,n−1(y) ≤ −β
1/2
mi ,nσV̇mi ,n−1(y)− Lτ (16)

AB − Aμmi ,n−1 ≤ −||A||1
�
β

1/2
mi ,nσmi ,n−1(y)+ Lτ


(17)

where A = (x i − y)T (MT
mi +Mmi ), B = hmi (x i)− fmi (y), and

|| · ||1 is the one-norm of a matrix.
Proof: See the Appendix. �
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Theorem 1 provides a way to calculate the radius for a
switched system with unknown dynamics around a trajectory.
Algorithm 1 shows the detail of robustness radius calculation.
In Algorithm 1, we are given the discretization of the state
space Xτ , GP prior k(x, x �), initial robustness radius γ0

(usually very small), sample limit N for model estimation, and
a trajectory sξ = {(mi , x i , ei )}Qi=0. Line 3 finds the maximum
robustness radius based on the current estimation of the model.
Line 5 samples a new state that maximizes the variance,
which samples the most uncertain state, and line 6 updates
the estimation with newly sampled data. Since inequality (17)
is a conservative version of the condition for bisimulation,
the proposed algorithm will lead to a conservative estimation
for the robustness radius.

Algorithm 1 Neighborhood Exploration
Input: Domain Xm and discretization with τ , Xτ , GP prior
k(x, x �), initial robustness radius γ0, sample limit N , initial
neighborhood N0 and a trajectory sξ = {(mi , x i , ei )}Qi=0 of
system S.
Output: A sequence of robustness radius {γ i

n }Qi=0.
1: for i = 1, . . . , Q do
2: for n = 1, . . . , N do
3: γ i

n ← argmaxγ>0 γ, subject to (16) and (17) for all
x ∈ Xτ ∩ Bm(x i , γ );

4: Nn ← N0 ∪ Bm(x i , γ )
5: xn ← argmaxx∈Nn

σmi ,n−1(x)
6: Update GP with measurement of gmi (xn).

Proposition 1 shows the bisimulation function is nonin-
creasing through time. If the conditions in Theorem 1 hold,
the robust neighborhood defined by the bisimulation function
Am is invariant with respect to the flow of the dynamic system.
This property can be described as a tube defined as follows.

Definition 8 (Tube): A tube corresponding to the system S
in (1) and its behavior B is a set of trajectories that start from
a set of bounded initial states around a nominal (simulated)
trajectory sξ = {(mi , x i , ei)}Qi=0, denoted as T (ν, γ, sξ ) and
defined as follows:
T

�
ν, γ, sξ

� = �
ŝξ =

���
mi , x̂ i , êi

��Q

i=0��x̂0 ∈ Bm0

�
x0, γ

��
, |ei − êi

�� < ν
�

(18)

where ν is a parameter such that there exists a sequence � =
{γ i}Ti=0, and for ∀i > 0

∪
τ∈(ei−1+[−ν,ν])

Bmi−1

�
�

�
x i−1, τ

�
, γ i−1

� ⊂ Bmi

�
x i , γ i

�
(19)

holds with probability at least (1 − δ), where Bmi (x i , γ i ) =
{x̂ |Vmi (x̂ − x i) ≤ γ i }.

A tube is a robust forward set for system S that consists of
a set of trajectories with bounded initial state variations and
bounded switching time variations. The parameter ν allows
the variance of the duration for each mode among the tube.
As shown in Fig. 2, the blue regions are the tubes around
trajectory sξ . This definition is the modification of time robust-
ness tube in [24], in which the parameter ν should be carefully
chosen, such that the tube is a robust forward set and decreases

Fig. 2. If the ending neighborhoods are always covered by the initial
neighborhoods in the next mode, then any normal trajectory will stay inside
the tubes in the normal mode for an infinitely long horizon, while faulty
trajectories will diverge from the normal trajectories within the finite-time
horizon.

along with the flow of the system. Here, we incorporate the
condition for ν in the definition of a tube. The condition in (19)
guarantees that, if the ending robust neighborhoods are always
covered by the initial robust neighborhoods in the next mode,
then any trajectory will stay inside the tube. This property is
important for fault detection since the faulty trajectories will
be outside the tube (see Fig. 2). Formally, we can define the
fault generator as follows.

1) Parameter Faults’ Detection: When the i th component
fault occurs, the dynamics of the faulted systems can be
modeled, as in (3). Thus, in this case, the dynamics of e(t)
are governed by

ė(t) = �ĝm(e(t))−ϒm(x(t))Pi

r(t) = dϕ

�� t

0
(�ĝm(e(t))− ϒm(x(t))Pi )dt

�
(20)

where �ĝm(e(t)) is the estimation error for the Gaussian
process, which will vanishes as t → ∞, since, with more
and more data, the error for the Gaussian process can reach
a small enough value. However, the (scalar) integral term� t

0 ϒm(x(t))Pi )dt will become nonzero depending on the
dynamics of ϒm(x(t))Pi . Thus, when the magnitude of this
term is bigger than a threshold, a fault will be detected.

2) Sensor Faults’ Detection: When the j th sensor fault
occurs, the dynamics of the faulted system can be modeled,
as in (4). Thus, the dynamics of e(t) are governed by

ė(t) = �ĝm(e(t))

r(t) = dϕ

�
e(t)−� j(x(t))Q j

�
. (21)

The first term e(t) will vanish as t →∞. However, the term
� j(x(t))Q j will become nonzero depending on the dynamics
of � j(x(t))Q j . Thus, when the magnitude of this term is
bigger than a threshold, the algorithm will detect a fault.

Remark 2: In the above fault detection analysis, we claim
that �ĝm(e(t)) and e(t) will vanish as t → ∞ with enough
estimation accuracy from the Gaussian process regression.
However, the trajectories have finite lengths; thus, it is impos-
sible for us to have nonerror estimation. Fortunately, Lemma 3
and Theorem 1 indicate that, when the estimation is bounded
within the tube, the system trajectories will stay inside the
tubes in the modes for an infinitely long horizon. Namely,
within some bounds, �ĝm(e(t)) and e(t) will not affect the
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fault detection results within a horizon. Moreover, the neigh-
borhood radius can be seen as a threshold to check whether
the state of the system is normal or abnormal. In addition,
since STL is sensitive to noise, using r(t) directly will make
the decision be sensitive to noise. To address this issue, we use
the following logic relationship for fault detection:

J (r) > Jth ⇒ with faults ⇒ alarm

J (r) ≤ Jth ⇒ no faults (22)

where the residual evaluation function is selected as J (r) =�t+W
t r(t)/W such that W is a finite-time window. It is obvi-

ous that J (r) is the average residual within a time interval W .
Consider a predicate μ of STL, which defines a threshold

of the signals; we have bounds for the signal as follows.
Lemma 4: Consider a trajectory sξ = {(mi , x i , ei)}Qi=0

of a switched system S, for any state �(x, t) ∈
Bmi (�mi (x i , t), γ i ) and a predicate μ; we have

ρ
�
μ,�mi

�
x i , t

��− γ̂ ≤ ρ(μ,�mi (x, t))

≤ ρ
�
μ,�mi

�
x i , t

��+ γ̂ (23)

with probability at least (1− δ), where γ̂ = γ i ||Mmi ||1/2 (|| · ||
denoted the largest singular value of a matrix).

