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A B S T R A C T

The interconnection between different components among a gearbox poses a challenge in
decoupling vibration signals for fault diagnosis. This study presents a method called Virtual
Non-Linear Chirp Component Decoupling (VNCCD) to address gearbox fault diagnosis. The
method starts by identifying the decoupled frequency response function (DFRF) using a virtual
decoupling method. The bearing force signals are then computed based on the DFRF, and
the intrinsic signal components are extracted using a nonlinear chirp mode decomposition
technique. The proposed approach enhances the quality of vibration signals in gear systems
by eliminating the intercoupling effect of structural transfer paths. By employing the VNCCD
method, the amplification of fault conditions can be effectively demonstrated compared to the
nonlinear chirp component obtained from the original signal. Simulation and experimental
results confirm the effectiveness of the VNCCD method in diagnosing gearbox systems that
experience intricate structural transfer paths in nonstationary conditions.

. Introduction

Parallel shaft gear systems are of significant importance across diverse industries including automotive, manufacturing, and Wind
nergy, owing to their exceptional transmission efficiency and extensive range of transmission ratios [1–4]. However, parallel shaft
earboxes frequently encounter challenging operating conditions, such as variable speed and overload, resulting in an inadequate
perational lifespan that falls short of the intended longevity. As a consequence, substantial financial losses and serious accidents
ay ensue [5]. Therefore, fault diagnosis technology plays a crucial role in ensuring the operational reliability of gear systems.

Vibration signal measurements provide an effective means of assessing the operation of gear systems. In order to evaluate the
erformance of these systems, it is crucial to extract fault features from signals [6]. Classical signal processing methods, such as
avelet transform [7], Principal Component Analysis [8], time–frequency analysis [9] and sparse representation [10].

Due to the complex operational environment, the condition monitoring signals of gearbox systems exhibit nonstationary
mplitude modulation and frequency modulation (AM–FM) characteristics, which are often referred to as nonlinear chirp signals.
ractical nonlinear chirp signals (NCS) generally contain many nonstationary sub-signals (referred to as chirp modes), each of
hich usually contains valuable information related to the health condition of the machine [11,12]. Feature extraction and fault
iagnosis methods for chirp components have been studied extensively in recent years. Chen [13] proposed the variational nonlinear
hirp mode decomposition approach. This approach accurately estimates the instantaneous frequency (IF) of all components in
onstationary signals and extracts each component individually. Furthermore, Chen and colleagues also introduced the adaptive
hirp mode decomposition [14,15] and intrinsic chirp component decomposition [16]. Additionally, order tracking techniques [17],
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empirical mode decomposition [18], and empirical wavelet transform [19] have been widely applied to fault diagnosis and condition
monitoring of mechanical systems under nonstationary conditions. However, it is important to note that all of these techniques rely
heavily on obtaining high-quality vibration signals. Analyzing poor-quality signals often leads to inaccurate judgments about the
operation of gear systems.

In terms of the fault mechanism, gearbox vibrations primarily result from the contact between meshing gear teeth. Subsequently,
hese vibrations propagate through the housing, bearings, and shafts before being sensed by vibration sensors [20]. To capture
ibration signals with distinct gear meshing features, sensors are typically positioned near the bearing block during tests. This
lacement ensures accurate detection of faults within the signals. Many researchers have focused on optimizing the placement
f measurement points [21–24]. However, in highly complex and integrated mechanical systems, the number and locations of
easuring points are often severely limited [25]. Moreover, during the transmission of vibrations, the intercoupling effects of

tructural transfer paths significantly alter or attenuate signal characteristics [26].
In order to mitigate the intercoupling effects of structural transfer paths, a better way is to construct the structural dynamic model

f the whole structure by assembling the dynamic models of its simpler components (subsystems or substructures), transfer path
nalysis (TPA) serves as a valuable tool. Its primary application lies within the automotive engineering field, aiming to elucidate
he generation and transmission of vibrations from both the excitation source and the transfer path [27,28]. Previous research has
rimarily modeled vibration transfer paths using frequency response functions or Markov parameter matrices [29]. Both methods
equire prior knowledge of the structure’s vibration transfer paths. Quantitative studies on the impact of vibration transfer paths
ave been mostly in the field of automobile engineering, particularly for assessing each suspension’s contribution to overall vibration
evels [30,31]. Additionally, Vanhollebeke [27] et al. applied transfer path analysis to evaluate the effect of bearings on wind turbine
earbox vibrations. Research on gearbox transfer paths often focuses on vibration signal models, such as amplitude modulation
escribed by the Hanning function [32]. However, these phenomenological models overlook specific structural characteristics,
imiting their application in diagnosing complex gearbox faults. To address this difficulty, some researchers use bearing dynamic
orces as the excitation sources and consider the mutual coupling effect among structural transfer paths [33,34].

The Frequency Response Functions (FRFs) act as a fundamental component of TPA for gear systems, establishing the physical
onnection between various parts [35]. The transfer function matrix can be obtained through two predominant methods: finite
lement Analysis and hammer impact testing. In previous work, Yu considered the mutual coupling effect of the transfer path
odel and introduced the notion of dynamic force in gearbox bearings [33,36]. By utilizing vibration signals, the dynamics of

earbox bearings can be identified, thus acquiring the FRFs matrix through FEA [37]. Nevertheless, as FEA is highly sensitive to
oundary conditions and entails intricate modeling approaches, the hammer impact test serves as a commonly adopted alternative
or obtaining the FRFs matrix in engineering applications.