Proof: Since �(x, t) ∈ Bmi (�mi (x i , t), γ i ) = {x̂ |Vmi (x̂−
�mi (x i , t)) ≤ γ i )}, we have that |�(x, t) − �mi (x i , t)| ≤
γ̂ holds with probability at least (1 − δ) if ϕ is a predi-
cate. Therefore, ρ(μ,�mi (x i , t)) − γ̂ ≤ ρ(μ,�mi (x, t)) ≤
ρ(μ,�mi (x i , t)) + γ̂ holds with probability at least (1 − δ).
The lemma has been proven. �

Lemma 4 shows the up and low bounds of the robustness
for any trajectory in the neighborhood of a given trajectory
for a predicate. Based on this result, we can extend the result
to any STL formula as follows.

Theorem 2: Consider a trajectory sξ = {(mi , x i , ei )}Qi=0 of
a switched system S, an STL formula ϕ and the set σ =
ρ(ϕ,�(sξ )); then, for any ŝξ ∈ T (ν, γ 0, sξ ), there exist δ, κ ∈
R such that

ŝ[0] ∈ L(ϕ, σ − γmax)/L(ϕ, σ + γmax) (24)

with probability at least (1−δκ), where ŝ = �(ŝξ ) and γmax =
maxQ

i=0 γ i ||M||1/2
m . κ is a factor related to the length of the

formula.
Proof: See the Appendix. �

Theorem 2 is the key result in this article, which is a modifica-
tion of [24, Th. 1]. In this revised version, we do not consider
the time-varying part of the neighborhood radius since the up
and low bounds only depend on the initial radius. Moreover,
we consider the probability satisfaction of the formula, which
is important to deal with the uncertainty of the system.

The following theorem can build a relationship between
neighborhood radius and the distances between faulty signals
and normal signals.

Theorem 3: Consider a set of labeled behaviors B̂ = B̂N ∪
B̂F of a switched system S, two real numbers σ ≥ 0 and
δ ∈ (0, 1), and an STL formula ϕ; if, ∀ξ ∈ B̂N and ∀ξ̂ ∈ B̂F ,
two independent traces ω(ξ) ∈ L(ϕ, σ ) and ω(ξ̂ ) ∈ L(¬ϕ, σ)
hold with probability at least (1− δ), then dϕ(s, ŝ) > σ holds

with probability at least (1− δ) for all ξ, ξ̂ , where ω(ξ, t) =
s(t) and ω(ξ̂ , t) = ŝ(t).

Proof: See the Appendix. �

B. Temporal Logic Inference via Partially Ordered Direction

In this section, we solve the problem with the results in
Section III-A. The problem tries to find an STL formula ϕ,
such that the fault is (σ, δ)-diagnosable. Here, we try to main-
tain a safe exploration process and define the following time
robustness signature to address the safe exploration problem.

Definition 9 (Robustness Signature): Given a set of labeled
behaviors B̂ = B̂N ∪ B̂F of a switched system S, two real
numbers σ ≥ 0 and δ ∈ (0, 1) and an STL formula ϕ,
for any trace ξ̂ ∈ B, and the associated trajectory α(ξ̂ ) =
ŝξ = {(mi , x̂ i , êi)}Qi=0 and its neighborhood trajectory sξ =
{(mi , x̄ i , ei )}Qi=0 ∈ T (ν, σ, ŝξ ), the robustness signature is
denoted as λ(ŝξ , ϕ, σ, δ, t) and defined as follows:
λ
�
ŝξ , ϕ, σ, δ, t

�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SS, if ∀ξ̄ ∈ B̂F , dϕ

�
ω

�
ξ̄ , t

�
,�

�
s̄ξ , t

��
>σ, holds with

probability at least 1−δ, and ρ
�
ϕ,ω

�
ξ̂ , t

��
>0,

SV, if ∀ξ̄ ∈ B̂F , dϕ

�
ω

�
ξ̄ , t

�
,�

�
s̄ξ , t

��
>σ, holds with

probability at least 1−δ, and ρ
�¬ϕ,ω

�
ξ̂ , t

��
>0,

US, if ∃ξ̄ ∈ B̂F , dϕ

�
ω

�
ξ̄ , t

�
,�

�
s̄ξ , t

��≤σ, holds with

probability at most 1−δ, and ρ
�
ϕ,ω

�
ξ̂ , t

��
>0,

UV, if ∃ξ̄ ∈ B̂F , dϕ

�
ω

�
ξ̄
�
,�

�
s̄ξ , t

��≤σ, holds with

probability at most 1−δ, and ρ
�¬ϕ,ω

�
ξ̂ , t

��
<0,

RS, if ξ̂ ∈ BN , dϕ

�
ω

�
ξ̂ , t

�
,�

�
ŝξ , t

��≤σ, holds with

probability at least 1−δ, and ρ
�
ϕ,ω

�
ξ̂ , t

��
>0,

RV, if ξ̂ ∈ BF , dϕ

�
ω

�
ξ̂ , t

�
,�

�
ŝξ , t

��
>σ, holds with

probability at least 1−δ, and ρ
�¬ϕ,ω

�
ξ̂ , t

��
>0.

Remark 3: SS, SV, US, UV, RS, and RV are abbreviations
for “Safe Satisfaction,” “Safe Violation,” “Unsafe Satisfac-
tion,” “Unsafe Violation,” “Robust Satisfaction,” and “Robust
Violation,” respectively. When the trace is normal, the distance
to its neighborhood is bounded by σ with a probability of
at least (1 − δ). Therefore, the above conditions for SS, SV,
US, and UV include, ∀ξ̂ ∈ B̂N , dϕ(ω(ξ̂ , t),�(sξ , t)) < σ
holds with probability at least (1 − δ). The SS signature
requires that the distance between any faulty trajectory and
its simulated trajectory is larger than σ , and the distance
between any normal trajectory and its simulated trajectory
is no larger than σ , and the trace satisfies the formula.
The SV signature requires that the distance between any
faulty trajectory and its simulated trajectory is larger than σ ;
there exists a normal trajectory such that its distance to the
simulated trajectory is larger than σ and the trace violates the
formula. Moreover, the probability guarantee can be satisfied
when using the Gaussian process to approximate the dynamic
function. Namely, if all the fault behaviors can be detected
correctly with distance dϕ(ω(ξ̄ , t),�(s̄ξ , t)) as the metrics,
the formula ϕ is a safe detector. Otherwise, ϕ is not a safe
detector. The requirements for US, UV, RS, and RV can be
understood accordingly.
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In the robustness signature requirements, the distance metric
dϕ is used to detect the fault, while the robustness degree
metrics ρ(ϕ, ω(ξ̂ , t)) are used to measure how much the trace
satisfies or violates the formula. SS, SV, US, and UV focus on
the safety of the formula, while RS and RV focus on how well
the formula describes the behaviors. Therefore, if a perfect
formula has been found, the robustness signature for faulty
behaviors should be SV and RV, and the robustness signature
for normal behaviors should be SS and RS. During the safe
temporal logic inference process, we do not allow US and
UV, and the goal is to find a formula that sets the behaviors’
robustness signature to be RS or RV accordingly. The defin-
ition of robustness signature is based on two basic concepts:
1) any normal trajectory initiated from a neighborhood will
stay inside the tube around the simulated trajectory before
another event occurs, while, in contrast, a faulty trajectory
will be outside the tube and 2) safe temporal logic inference
allows false alarm but does not allow missing alarm.

In the supervised learning setting, the STL formula ϕθ

is chosen from a set of templates, denoted as �, where θ
denotes the parameter vector that defines the formula. The
search starts from a set of primitive STL formulas in the form
of ♦[a1,b1]�[a2,b2]μ or ♦[a,b]μ, and we extend the formula by
adding Boolean connectives between newly added formulas
until a satisfactory formula is found. Note that each of the
primitives starts with a ♦ operator, which will allow the fault
to happen at any time. Let the formula obtained at the i th step
be ϕi ; since we require the temporal logic inference procedure
to obey a safe manner, there is a relationship between ϕi−1

and ϕi , called partial order, denoted as ϕi−1 � ϕi , defined as
follows.

Definition 10 (Partial Order): Given two labeled sets of
behaviors B̂N and B̂F of a switched system S in (1); for any
two STL formulas ϕ1 and ϕ2, we say ϕ1 � ϕ2 iff the following
conditions hold.

1) ∀ξ̂ ∈ B̂F , if λ(ŝξ , ϕ1, σ, δ, t) = RV ∧ SV, then ∃κ ,
λ(ŝξ , ϕ2, σ, δκ , t) = RV ∧ SV.

2) ∀ξ̂ ∈ B̂N , if λ(ŝξ , ϕ1, σ, δ, t) = RS ∧ SS, then ∃κ ,
λ(ŝξ , ϕ2, σ, δκ , t) = RS ∧ SS.

Based on the definition of partial order and Theorem 2,
if ϕi−1 can detect all faulty behaviors safely, then ϕi can also
detect all faulty behaviors safely. Moreover, the number of
false alarms caused by ϕi is no larger than the false alarm
caused by ϕi−1. As shown in Definition 6, every STL formula
defines a language, which also defines a region among the
signal space. Fig. 3 illustrates the safe temporal logic inference
procedure, where the rectangle regions are defined by STL
formulas. The central red region is expended by the abnormal
behaviors, and the temporal logic inference tries to find an STL
formula, which defines a region to approximate the abnormal
behaviors. Before reaching the satisfactory formal, the for-
mula considers many normal trajectories as faulty trajectories,
i.e., the region covered by ϕi−1 is no smaller than the region
covered by ϕi . The following theorem shows that we can find
a satisfactory formula by searching along with the partial order
if the fault is detectable.

Fig. 3. Illustration of the temporal logic inference process. At each step,
the rectangle regions are defined by the STL formulas, and the central red
region is the true abnormal behavior. The temporal logic inference procedure
tries to approximate the abnormal behavior with an STL formula by searching
along a partially ordered direction.

Algorithm 2 Temporal Logic Inference Algorithm

Require: two set of behaviors (B̂F , B̂N ) and their label set C,
length limit Z for formula ϕ, a history list H = ∅.
Ensure: The STL formula ϕ for fault detection.
1: Initialize ϕ ← ϕ1 as a primitive formula with random

parameters and calculate cost function J (ϕ), set i = 0.
2: repeat
3: i ← i + 1,
4: ρi ← calculateRobust (ϕi, B̂F , B̂N ),
5: D+,D−,U+,U+ ← assignLable(ρi, C),
6: for ϕa ∈ � do
7: ϕand,θ ← ϕθ∗ ∧ ϕa ,
8: J (ϕθ∗), ϕθ∗ ← opt And(D+,D−,U−, ϕand,θ ),
9: H = H.add(J (ϕθ∗), ϕt ),

10: ϕor,θ ← ϕi ∨ ϕa ,
11: J (ϕθ∗), ϕθ∗ ← opt Or(D−,U+,U−, ϕor,θ ),
12: H = H.add(J (ϕθ∗), ϕθ∗),
13: ϕ ← argmaxJ (ϕt)∈H J (ϕθ∗), H← ∅.
14: until i ≥ Z or J (ϕθ) is non-increasing.

Theorem 4: Given two labeled sets of behaviors B̂N and B̂F

of a switched system S in (1), if there exists an STL formula ϕ
defined by syntax in (5), such that, ∀ξ̂ ∈ B̂F , ρ(¬ϕ,ω(ξ̂ )) > 0
and, ∀ξ̂ ∈ B̂N , ρ(ϕ, ω(ξ̂ )) > 0, then there exists a sequence
of STL formulas ϕ1, ϕ2, . . . , ϕn with proper parameters such
that ϕ1 � ϕ2, . . . ,� ϕn � ϕ for n ≥ 1 and |ϕi | − |ϕi−1| = 1,
where |ϕi | denotes the number of predicates in ϕi .