Due to the intricate structure of actual gear systems, obtaining the decoupled FRF of the gearbox housing is difficult (as
t is typically measured after physically decoupling the gears and shafts). Besides the time-consuming testing process, physical
ecoupling can cause unforeseen changes in the assembly conditions. Recently, in-situ decoupling methods have been gaining
ncreasing attention [38]. Based on the transfer path analysis theory, Laurent derived a theoretical model to obtain transfer
unctions without disassembling the substructure [39]. Wang proposed a generalized method utilizing in-situ transfer functions for
redicting decoupled transfer functions [40]. Furthermore, Wang introduced an in-situ decoupling technique specifically designed
or mechanical systems featuring rigid and resilient coupling links [41,42]. Huangfu employed the in-situ decoupling approach for
ault tracking of gearboxes [34]. The aforementioned literature primarily utilizes the advantages of the virtual decoupling method:
.it requires minimal system dynamic information and can handle internal degrees of freedom; 2.it offers superior applicability and
ersatility; 3.it does not require disassembling the structure, thereby ensuring high efficiency [43]. With the increasing integration
nd precision of industrial gear systems, these advantages hold significant potential value for engineering applications. However, to
he best of our knowledge, the application of the virtual decoupling method for fault diagnosis of gearboxes under non-stationary
onditions has not yet been investigated.

To address the aforementioned concerns, we propose a novel approach called Virtual Non-Linear Chirp Component Decoupling
VNCCD) for the extraction of decoupled non-linear chirp components from the bearing force response of a gear system. Firstly,
he transfer path model of the gearbox is established, and based on this model, the virtual decoupling technique is introduced to
cquire the Decoupled Frequency Response Functions (DFRFs) by mitigating the coupling effects of structural transfer paths without
he need for physically disassembling the gear system. Subsequently, the identified bearing force signals in the frequency domain
re obtained from the resulting frequency response functions, and the Inverse Fourier Transform (IFT) is employed to map these
ignals to the time domain. Finally, a signal decomposition method is utilized to extract the non-linear chirp components from these
ignals. Simulation and experimental results provide evidence that VNCCD is highly effective in diagnosing gear faults.

This paper is organized into six sections. Section 2 includes the theoretical fundamentals of gearbox transfer path analysis
nd virtual decoupling technology. Section 3 provides a detailed explanation of the gradual extraction process of non-linear chirp
omponents through signal decomposition. In Section 4, a simulation example is presented to demonstrate the effectiveness of the
roposed method. Section 5 showcases the validation of the proposed method through experimental studies. Lastly, Section 6 offers
summary of the conclusions drawn from this work.

. Theoretical fundamental

TPA is a highly effective approach used to analyze vibration signals in gear systems [35]. In this method, the gear system and
ousing are simplified into a spring-damped model, which comprises active part, passive part, and measurement point. The resulting
ynamic characteristics propagate through the transmission path of the passive part and impact the measurement point, as shown
2

n Fig. 1.
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Fig. 1. The TPA of the gearbox system. Left: The symbol 𝑟 denotes the interface nodes located on the side of the rotor, while the ℎ represents the interface nodes located
on the side of the house. The symbol 𝑚𝑖 represents the 𝑖th measurement point on the side of the house. Right: The top half of Fig. 1.b is the active part of the gear system,
and the lower half of Fig. 1.b is passive part of the gear system.

2.1. Transfer path analysis of gear system

In this paper, our analysis focuses on a gearbox system, which is composed of an active part, a passive part, and a measurement
point. The dynamic relationship among these three components is described by transfer path functions. Within this model, when a
force 𝐅 is applied to the active part of the gearbox system, it induces vibrations resulting in a measured signal 𝐱 at the measurement
point.

𝐱 = 𝐇𝐅 (1)

where 𝐅 = [𝑓1(𝜔), 𝑓2(𝜔),… , 𝑓𝑚(𝜔)] represents a set of 𝑚 external generalized forces applied at various points within the active part,
and 𝐱 = [𝑥1(𝜔), 𝑥2(𝜔),… , 𝑥𝑛(𝜔)] denotes 𝑛 measured generalized displacements taken at different measurement points. The symbol
𝐇 represents the FRFs matrix between the active and passive parts.

According to transfer path analysis, the measured signal is composed of the contributions of the forces exerted by the active part
through different bearings onto the passive part (gearbox house), transmitted to the measurement point via various transmission
paths. Each individual contribution represents the effect of each bearing on the gearbox, and these contributions simultaneously act
and couple with each other, forming the measured signal. Mathematically, this can be expressed as:

𝑥𝑖 =
𝑚
∑

𝑗=1
𝐻𝑖𝑗𝑓𝑗 (2)

where 𝑓𝑗 stands for the 𝑗th generalized force acting on the active part, 𝑥𝑖 is the 𝑖th generalized displacement of the measurement
point, 𝐻𝑖𝑗 represents the FRFs between the 𝑗th action point on the active part and the 𝑖th measure point on the gearbox.