Proof: See the Appendix. �
Based on Theorem 4, we can infer the formula step by

step. Algorithm 2 shows the process to infer the safe STL
formula. The inputs of the Algorithm 2 are the class label
set C and two sets (B̂F , B̂N ). Line 1 initializes ϕ1 with a
random formula from two primitive formulas with random
parameters. Then, the algorithm calculates the robustness of
all traces in (B̂F , B̂N ) in line 4. Based on the robustness,
line 5 checks whether the trajectories are detected correctly
with the current formula ϕ. D+ denotes that the traces in B̂N

are classified correctly, and U+ denotes that the traces in B̂F

are classified correctly. D− and U− are defined vice versa.
For example, if a trajectory in B̂N has a positive robustness
degree, the trajectory is assigned to the set D+. If the trajectory

Authorized licensed use limited to: Nanyang Technological University. Downloaded on May 09,2021 at 02:08:24 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: TEMPORAL LOGIC INFERENCE FOR FAULT DETECTION OF SWITCHED SYSTEMS WITH GAUSSIAN PROCESS DYNAMICS 9

has negative robustness, it will be assigned to the set D−.
Line 6 checks all template formulas. Line 7 extends the current
formula to get a new formula ϕand,θ with parameter vector θ
by conjunction operator. Line 8 optimizes the parameter vector
and calculates cost function to achieve a temporary optimal
(J (θ∗), ϕθ ). Line 9 saves the results in history H. Lines 10–12
extend the formula with a disjunction operator and find the
optimal parameter vector. Line 13 chooses the best formula in
history. This procedure will be continued until a length limit
has been reached. The cost function is defined as follows:

J (ϕθ) =
�

ξ̂ N∈B̂N

JSRV
�
ϕθ , ŝ N

ξ

�+ �
ξ̂ F∈B̂F

JSRS
�
ϕθ, ŝ F

ξ

�
(25)

where JSRV(ϕθ , ŝ N
ξ ) is 1 if λ(ŝ N

ξ , ϕ, σ, δ, 0) = RS ∧ SS, else
JSRV(ϕθ , ŝ N

ξ is 0, and JSRS(ϕθ , ŝ F
ξ ) is 1 if λ(ŝ F

ξ , ϕ, σ, δ, 0) =
RV∧ SV, else JSRS(ϕθ , ŝ F

ξ ) is 0. J (ϕθ) calculates the number
of traces that have robustness signature RS∧SS and RV∧SV,
which is equivalent to decrease the number of trajectories in
U− and D−. The optimization problems are defined as follows.

Parameter Optimization: The goal of each optimization
problem is to find an optimal parameter vector θ∗ with safe
explore manner such that ϕ � ϕand,θ∗ , ϕ � ϕor,θ∗ , and the
value for J (ϕθ) is maximum. Therefore, the two optimization
problems in Lines 8 and 11 can be defined as

θ∗ = argmax J (ϕθ) (26)

subject to

∀ξ̂ ∈ D+, λ
�
ŝξ , ϕand, σ, δ, 0

�� = RS ∧ SS (27a)

∀ξ̂ ∈ U+, λ
�
ŝξ , ϕor, σ, δ, 0

�� = RV ∧ SV. (27b)

According to the semantics of STL, we can ignore the con-
straint in (27a) during the optimization process in line 11
and ignore the constraint in (27b) during the optimization
process in line 8 since they always hold. We solve the
optimization problem defined in (26) with an active learning
algorithm called the Gaussian process adaptive confidence
bound (GP-ACB) defined in [35]. Algorithm 2 can lead to
the following theoretical results.

Theorem 5: Denote ϕi to be the formula found from the
i th iteration in line 11 of Algorithm 2; then, the following
statements hold.

1) ϕ1 � ϕ2, . . . , ϕi , . . . ,� ϕM .
2) If there exists an STL formula ϕ∗ with proper parameters

that can detect the fault correctly in B̂, then, with a large
enough M , we have ϕ∗ � ϕM .

Proof: See the Appendix. �
The overall procedure for the proposed method is shown

in Fig. 4. The method first uses Algorithm 1 to find the neigh-
borhood radius and estimate the system model. Second, with
the estimated model and the normal behaviors and abnormal
behaviors, the estimated behaviors are obtained. Third, with
the neighborhood radius and the behaviors, Algorithm 2 is
applied to infer the optimal formula. Finally, the fault detection
is performed with the learned formula by comparing the
residual signals with a predefined threshold, which is related
to the neighborhood radius.

Fig. 4. Overall procedure of temporal logic inference for fault detection with
partially unknown dynamics.

Fig. 5. Switched Chua’s circuit.

Remark 4: Safe temporal logic inference performs an infer-
ence process based on the estimation of unknown dynamics
with the Gaussian process. With more data collected, we will
have a better approximation of the unknown dynamics. More-
over, the safe learning process decreases the number of false
alarms and missing fault gradually (missing fault does not exist
in our setting). These properties make the proposed method
suitable for online fault detection, in which the algorithm
updates the approximation of unknown dynamics online and
improves the approximation with newly collected data. The
safe temporal logic inference algorithm updates the formula if
the new trajectory’s robustness signature is not RS or SV.

Remark 5: The obtained formula can be seen as an inter-
pretable classifier. Therefore, it has two roles: one is a clas-
sifier, and the other is a decision explanator. It classifies
the conditions of the system and gives explanations for the
decision process with the semantics of STL formulas. Since
we use labeled data to train a model, this problem is a
supervised learning problem previously addressed in [25]
and [36]. However, in these works, the learning algorithm
cannot provide guarantees for the results. Moreover, these
works assumed that they can find the optimal classifier that
will detect the fault surely. This hypothesis is too strong in
practical. The problem and solution presented in this article
are more general and will consider uncertainties of the system
along with the noise among the trajectories. More specifically,
we do not provide a solution that detects the fault surely
but with a probabilistic satisfaction guarantee. Compared with
other residual signal-based fault detection, whose thresholds
are determined empirically, the thresholds used in this article
are estimated based on the bisimulation function.

IV. FAULT DETECTION FOR CHUA’S CIRCUIT SYSTEM

In this section, we apply the proposed method to at switched
Chua’s circuit system [17], [37], which is shown in Fig. 5 and
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can be described as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V̇1 = − 1

C1m
V1 + 1

C1m R
V2 − 1

C1m
gm(V1)− 1

C1m
u

V̇2 = 1

C2 R
V1 − 1

C2 R
V2 − 1

C2
iL

i̇L = 1

L
V2 − 1

L
Vd

(28)

where V1 and V2 are the two states and represent the voltage
across the capacitors C1m and C2 with m = 1, 2 being the
switched signal. iL stands for the current in the inductor L and
is also the system state. u is the current from the generator,
and u acts as a noise source in this article. Vd is the voltage
loss of R0iL . gk(V ) is the kth current in resistor R1k , which
is a nonlinear function defined as

gm(V ) =
�
−1.43V1 + V 2

1 + V 2
2 , m = 1

−0.78 ∗ V1 + V 2
1 , m = 2.

(29)

Here, we follow [17], and let x1 = V1, x2 = V2, x3 = iL ,
�1m = 1/C1m R, �2m = 1/C1m , �3 = 1/C2 R, �4 = 1/C2, and
�5 = 1/L; then, the system in (28) can be transformed into
the following form:

ẋ = Am x + Bm[gm(x1)+ u] (30)

Am =
⎡
⎣−�1m �1m 0

�3 −�3 −�4

0 �5 −�5 R

⎤
⎦, Bm =

⎡
⎣−�2i

0
0

⎤
⎦ (31)

where x = [x1, x2, x3]T is the system state vector, and we
assume that the states are fully observable.

In this experiment, we choose parameters of the switched
Chua’s circuit system as C11 = 0.764, C12 = 3.215, R =
1.637, C2 = 10, L = 1.1, and R0 = 0.012. Then, the system
matrices and vectors are given by

A1 =
⎡
⎣−0.799 0.799 0

0.061 −0.061 −0.1
0 0.0909 −0.011

⎤
⎦, B1 =

⎡
⎣−1.309

0
0

⎤
⎦

A2 =
⎡
⎣−0.311 0.311 0

0.061 −0.061 −0.1
0 0.0909 −0.011

⎤
⎦, B2 =

⎡
⎣−2.146

0
0

⎤
⎦.

A. Temporal Logic Inference

When a fault is injected, the considered system is in the
form of

ẋ = Am x + Bm[gm(x)+ u]+ Dmηm(x)

y = x (32)

where D1 = D2 = [1, 1, 1]T and the fault functions are
selected as

η1(x) =
�

0.3 cos(t), t1 ≤ t ≤ t2
0, others

η2(x) =
�

1, t1 ≤ t ≤ t2
0, others

(33)

where [t1, t2] is the fault injection dwell time. Note that, here,
we define the model of gm(·), and the noise u is assumed to

Fig. 6. Two traces ξ1
n , ξ2

n in the normal cases. The system switches mode at
time = 10 s.

Fig. 7. Two traces ξ1
f , ξ

2
f in the faulty cases, where the fault mode is

introduced at time = 10 s.

be Gaussian during the simulation process such that we can
simulate the system and obtain trajectories for demonstration
purpose. However, the algorithms proposed in this article are
not given the model of gm(·), and it should approximate the
model with the Gaussian process regression approach.

In this case study, we assume that a possible event occurs
at te and the minimal dwell time emin = 5 s, which means
that, if there is an event that occurs at te, no other events
can occur between (te − emin) and (te + emin). Since the two
kinds of primitives, ♦[a1,b1]�[a2,b2]μ and ♦[a,b]μ, start with
“Eventually” operator, the formula can capture the fault with
suitable parameters and even the fault happens at random time.
To make it simple, in this setting, we have te = 10 s for all
generated trajectories in the training sets.

We simulate 20 traces (ten normal traces in B̂N and ten
faulty traces in B̂F ) for 20 s. The traces are various due
to uncertainties and the variation of initial states at each
switching instant. Fig. 6 and 7 show examples of normal and
faulty traces, respectively. For the normal traces, two initial
states are simulated, and the system switches from mode 1 to
mode 2 after 10 s. For the faulty traces, one is injected fault
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Fig. 8. Tube around a normal trace, two normal traces (green, one is hidden
in the tube), and two faulty traces (red), respectively. The normal trace is
always within the tube, while the faulty traces are outside the tube after mode
switch.

function 1, and the other is injected fault function 2. Both of
them start from normal mode 1 and switch to fault mode after
10 s. Here, we set the fault event occurring time the same
as the fault injection time even though it may not lead to a
failure immediately. Fig. 8 shows the tube around one normal
trace with a neighborhood radius of 0.1, which illustrates that
the normal traces are constrained in a bounded region, and the
faulty traces are outside that bounded region.

Since the uncertainty of Chua’s circuit is assumed to be
Gaussian, the uncertainty caused by noises can be covered
by the neighborhoods around the simulated traces. In order
to estimate the neighborhood radius, we first estimate the
unknown dynamic with the Gaussian process regression. Dur-
ing the model estimate process, we sample a set of points of
the system for each mode and use the GP-ACB algorithm to
approximate the model for gm(·). Then, we estimate the neigh-
borhood radius. This process is completed with Algorithm 1.
Fig. 9 shows the estimation process. In order to have a better
visualization of the process, we only plot two dimensions of
the state (V1 and V2) and set Mm = diag(1, 1, 0). The top
row of Fig. 9 shows the estimation of gm(·), which shows that
the estimated model can approximate the true model better
with more samples. The bottom row of Fig. 9 shows the
states within the neighborhood radius of a simulated trace.
Starting from an initial set, our algorithm can approximate the
true neighborhood of the simulated traces with samples of the
system. The more data we have, the smaller the estimation
error we can achieve. The results of Algorithm 1 show that
the maximum neighborhood radius for mode 1 is 0.3 and the
maximum neighborhood radius for mode 2 among all normal
traces is 0.5. The probability bounds for all learning processes
are set to 0.05, which means that the approximation error is
bounded to have a small value with a probability of at least
0.95. The bottom two figures in Fig. 9 show the estimated
and true neighborhood of normal traces at the initial state
(mode 1), which again proves that the proposed algorithm
can approximate the neighborhood with limited samples of
the system. Note that, if we discretize the system with smaller
values of τ and collect more sample data, the estimation will

improve and, in the limit, converge to the true neighborhood.
Overall, Algorithm 1 provides a powerful tool to learn the
neighborhood radius.

Based on the estimation of the neighborhood radius, we can
obtain the robustness tubes ∪sξ∈B̂T (0, 0.1, sξ ) for each trace.
In Fig. 8, we plot the robustness tube around one simulated
normal trace. Fig. 8 also shows that the distance between
two normal traces does not increase, indicating that the true
radius is larger than the estimated one, which is in line
with our analysis that the proposed algorithm provides a
conservative estimation of the robustness radius. With the
neighborhood radius, we can infer the temporal logic formula
with Algorithm 2. In this example, we set Z = 4, λ = 0.1,
σ = 0.1, and δ = 0.05. A sequence of satisfactory formulas
is obtained as follows:

ϕ1 =
�
♦[0.3,10.4]�[0.2,6.7](x1 ≤ 0.21)

�
(34)

ϕ2 =
�
♦[0.3,10.4]�[0.2,6.7](x1 ≤ 0.21)

�
∧ �

♦[15.3,17.2](x1 ≥ −0.09)
�

(35)

ϕ3 =
�
♦[0.3,10.4]�[0.2,6.7](x1 ≤ 0.21)

�
∧ �

♦[15.3,17.2](x1 ≥ −0.09)
�

∨ �
♦[1.3,6.8]�[10.2,15.4](x3 ≥ 0.42)

�
(36)