Research on bearing force signals began quite early and has achieved remarkable results [44]. However, earlier studies primarily
focused on the bearings themselves. In recent years, In order to mitigate the intercoupling effects of structure transfer paths, this
research has increasingly gained prominence in gearbox applications [36]. When the feature extraction task shifts from analyzing the
vibration signal to examining the force signal exerted between the active and passive parts, the frequency response function matrix 𝐇
assumes a critically significant role [33]. However, the physical decoupling process is hampered by its inherent complexity, leading
to time and resource inefficiencies. In order to achieve a straightforward and efficient decoupling method without compromising
the integrity of the gearbox, we introduce the virtual decoupling approach in the subsequent subsection.
3
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2.2. Frequency response function calculation by the virtual decoupling method

In order to establish a connection between the vibration signal and the bearing force signal, it is customary to acquire the FRFs
etween the designated measuring point and the passive component. Traditional physical decoupling has two major drawbacks: (1)
t wastes time and resources, and (2) it reduces the system’s lifespan and precision. [38]. In this section, we present the virtual
ecoupling approach as an alternative method to obtain the FRFs, obviating the need to dismantle the gear subsystem.

The connection of the active and passive components is abstracted linear spring–damp connection in this paper. The stiffness
atrix of the spring is show as:

𝐊𝐛 = diag
(

𝑘1 𝑘2 ⋯ 𝑘𝑗 ⋯ 𝑘𝑛
)

(3)

where the stiffness of the 𝑖th spring is denoted by the symbol 𝑘𝑖. The number of transfer paths is indicated by the symbol 𝑛. On
the rotor side, if the unitary force is applied to the interacting nodes, the deformation of the interfacing spring can be describable
through the FRFs matrix:

𝛥�̃�(𝜔) = (𝐇coup
rr (𝜔) −𝐇𝑐𝑜𝑢𝑝

hr (𝜔))𝐈n×n =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐻coup
r1r1 −𝐻coup

h1r1 𝐻coup
r1r2 −𝐻coup

h1r2 .... 𝐻coup
r1rn −𝐻coup

h1rn
𝐻coup

r2r1 −𝐻coup
h2r1 𝐻coup

r2r2 −𝐻coup
h2r2 .... 𝐻coup

r2rn −𝐻coup
h2rn

.... .... .... ....

𝐻coup
rnr1 −𝐻coup

hnr1 𝐻coup
rnr2 −𝐻coup

hnr2 .... 𝐻coup
rnrn −𝐻coup

hnrn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4)

In the above instance, the side of the rotor is the point of force application, which is represented though the symbol �̃�. The
unitary matrix with dimension of n × n is denoted by 𝐈. When the point of force action is at the 𝑖th point on the rotor, 𝐻coup

rihj is the
FRF of the force to the 𝑗th point on the house. When the force action point is at the 𝑖th point on the rotor, 𝐻coup

rjri is the FRF at the
𝑗th point on the rotor. The coupled system is indicated by the superscript coup. 𝜔 is omitted for writing convenience, but note that
all of our analysis is in the frequency domain in this section.

Let 𝐅h represent the generalized force between the active part acting and the passive part. The responses of measurement points
can be expressed as:

�̃�m = 𝐇Decoup
mh 𝐅h = 𝐇Decoup

mh 𝐊𝐛𝛥�̃� (5)

In this context, the subscript m indicates the measurement point, while the superscript ‘‘Decoup’’ denotes the decoupled system:

�̃�m = 𝐇coup
mr 𝐈𝑛×𝑏 (6)

Bring the formula (4), (5), (6) in it, we have:

𝐇coup
mr = 𝐇Decoup

mh 𝐊𝐛(𝐇
coup
rr −𝐇coup

hr ) (7)

The following is an expression of the FRF matrix at the house side between the measurement points and the nodes:

𝐆mh = 𝐇Decoup
mh 𝐊𝐛 = 𝐇coup

mh (𝐇coup
rr −𝐇coup

hr )−1 (8)

When the unitary force 𝐈 acts upon the interfacing node on the housing side, the resulting displacement change in the interfacial
pring can be represented as follows

𝛥�̂� = (𝐇coup
rh −𝐇coup

hh )𝐈𝑛×𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐻coup
r1h1 −𝐻coup

h1h1 𝐻coup
r1h2 −𝐻coup

h1h2 .... 𝐻coup
r1hn −𝐻coup

h1hn
𝐻coup

r2h1 −𝐻coup
h2h1 𝐻coup

r2h2 −𝐻coup
h2h2 .... 𝐻coup

r2hn −𝐻coup
h2hn

.... .... .... ....

𝐻coup
rnh1 −𝐻coup

hnh1 𝐻coup
rnh2 −𝐻coup

hnh2 .... 𝐻coup
rnhn −𝐻coup

hnhn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(9)

The displacement change of the target point can be expressed [40]:

�̂�m = 𝐇Decoup
mh 𝐊𝐛𝛥�̃� +𝐇Decoup

mh 𝐈𝑛×𝑛 (10)

The coupled frequency response function linking the measurement points to the interfacing nodes on the housing side can be
erived:

𝐇coup
mh = 𝐇Decoup

mh 𝐊𝐛(𝐇
coup
rh −𝐇coup

hh ) +𝐇coup
mh (11)

Combining Eqs. (9), (10), and (11), the decoupled FRF from the points of measurement to the housing side interface nodes can
asily be expressed as follows:

𝐇Decoup = 𝐇coup −𝐇coup(Hcoup −𝐇coup)−1(𝐇coup −𝐇coup) (12)
4

mh mh mr rr hr rh hh
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2.3. The solution of inverse problem of dynamic

Initially, obtaining the bearing force in the frequency domain is equivalent to solving the dynamic inverse problem using the
orresponding Eq. (1). Notably, the condition number of the FRFs matrix is usually very large, and it is often a non-square matrix.
o address the dynamic inverse problem, an adjustment is applied to Eq. (1), yielding:

(𝐇Decoup
mh )T𝐱 = (𝐇Decoup

mh )T(𝐇Decoup
mh )𝐅 (13)

Where the symbol "T" denotes the Hermitian transpose of the matrix. The superscript "Decoup" signifies the decoupled system. For
the sake of simplicity, the superscript "Decoup" and subscript mh are omitted in this subsection.