ϕ4 =
�
♦[0.3,10.4]�[0.2,6.7](x1 ≤ 0.21)

�
∧ �

♦[15.3,17.2](x1 ≥ −0.09)
�

∨ �
♦[1.3,6.8]�[10.2,15.4](x3 ≥ 0.42)

�
∨ �

♦[2.6,7.7]�[3.2,8.2](x2 ≥ −0.12)
�

(37)

where ϕ4 can be read by plain English as follows: “eventually,
within 0.3–10.4 s, always within 0.2–6.7 s, V1 should be no
larger than 0.21, and eventually, within 15.3–17.2 s, V1 should
be no smaller than −0.09, or eventually, within 1.3–6.8 s,
always within 10.2–15.4 s, iL should be no smaller than 0.42,
or eventually, within 2.7–7.7 s, always within 3.2–8.2 s, V1

should be no smaller than −0.12.”
The robustness signatures for each trajectory with respect

to ϕi (i = 1, 2, 3, 4) are shown in Table I, where SRV is short
for SV ∧ RV and SRS is short for SS ∧ RS. The signatures
for the traces are SS or SV, which indicates that the proposed
temporal logic inference algorithm searches for the formula
safely. Moreover, with an increasing length of the formula,
the signature for each trajectory does not change once it has
been set to SRS or SRV. The value for J (ϕ) is increased,
which also indicates that ϕ1 � ϕ2 � ϕ3 � ϕ4 and the proposed
temporal logic inference algorithm searches for the formula
safely.

B. Fault Detection With Temporal Logic

1) Fault Detection With Different Dwell Times: In
Section IV-A, we assume that a possible event occurs at the
tenth second, as shown in Fig. 7. Since we add an eventual
operator for the learned formula, the trajectories can always
be shifted to the trajectories that have an event at 0 s. In this
section, we test and investigate the learned formula with sensor
faults and different dwell times.
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Fig. 9. 2-D example of Algorithm 1. Top: initially, the estimate of the dynamics is uncertain (the contour maps in the top figures are the variances
for the estimation, and the true variances have been multiplied by 40 for better visualization). Left: we use 50 samples to estimate the model gm(·).
Right: we use 100 samples to estimate the model. Bottom: true and estimated neighborhood sets are plotted after 50 (left) and 100 (right) samples (blues
crosses) in two dimensions. Algorithm 1 provides a conservative estimate (yellow) since it considers states with V̇ (x) ≤ −Lτ , rather than V̇ (x) ≤ 0 and
AB − Aμmi ,n−1 ≤ −||A||1 Lτ in (16) and (17). The level set could be increased by discretizing the space with a smaller value of τ .

TABLE I

ROBUSTNESS SIGNATURES λ(ŝξ , ϕi , 0.05, 0.05) FOR i = 1, 2, 3, 4 OF THE SIMULATED TRACES

In this scenario, we inject sensor fault with different dwell
times. The sensor fault is in the form of

y = x + ζm(x) (38)

where ζm(x) is the fault function at mode m and defined as

ζ1(x) =
�

0.3 sin(t), t1 ≤ t ≤ t2
0, others

ζ2(x) =
�

0.5, t1 ≤ t ≤ t2
0, others

(39)

where [t1, t2] is the fault injection dwell time.
In order to test the learned formula, we simulate 20 traces

(ten normal traces in B̂N and ten faulty traces in B̂F ) for
100 s with different dwell times and fault injection times.
Six representative trajectories of the simulated system with
the minimal dwell time emin = 5, 10, and 15 s are shown
in Fig. 10, whose fault injection times are set at 20th, 50th,

and 70th second. In this setting, we set the window length to
5 s. The residual signals over time for the six representative
trajectories are shown in Fig. 11. Since the residues are average
robustness among a window length, the signals are smooth.
The length of the residues is from 0 to 80 since the robustness
evaluation length is 20 s. Fig. 11 shows that the faults can
be detected with a residues threshold set to 0.1, and the
fault detection results for the 20 simulated traces are shown
in Table II. The results show that the learned formula can
detect the fault with high accuracy.

2) Fault Detection With Different Noise Levels: This article
uses the Gaussian process regression to estimate the unknown
dynamic of the systems, which is expected to be robust
to noise. To demonstrate the noise resistance property of
the proposed method, this experiment generates traces with
different noise levels by changing the mean and variance of
u in (32). First, we simulate 20 traces (ten normal traces
in B̂N and ten faulty traces in B̂F from component fault
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Fig. 10. Some representative trajectories of the simulated system with the
minimal dwell time emin = 5, 10, 15 s and fault injection times are set at
20th, 50th, and 70th second, respectively. The yellow regions show the normal
traces, and pink regions show the faulty traces.

Fig. 11. Residual signals with respect to the learned formula for the
trajectories in Fig. 10.

TABLE II

SIMULATION TESTING RESULTS

injection) for 20 s with noise variance at 0.1, 0.2, and 0.3
(zero mean for all); then, we infer the temporal logic formula
with the proposed method. During the temporal logic inference
procedure, the robustness tube radius are set to the sum of
the maximum robustness radius found in Algorithm 1 and
the maximum estimated variance for the Gaussian process
regression after N samples, i.e., σ = max γ i

N +max σmi ,N−1.
The probability factor δ is set to 0.05 for each case. Second,
we test the learned formula with 100 traces (20 normal traces
in B̂N , 40 faulty traces in B̂F from component fault injection
with different dwell times and different fault injection times,
and 40 faulty traces in B̂F from sensor fault injection with
different dwell times and different fault injection times) for

TABLE III

SIMULATION TESTING RESULTS WITH DIFFERENT NOISE LEVELS

TABLE IV

COMPARISON RESULTS FOR FAULT DETECTION

100 s. Then, we calculate the residual signals for each trace
with a window length of 5 and 10 s for each case for fault
detection at different noise levels. The fault detection results
are shown in Table III. The results show that the temporal
logic can detect the fault with high accuracy (detect errors
are less than 5%) both among the training set and the testing
set. Moreover, with the increase in the noise, the detection
error will increase, but it will be improved by taking a larger
calculation window. The reason for this is that a larger window
can decrease the effect of noise, which acts as a filter.

3) Comparison Study: In order to demonstrate the per-
formance of the partially ordered direction-based method in
temporal logic inference, we compare the proposed method
with other state-of-the-art methods. In this case study, we only
investigate the efficiency of these algorithms in the task of
temporal logic inference; thus, we assume that the robustness
radius and the model of the switched system have been
obtained. With the trajectories and robustness radius, the algo-
rithms in [10] and [36] were applied to find the optimal
formulas for fault detection. In this experiment, ten normal and
ten faulty trajectories are simulated for training, and another
20 normal and 20 faulty trajectories are simulated for testing
the performance. The noise levels for all the simulations are set
to 0.1. Moreover, we constrain the training time to 600 s for all
the algorithms, i.e., check the performance under a given time,
and comparison results are shown in Table IV. The results
show that, when given the robustness radius and trajectories,
the proposed partially ordered direction-based method is more
efficient to find the optimal formula.

C. Discussion

Fault detection with temporal logic brings interpretability to
human users. The inferred logic formula helps maintainers to
diagnose the causes of the fault and, thus, take timely actions
to reduce losses. Nevertheless, fault prognosis is another
important aspect in monitoring tasks. However, the quantitative
semantics, i.e., robustness, of temporal logic used in this article
is not continuous or differentiable; thus, it is not suitable
for fault prognosis. In our future work, we will try to use
differentiable quantitative semantics such that we can map
the robustness to the remaining useful life of the failing
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component for prognosis task since the robustness defines how
far the system is deviated from normal.

The proposed method uses the Gaussian process regression
to estimate the dynamic function of the unknown dynamics.
However, many systems are non-Gaussian, which may cause
a large regression error and lead to a bigger robustness radius
or fault detection threshold. The large robustness radius will
affect the sensitivity of the fault detector and, thus, decreases
the performance of the proposed approach. When we apply
the proposed method to practical systems, the noise level is
another impact factor. Based on the simulation testing results,
the performance degrades when the noise level is high, and it
will cause a bigger robustness radius. Moreover, large noise
will increase the robustness radius and, thus, decrease the
performance. In addition, the proposed method needs the mode
information of the trajectories for inferring the logic formulas,
which is hard to obtain for many practical systems and limits
the generality of the proposed method.

V. CONCLUSION

This article presents a method to infer temporal logic formu-
las for fault detection tasks of a kind of switched system with
partially unknown dynamics. The proposed temporal logic
inference algorithm is guided by a partially ordered relation,
and the obtained temporal logic formula acted as a resid-
ual evaluation function in a transparent way. Demonstration
experiments with simulated trajectories show that the proposed
method can be used for fault detection for switched systems
with partially unknown dynamics. Moreover, the temporal
logic inference algorithm that searches along the partially
ordered direction has a better performance than the state-of-
the-art methods in our settings. In addition, the limitations
of the proposed method have been discussed. Future research
work will address these limitations and focus on: 1) fault
prognosis issue with temporal logic; 2) temporal logic fault
diagnosis with unsupervised learning approaches; and 3) fault
detection with temporal logic for non-Gaussian systems.

APPENDIX

Proof of Theorem 1

Proof: Based on [34, Th. 1], when condition (16) holds
with probability at least (1− δ), the system is asymptotically
stable for all y ∈ Bmi (x i , γ i )∩Xτ with the probability at least
(1− δ). Based on [34, Lemma 1] and Lemma 3, we have��μmi ,n−1

�
[y]τ

�− gmi (y)
�� ≤ β

1/2
mi ,nσmi ,n−1

�
[y]τ

�+ Lτ

⇒ ��Aμmi ,n−1
�
[y]τ

�− Agmi (y)
��

≤ ||A||1β1/2
mi ,nσmi ,n−1

�
[y]τ

�+ ||A||1Lτ

⇒ ��AB − Agmi (y)− �
AB − Aμmi ,n−1

�
[y]τ

����
≤ ||A||1β1/2

mi ,nσmi ,n−1
�
[y]τ

�+ ||A||1Lτ.

If the condition in (17) holds, we have AB − Agmi (y) ≤ 0.
Namely, we have that condition (11) holds. Therefore, Ami is
a bisimulation function. The theorem has been proven. �

Proof of Theorem 2

Proof: Based on the result in Lemma 4,
ρ(μ,�mi (x i , t)) ∈ L(ϕ, σ − γmax)/L(ϕ, σ + γmax) holds with
probability at least (1− δ) for i = 0, . . . , Q; thus, Theorem 2
holds for any predicate of STL, and then, we can prove this
theorem by induction.

1) Assume that Theorem 2 holds for formula ϕ and
prove the theorem holds for ¬ϕ. If Theorem 2
holds for ϕ, we have that −ρ(¬ϕ,�mi (x i , t)) −
γ̂ ≤ −ρ(¬ϕ,�mi (x, t)) ≤ −ρ(¬ϕ,�mi (x i , t)) +
γ̂ holds with probability at least (1 − δ); thus,
ρ(¬ϕ,�mi (x i , t)) − γ̂ ≤ ρ(¬ϕ,�mi (x, t)) ≤
ρ(¬ϕ,�mi (x i , t)) + γ̂ holds with probability at least
(1− δ).

2) Assume that Theorem 2 holds for formulas ϕ1, ϕ2,
and the satisfaction of ϕ1 and ϕ2 is independent; then,
we prove that the theorem holds for ϕ1 ∧ ϕ2. Based
on the semantic of STL, ρ(ϕ1 ∧ ϕ2,�mi (x, t)) =
min(ρ(ϕ1,�mi (x, t)), ρ(ϕ2,�mi (x, t))). When Theo-
rem 2 holds for formulas ϕ1, ϕ2, we have that
ρ(ϕ1,2,�mi (x i , t)) − γ̂ ≤ ρ(ϕ1,2,�mi (x, t)) ≤
ρ(ϕ1,2,�mi (x i , t)) + γ̂ holds with probability at least
(1− δ). Thus, there exists a κ such that (1− δ)2 ≥ (1−
δκ), and for ϕ1, ϕ2, we have that ρ(ϕ1∧ϕ2,�mi (x i , t))−
γ̂ ≤ ρ(ϕ1 ∧ ϕ2,�mi (x, t)) ≤ ρ(ϕ1 ∧ ϕ2,�mi (x i , t))+ γ̂
holds with probability at least (1− δκ).

3) Assume that Theorem 2 holds for formulas ϕ1 and
ϕ2, and the satisfaction of ϕ1 and ϕ2 is independent;
we prove that the theorem holds for ϕ1 ∨ ϕ2. Based
on the semantic of STL, ρ(ϕ1 ∨ ϕ2,�mi (x, t)) =
max(ρ(ϕ1,�mi (x, t)), ρ(ϕ2,�mi (x, t))). When Theo-
rem 2 holds for formulas ϕ1 and ϕ2, we have
that ρ(ϕ1,2,�mi (x i , t)) − γ̂ ≤ ρ(ϕ1,2,�mi (x, t)) ≤
ρ(ϕ1,2,�mi (x i , t)) + γ̂ holds with probability at least
(1 − δ). Thus, there exists a κ such that 2(1 − δ) −
(1 − δ)2 ≥ (1 − δκ), and for ϕ1, ϕ2, we have that
ρ(ϕ1 ∨ ϕ2,�mi (x i , t)) − γ̂ ≤ ρ(ϕ1 ∨ ϕ2,�mi (x, t)) ≤
ρ(ϕ1∨ϕ2,�mi (x i , t))+ γ̂ holds with probability at least
(1− δκ).