Mathematically, the identification of bearing forces is equivalent to calculating the inversion of 𝐇, which is ill-conditioned in
engineering. Classic approaches to solving inverse dynamics problems are the Truncated Singular Value Decomposition (TSVD)
[45] and Tikhonov regularization [46]. The former involves finding the optimal approximate solution algorithms after low-rank
approximation of 𝐇, while the latter introduces regularization terms, both resulting in biased estimates. Here, we introduce the
Maximumly Weighted Iteration (MWI) method to address this issue. We provide pseudocode and proofs in the appendix. This method
reduces the ill-conditioning of 𝐇 by introducing weighted matrices 𝐖 and theoretically proves that it yields unbiased estimates [47].

he weighted decomposition of 𝐅 = 𝐖𝐟 is considered, allowing for the formulation of Eq. (13), which can be described as follows:

𝐇T𝐱 = 𝐇T𝐇𝐖𝐟 (14)

For original formula(13), We obtain the following mathematical expression by considering the upper bound of error for:

𝛿𝐅
𝐅

≤ 𝑘(�̃�)‖𝐀‖ ‖𝛿𝐲‖
‖𝐀‖ ‖𝐲‖

+ 𝑘(�̃�)‖𝛿𝐀‖
‖

‖

�̃�‖
‖

(15)

where 𝑘(�̃�) = ‖

‖

�̃�‖
‖

‖

‖

‖

�̃�†‖
‖

‖

, 𝐀 = 𝐇𝑇𝐇 and 𝐲 = 𝐇𝑇 𝐱. The symbol 𝛿 and ‖‖ stands for error and Frobenius norm of matrix.
When the symbol 𝐖 is employed to decrease the degree of ill-conditioning of 𝐇𝐓𝐇, the upper bound of error can be derived:

𝛿𝐅
𝐅

≤ 𝑘(�̃�𝐖)
‖𝐀𝐖‖ ‖𝛿𝐲‖
‖𝐀𝐖‖ ‖𝐲‖

+ 𝑘(�̃�𝐖)
‖𝛿𝐀𝐖‖

‖

‖

̃𝐀𝐖‖

‖

(16)

The following requirements need to be fulfilled in order to ensure that, after weighted decomposition, the upper bound of the
dentification error is decreased:

𝑘(�̃�𝐖)
‖𝐀‖ ‖𝐖‖

‖

‖

�̃�𝐖‖

‖

≤ 𝑘(�̃�)‖𝐀‖
‖

‖

�̃�‖
‖

, 𝑘(�̃�𝐖)
‖𝛿𝐀𝐖‖

‖

‖

�̃�𝐖‖

‖

≤ 𝑘(�̃�)‖𝐀‖
‖

‖

�̃�‖
‖

(17)

In this paper, the matrix 𝐖 is a diagonal matrix, where 𝑚 is the dimension of square matrix. The matrix 𝐀 = 𝐇𝐓𝐇 is selected as:

𝐖 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2,… , 𝑤𝑚), 𝑤𝑘 =

√

√

√

√

∑𝑚
𝑖=1 𝑎

2
𝑖𝑘

∑𝑚,𝑚
𝑖=1,𝑗=1 𝑎

2
𝑖𝑗

, 𝑖 = 1, 2,… , 𝑚 (18)

In the above equation, 𝑎𝑖𝑗 represents the element of matrix 𝐀. The number 𝛼 is added for regularization to Eq. (14)

(𝐇𝐓𝐇𝐖 + 𝛼𝐄)𝐟 = 𝐇𝐓𝐱 + 𝛼𝐟 (19)

where the weighted factor 𝛼 is a regularization parameter and can be selected based on generalized cross validation (GCV) 𝛼(𝛼 > 0)
[48]. Due to the matrix 𝐇𝐓𝐇𝐖 is semi-positive definite matrix, the condition number will decrease for 𝛼 [49]. The equation
essentially serves as the coefficient matrix in the iterative solution of Eq. (19):

(𝐇𝐓𝐇𝐖 + 𝛼𝐄)𝐟 (𝑘+1) = 𝐇𝐓𝐱 + 𝛼𝐟 (𝑘) (20)

Assuming that after 𝑘 iterations, the bearing dynamic forces 𝐅 have been reconstructed by:

𝐅 = 𝐖𝐟 (𝑘) (21)

At the present moment, 𝐅 represents a signal in the frequency domain. It is mapped to the time domain using the IFT:

[f1,… , f𝑚]𝑇 = [ 1
2𝜋 ∫

∞

−∞
𝑓1(𝜔)𝑒𝑖𝑤𝑡... 1

2𝜋 ∫

∞

−∞
𝑓𝑚(𝜔)𝑒𝑖𝜔𝑡]𝑇 = IFT(𝐅) (22)

3. Force signal non-linear chirp component extraction and fault diagnosis work flow

In practical systems, the fault signal typically comprises three primary constituents: the impulse component, the harmonic
component, and the noise [50]. The harmonic component, known as the chirp component under nonstationary condition, exhibit
frequency modulation and amplitude modulation that varies over time [51]. This component is associated with the operational
frequency of the gear system and is often induced by mechanical system vibrations or rotations, such as gear failures [52].

Under non-stationary conditions, a complex signal is typically composed of multiple components, which often exhibit non-
stationary and nonlinear characteristics. [6]. This means that each constituent part of the signal exhibits changes over time in
terms of its amplitude and frequency. Each of these components can be thought of as an oscillatory mode with both amplitude
5
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Fig. 2. The flow diagram of the proposed method.

modulation (AM) and frequency modulation (FM)(also known as chirp). Therefore, a multi-component signal can be represented as
combination of various AM–FM components:

f =
𝑄
∑

𝑖=1
𝑐𝑖(𝑡) + 𝑛𝑖(𝑡) =

𝑄
∑

𝑖=1
𝑎𝑖(𝑡) cos(𝜔𝑐 (𝑡) + 𝜙𝑖(𝑡)𝑑𝑡) + 𝑛𝑖(𝑡) (23)

Where 𝑎𝑖(𝑡) represents the instantaneous amplitude, 𝜙𝑖(𝑡) denotes the instantaneous phase, 𝜔𝑐 (𝑡) stands for carrier frequency.
𝑄 indicates the number of the signal components. 𝑐𝑖 represents the 𝑖th nonlinear chirp component of signal. According to the
trigonometric equation, the Eq. (23) can be represented as:

𝑐𝑖(𝑡) = 𝑎𝑖(𝑡) cos(𝜔𝑐 (𝑡) + ∫

𝑡

0
𝜙𝑖(𝑡)𝑑𝑡) = 𝑢𝑐𝑖 cos(∫

𝑡

0
𝜙𝑖(𝑡)𝑑𝑡) + 𝑣𝑐𝑖 sin(∫

𝑡

0
𝜙𝑖(𝑡)𝑑𝑡) (24)

Where 𝑢𝑐𝑖(𝑡) = 𝑎𝑖(𝑡) cos(𝜔𝑐 (𝑡)) and 𝑣𝑐𝑖(𝑡) = −𝑎𝑖(𝑡) sin(𝜔𝑐 (𝑡)). Taking into account the discretization of signal at specific sampling time
𝑡 ∈ {𝑡1, 𝑡2,… , 𝑡𝑁}, the amplitude functions 𝑢𝑐𝑖(𝑡), 𝑣𝑐𝑖(𝑡) and the IF 𝜙𝑖(𝑡) is depicted as:

𝑢𝑐𝑖 = 𝐁𝑐 (𝑡)𝐏𝑢

𝑣𝑐𝑖 = 𝐁𝑐 (𝑡)𝐏𝑣

𝜙𝑐𝑖 = 𝐁𝜙(𝑡)𝐏𝜙

(25)

Where 𝐁𝑐 (𝑡) = [1, cos(2𝜋𝑙𝑇0𝑡), sin(2𝜋𝑙𝑇0𝑡),… .], 𝑙 = 1, 2...𝐿1 and 𝐵𝜙(𝑡) = [1, cos(2𝜋𝑙𝑇0𝑡), sin(2𝜋𝑙𝑇0𝑡),… .], 𝑙 = 1, 2...𝐿2 stands for the
Redundant Fourier Basis functions. 𝐏𝑢, 𝐏𝑣 and 𝐏𝜙 stands for the corresponding parameter column vectors. The frequency resolution
is 𝑇0 = 𝑓𝑠∕2𝑁 , and the sampling frequency is 𝑓𝑠, The parameters 𝐿1 and 𝐿2 indicate the orders of this model. Derived from formula
(24), the signal model is represented in the following matrix form:

𝑐𝑖(𝑡) = 𝐅𝑐𝐏𝑐 (26)

Where 𝐅𝑐 =
[

cos(2𝜋 ∫ 𝑡
0 𝐁𝜙(𝜏)𝐏(𝜏)𝑑𝜏) sin(2𝜋 ∫ 𝑡

0 𝐁𝜙(𝜏)𝐏(𝜏))𝑑𝜏
]

[

𝐁𝑐 0
0 𝐁𝑐

]

and 𝐏𝑐 =
[

𝐏𝑢
𝐏𝑣

]

The time–frequency distribution of 𝑓𝑚(𝑡) is used for calculating the instantaneous frequency 𝜙(𝑡). General Parameterized
Time–Frequency Transform(𝐆𝐏𝐓𝐅) [53] is utilized to yield a highly focused time–frequency distribution for 𝜙(𝑡):

𝐆𝐏𝐓𝐅(𝑡, 𝜔) = ∫

∞

−∞
𝑓𝑚(𝜏)𝛷𝑅𝛷𝑆ℎ(𝜏 − 𝑡) exp(−𝑗𝜔𝜏)𝑑𝜏 (27)

Where 𝛷𝑅 and 𝛷𝑆 represent the rotation and shift operators, respectively, based on the redundant Fourier kernel in 𝐆𝐏𝐓𝐅 transform,
ℎ(𝜏− 𝑡) denotes window function. The matrix 𝐅 is determined using the estimated 𝜙(𝑡). Then the amplitude parameter 𝐏 is derived
6
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by addressing the optimization model:

�̃�𝑐 = argmin ‖
‖

𝑐𝑖(𝑡) − 𝐅𝑐𝐏𝑐
‖

‖

2
2 (28)

The analytical solution of Eq. (28) can be derived:

𝑃𝑐 = (𝐅𝑐
𝑇𝐅𝑐 + 𝜆𝐈)−1𝐅𝑐

𝑇 𝑐𝑖(𝑡) (29)

In this equation, 𝐈 is a unit matrix, the regularization parameter 𝜆 is selected via GCV. The 𝑚th nonlinear chirp component is
reconstructed:

𝑐𝑖(𝑡) = 𝐅𝑐𝐏𝐜 (30)

The VNCCDs are finally calculated as:

𝐕(𝐭) =
𝑚
∑

𝑖=1
𝑐𝑖(𝑡) (31)

The Fig. 2 illustrates the calculation process flow diagram for the proposed method. The following is a summary of the method:

(i) Step 1. (Raw data acquisition) In this step, the vibration response 𝐱 of the gearbox under nonstationary condition at measuring
point is measured. Additionally, the coupled frequency response function 𝐇coup is estimated through hammer experiments.
This step involves collecting the initial data needed for further analysis.