4) Assume that Theorem 2 holds for formula ϕ and prove
the theorem holds for ♦Iϕ. Based on the semantic
of STL, ρ(♦Iϕ,�mi (x, t)) = maxτ∈I(ρ(ϕ,�(x, τ )).
When Theorem 2 holds for formula ϕ, we have
that ρ(ϕ,�mi (x i , t)) − γ̂ ≤ ρ(ϕ,�mi (x, t)) ≤
ρ(ϕ,�mi (x i , t)) + γ̂ holds with probability at least
(1− δ). Thus, there exists a κ such that the combination
probability is at least 1 − δκ), and we have that
ρ(♦Iϕ,�mi (x i , t)) − γ̂ ≤ ρ(♦Iϕ,�mi (x, t)) ≤
ρ(♦Iϕ,�mi (x i , t)) + γ̂ holds with probability at least
(1− δκ).

5) Assume that Theorem 2 holds for formula ϕ and prove
the theorem holds for �Iϕ. Based on the semantic
of STL, ρ(�Iϕ,�mi (x, t)) = minτ∈I(ρ(ϕ,�(x, τ )).
When Theorem 2 holds for formal ϕ, we have
that ρ(ϕ,�mi (x i , t)) − γ̂ ≤ ρ(ϕ,�mi (x, t)) ≤
ρ(ϕ,�mi (x i , t)) + γ̂ holds with probability at least
(1− δ). Thus, there exists a κ such that the combination
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probability is at least (1 − δκ), and we have that
ρ(�Iϕ,�mi (x i , t)) − γ̂ ≤ ρ(�Iϕ,�mi (x, t)) ≤
ρ(�Iϕ,�mi (x i , t)) + γ̂ holds with probability at least
(1− δκ).

Thus, Theorem 2 holds for any STL formula ϕ. �

Proof of Theorem 3

Proof: Since, for all ξ ∈ B̂N , ω(ξ) ∈ L(ϕ, σ ),
and for all ξ̂ ∈ B̂F , ξ̂ ∈ L(¬ϕ, σ) hold with proba-
bility at least (1 − δ), we have ρ(ϕ, ω(ξ, t)) > σ , and
ρ(¬ϕ,ω(ξ̂ ), t)) > σ holds with probability at least (1 − δ)
for all ξ, ξ̂ . As dϕ(s, ŝ) = |ρ(ϕ, ω(ξ̂ ), t) − ρ(ϕ, ω(ξ), t)| =
|ρ(¬ϕ,ω(ξ̂ ), t) + ρ(ϕ, ω(ξ), t)| > σ , and the two events
ρ(ϕ, ω(ξ), t) > σ and ρ(¬ϕ,ω(ξ̂ ), t) > σ are independent,
we have that dϕ(s, ŝ) > σ holds with probability at least
2(1 − δ) − (1 − δ)2 > (1 − δ). This completes the proof.

�

Proof of Theorem 4

Proof: When ϕ has only one predicate, the theorem is
obviously true. When ϕ has more than one predicate, ϕ can
be written as: 1) ϕ = ϕn = ϕa ∧ ϕn−1 or 2) ϕ = ϕn =
ϕa ∨ ϕn−1, where ϕa is the newly added formula and has only
one predicate. Assume that U+i is the set for faulty behaviors
that have been defected correctly with ϕi , and U−i is the set
for behaviors that have been detected incorrectly with ϕi . D+i
and D−i are for the normal behaviors, respectively. The proof
for the two cases is shown as follows.

1) If ϕn−1 detects the behaviors correctly, there exists a ϕa

such that ϕn−1 � ϕn; else, in order to achieve ϕn−1 � ϕn,
ϕa ∧ ϕn−1 should decrease the number of behaviors in
U−n−1 and does not decrease the number of behaviors
in D+n−1. If there exists ϕa such that ∃ξ̂ ∈ U−n−1 and
ρ(¬ϕa ∨ ¬ϕn−1, ω(ξ̂ )) > 0, then ϕn−1 � ϕn. Since the
behaviors are in U−n−1, we can always find a ϕa such
that ρ(¬ϕa, ω(ξ̂ )) > 0 ⇒ ρ(¬ϕa ∨ ¬ϕn−1, ω(ξ̂ )) > 0.
Therefore, ϕn−1 � ϕn.

2) If ϕn−1 detects the behaviors correctly, there exists a
ϕa such that ϕn−1 � ϕn; else, ϕa ∨ ϕn−1 decreases the
number of behaviors D−n−1 and does not decrease the
number of behaviors in U+n−1. If there exists ϕa such that
∃ξ̂ ∈ D−n−1 and ρ(ϕa∨ϕn−1, ω(ξ̂ )) > 0, then ϕn−1 � ϕn.
Since the behaviors are in D−n−1, we can always find a ϕa

such that ρ(ϕa, ω(ξ̂ )) > 0 ⇒ ρ(ϕa ∨ ϕn−1, ω(ξ̂ )) > 0.
Therefore, ϕn−1 � ϕn.

Therefore, there exists a sequence of STL formulas such that
ϕ1 � ϕ2 � · · · � ϕn � ϕ. Moreover, the number of predicates
satisfies the following property:

|ϕn| − |ϕi | = n − i (40)

where 1 ≤ i ≤ n. The theorem has been proven. �

Proof of Theorem 5

Proof: Proof for Statement 1): Based on the definition
of partial order and the constraints in (27a) and (27b), state-
ment 1) holds.

Proof for Statement 2): When we solve the optimiza-
tion problem in line 8 of Algorithm 2, we have, ∀ŝξ ∈
D+, λ(ξ̂ , ϕor, σ, δ)) = SS ∧ RS. Since the trajectories in U−
and D− are detectable, ϕt will increase the value of J (ϕt).
Based on Theorem 4, if we ignore D−, Algorithm 2 will
eventually decrease U− to zero. Similarly, when we solve
the optimization problem in line 11 of Algorithm 2, we have,
∀ξ̂ ∈ U+, λ(ŝξ , ϕand, σ, δ)) = SV ∧ RV . Since the trajectories
in U− and D− are detectable, ϕt will increase the value of
J (ϕ). If we ignore U−, Algorithm 2 will eventually decrease
D− to zero. Therefore, the theorem has been proven. �
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