(ii) Step 2. (DFRF calculation through virtual decoupling technology) Virtual decoupling technology is used to obtain the
decoupled FRFs 𝐇Decoup.

(iii) Step 3. (Bearing force estimation) The force signal 𝐅 is calculated using MWI and GCV approaches. This identification is
based on the decoupled frequency response function 𝐇Decoup and the measured responses 𝐱, allowing for the estimation of
the forces affecting the gearbox.

(iv) Step 4. (Bearing force in time domain) The IFT is used to map the reconstructed forces signals to the time domain.
(v) Step 5. (Non-linear chirp component extraction):This step involves using 𝐆𝐏𝐓𝐅 to calculate the time–frequency distribution

of the bearing force. Subsequently fitting the instantaneous frequency 𝑐𝑖(𝑡) from 𝐆𝐏𝐓𝐅(𝐭,𝝎) and calculating 𝐕(𝐭). Solve the
optimization model for estimating the parameter 𝐏𝑐 , and extracting the 𝑚th intrinsic chirp component by 𝑐𝑖(𝑡) = �̃�𝑐𝐏𝑐 .

(vi) Step 6. (Fault diagnosis) VNCCD may be computed by superimposing all m fault-related nonlinear chirp components. The
gearbox can be diagnosed using the VNCCD.

4. Simulation verification

In this section, we present a numerical illustration of the calculation process for the proposed method using a two-stage gear
model. The dynamic model used in our study, as shown in Fig. 3, is a lumped parameter model representing a spur two-stage
gear system. The pertinent differential equation and various parameters for this dynamic model are provided in the Appendix. To
calculate the time-varying stiffness of a gear pair, we employ the potential energy method [54]. Additionally, the time-varying
meshing damping can be computed using the method [55].

When a gear tooth with a crack engages in meshing within a gearbox, the time-varying meshing stiffness is reduced compared to
the healthy condition. Consequently, as shown in Fig. 4(a), the outcomes consider the presence of a gear crack fault. The procedure
for accelerating the driving shaft is depicted in Fig. 4(b). To solve the aforementioned time-dependent problem, we employ the
Newmark approach.

4.1. The numerical simulation and result of the virtual decoupling technology

In this instance, physical decoupling is defined as obtaining the decoupled FRFs directly from the dynamic matrix of passive part
via Eq. (A.8). As though the active part has been removed from the system, the matrix of passive part contains known information.
On the contrary, virtual decoupling technique involves using the system FRFs matrix Eq. (12) of (the coupled system) to calculate
the decoupled FRF. As shown in Fig. 5, the FRFs obtained though the virtual decoupling approach is then compared with the FRFs
obtained by the physical decoupling method. The measured FRF significantly approaches the theoretical one, as demonstrated by
the results, indicating that the adopted virtual decoupling technique is acceptable.

4.2. Extracting force non-linear chirp components for fault diagnosis

In order to illustrate the effects of our proposed approach, we first utilize the vibration signal at the measurement point for
gearbox fault diagnosis. The theoretical vibration signal with the gear cracking fault condition and the healthy condition are
displayed in Fig. 6(a). It is difficult to evaluate the working state of gear in the time domain. As shown in Fig. 6(b), order tracking,
a mainstream technique for identifying faults under non-stationary conditions, faces difficulty in evaluating the gear operating
condition Therefore, It is extremely difficult to diagnose gear faults based on vibration signals alone.
7
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Fig. 3. The lumped parameter model in numerical example.

Fig. 4. The parameters of numerical example.

Next, the proposed method is used for evaluating the gear operating condition in simulation. Initially, 𝐅 is calculated in the
frequency domain utilizing 𝐱 and 𝐇Decoup. The FRF matrix is derived from the virtual decoupling technology from Simulation 1.
The weighted matrix 𝐖, chosen in this instance based on Eq. (18), controls the degree of ill-conditioning of 𝐀 = (𝐇Decoup)T(𝐇Decoup).
The weighted matrix was utilized and it decreased by approximately two orders of magnitude. After that, 𝐅 is reconstructed as shown
in Eq. (21).

The time–frequency distribution of the bearing force signals under simulated gear healthy conditions is depicted in Fig. 7.
Notably, the presence of a gear crack fault impacts the distribution of the non-linear chirp components of the bearing force. Given
that the characteristic frequency orders are used as criteria for assessing the gear’s operating condition [56], we applied order
8
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Fig. 5. Comparison of FRF between the physical decoupling and virtual decoupling.

Fig. 6. Magnitude spectrum and order spectrum of simulated vibration signals.

Fig. 7. Time–frequency distribution of VNCCD at three paths on the housing under gear healthy condition.

tracking to the bearing force signals for comparison. The order spectrum and characteristic frequency orders for the bearing force

signals of Path 2, under both the gear cracking condition and the healthy condition, are presented in Fig. 8. By eliminating the

intercoupling effect of structural vibration transfer paths, the order spectrum of the bearing force exhibits superior performance in

fault diagnosis.
9
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Fig. 8. Order spectrum and magnitude at characteristic frequency orders of bearing force signals.

Fig. 9. VNCCD of bearing force of path 2.

Table 1
The peak of the order spectrum of the VNCCD in numerical example.

Path 1 Path 2 Path 3

Crack fault condition 3.3265 0.9102 0.8211
Health condition 3.1516 0.5055 0.6836
Increases 5.55% 80.0% 20.11%

In this case, the visual decoupled nonlinear chirp components is defined as the meshing frequency components and side-band

frequency components. By way of illustration, we analyze the bearing dynamic force of Path 2. The reconstructed visual decoupled

nonlinear chirp component signals in the time domain are presented in Fig. 9(a), while the order spectrum of the reconstructed visual

decoupled nonlinear chirp component signal is displayed in Fig. 9(b). The maximum value in the order spectrum of the reconstructed

visual decoupled nonlinear chirp component signal is indicated in Table 1. It is evident from Table 1 that the magnitudes of all visual

decoupled nonlinear chirp components increase under the gear cracking condition.
10
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Fig. 10. The gearbox test rig in experiment.

Table 2
Main parameters of the gear system in experimental.
Parameter Value Parameter Value

Number of teeth 𝑍1 = 28, 𝑍2 = 40, 𝑍3 = 34, 𝑍4 = 34 Density (kg/m3) 7850
Young’s modulus (GPa) 210 Radius of the shaft (mm) 24
Poisson’s ratio 0.3 Module (mm) 3
Face width (mm) 16 Pressure angle (◦) 20
Addendum coefficient 1 Bottom clearance coefficient 0.3

Table 3
The test time of the virtual decoupling and physical decoupling.

Dismantled Hammer impact test Assembled Total

Virtual decoupling – 60 (38 times) – 60 min
Physical decoupling 100 20 (12 times) 90 210 min

5. Experimental verification

In this section of the paper, we demonstrate the effectiveness of this method through experiments. The two-stage gearbox test
system used in the experiment is shown in Fig. 10. Table 2 lists the gear parameters. Vibration signals are measured with six triaxial
accelerometers, the locations that are displayed in the illustration by yellow dots.

5.1. Decoupling transfer function via virtual decoupling

Six triaxial accelerometers are affixed to the gearbox housing. The gears are typically acceptable to neglect axial force [57].
In this study, only the 𝑥 and 𝑦 directions are considered in the model for transfer paths. To obtain the decoupled FRFs between
passive part and measure point, the virtual decoupling method is employed, and an impact hammer (DH-LC02-3A105) is used for
impulsive excitations. The data acquisition system (DH8303) records both excitation and response signals. Based on the frequency
11
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Fig. 11. FRF test: (a) physical decoupling; (b) virtual decoupling.

Fig. 12. FRFs obtained from virtual decoupling and physical decoupling: (a) 𝐻𝑚1𝑦4; (b) 𝐻𝑚2𝑦4

response curve obtained from the impact hammer, the frequency range of the excitation signal is constrained to below 5000 Hz.
Consequently, the sampling frequency for the frequency response test is established at 8000 Hz. The effectiveness of the virtual
decoupling method is compared against a physical decoupling test, which is considered the standard.

For the physical decoupling, disassembling all shafts and gears is required (as shown in Fig. 11(a)), but the virtual decoupling
technology eliminates this need (as shown in Fig. 11(b)). The same six triaxial accelerometers are used in the FRF tests, enabling the
acquisition of twelve FRFs from a single hammer test. To construct the full 12 × 12 frequency response matrix (including components
such as 𝐇coup

rr , 𝐇coup
hr , and 𝐇coup

hh ), twelve hammer tests are needed. 𝐇coup
rh is determined based on the reciprocity principle. Finally,

acquiring the 1 × 12 dimension matrix components (𝐇coup
mr and 𝐇coup

mh ) requires only one hammer test.

A total of 38 hammer tests are required to collect the coupled FRFs. The virtual decoupling technique notably avoids assembly
errors commonly associated with physical decoupling methods. By using the virtual decoupling method, the total test time can be
reduced by 71% in this work. In Table 3, the time costs of each testing process are presented to quantify its efficiency. In Fig. 12,
the decoupled FRFs, labeled 𝐻𝑚1𝑦4 and 𝐻𝑚2𝑦4, are presented.

More specifically, 𝐻𝑚1𝑦4 represents the FRF that connects bearing 4 in the 𝑦-direction to measurement point 1. There is a
significant correlation identified between the FRFs obtained by virtual decoupling techniques and physical decoupling techniques.
12
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Fig. 13. Parameters of experiment under nonstationary

Fig. 14. Fault diagnosis based on vibration signal of 2x (𝐚) Time–frequency image of vibration signals with faulty condition. (𝐛) The extracted non-linear chirp
components from vibration signals in time domain. (𝐜) Time–frequency image of vibration signals with healthy condition. (𝐝) Order spectrum of the nonlinear
chirp components between healthy and faulty condition
13
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Fig. 15. Fault diagnosis based on bearing dynamic force of path 3 (𝐚) Time–frequency image of bearing force signals with faulty condition. (𝐛) the reconstructed
chirp component signal from bearing force signals by VNCCD. (𝐜) the reconstructed chirp components’ signal by SST2. (𝐝) The time–frequency image of bearing
force signals with healthy condition. (𝐞) Order spectrum of the visual decoupled nonlinear chirp component signal by VNCCD. (𝐞) Order spectrum of the
reconstructed chirp component signal by SST2

The frequency response assurance criteria (FRAC) is used as an instrument to assess the level of similarity [58]:

FRAC =
|

∑𝑁𝑓
𝑗=1(𝐇PD(𝜔𝑗 )T𝐇VD(𝜔𝑗 ))|

2

[
∑𝑁𝑓

𝑗=1(𝐇PD(𝜔𝑗 )T𝐇PD(𝜔𝑗 ))][
∑𝑁𝑓

𝑗=1(𝐇VD(𝜔𝑗 )T𝐇VD(𝜔𝑗 ))]
(32)

Where the Hermitian transpose is denoted by the superscript T. The symbols VD and PD stand for the virtual decoupling and the
physical decoupling, respectively. The discrete number is denoted by 𝑁𝑓 . 𝜔 represents the circular frequency. The FRAC of 𝐻𝑚1𝑦4
and 𝐻𝑚2𝑦4 is 0.60634 and 0.80824. This illustrates that the virtual decoupling approach is effective. In order to remove the effect
of structural vibration paths and obtain the decoupled gearbox housing FRF, an alternative approach known as virtual decoupling
has been introduced. Since the physical decoupling cannot be achieved in integrated gear systems, this technology assumes utmost
importance.

5.2. Extracting force non-linear chirp components for fault diagnosis

In this subsection, the decoupled Frequency Response Function is employed to identify the bearing force signal of the gearbox
operating under non-stationary conditions. The test rig undergoes a speed variation process, as illustrated in Fig. 13(a). Gear 2 on
the transmission shaft is replaced. Consequently, bearing force and vibration are obtained under both healthy and gear 2 with a
chipped tooth. The layout of measuring points for sensors is presented in Fig. 13(b). The sampling frequency during the experiment
is set to 16000 Hz.

To effectively demonstrate the impacts of our proposed method, we initially utilize the original signal from the 2x measure
point for fault diagnosis. The original signal under variety condition can be obtain these time–frequency image by 𝐆𝐏𝐓𝐅. Fig. 14(a)
and Fig. 14(c) show the comparison of time–frequency images between the vibration signals from the gear with a chipped tooth
fault and those from the healthy condition. Fig. 14(b) displays the reconstructed non-chirp components from the original vibration
signals in the time domain, with the non-chirp components extracted from the 𝑥 signal. It is challenging to distinguish between the
conditions of the various gears. Similarly, we apply the order tracking technology to the reconstructed non-chirp components for
fault diagnosis. As shown in Fig. 14(d), order tracking struggles to determine the health of the gear, primarily due to the influence
of the structural transfer paths on the characteristics of the vibration signal.
14
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Table 4
The peak of the order spectrum the reconstructed VNCCD signals.

1X 1Y 2X 2Y 3X 3Y

Fault condition 3.5407 5.8604 2.0703 29.7496 7.1463 5.4908
Health condition 0.7364 1.2388 1.0609 8.5676 5.6154 4.3110
Increases 380.8% 373.1% 95.1% 247.2% 27.2% 27.3%

4X 4Y 5X 5Y 6X 6Y
Fault condition 8.9245 7.5003 7.5437 7.5549 13.2318 1.9345
Health condition 3.9293 1.8206 3.3931 2.3264 5.3513 1.3733
Increases 127.1% 312.0% 122.3% 224.7% 147.2% 40.8%

Subsequently, the MWI is applied to identify the bearing dynamic forces of the gearbox. By utilizing the measured vibration
esponse signals 𝐱 and the decoupled FRF 𝐇mh, the bearing force signals are identified. Moreover, the vibration signals from
ccelerometers 1, 2, and 3 are employed, with data from these three measured points used to solve the dynamic inverse problem.

Similarly, let us consider the case of a bearing dynamic force 2x. The time–frequency distribution estimated using 𝐆𝐏𝐓𝐅 with
fitted IFs under the gear faulty conditions and the healthy conditions are presented in Fig. 15(a) and Fig. 15(d), respectively. The red
arrow points to the chirp component that is extracted and reconstructed directly from the bearing force signal. The reconstructed
visual decoupled nonlinear chirp component signal in the time domain is illustrated in Fig. 15(b), while the order spectrum of
the reconstructed visual decoupled nonlinear chirp component signal is depicted in Fig. 15(e). As Second-order Synchrosqueezing
Transform(SST2) is an existing technique known for its high efficiency in extracting time–frequency features, we have used it for
comparative experiments [59]. The results of this algorithm are presented in Fig. 15(c) and Fig. 15(f). The comparative experiments
demonstrate the efficiency of our algorithm Table 4 showcases the distinctiveness of the features extracted by the VNCCD method
under different conditions. This phenomenon demonstrates the effectiveness of the proposed method in mitigating the coupling
effect of the structural transfer path and enhancing the quality of the signal. When compared to the vibration signal, the extracted
VNCCDs exhibit improved efficacy in diagnosing gearbox faults.

6. Conclusions

This study presents a novel technique, called the VNCCD method, for diagnosing faults in gear systems under nonstationary
conditions. A transfer path model of the gear system is established, and virtual decoupling technology is introduced to obtain
the frequency response function without disassembly. The bearing force is identified in the frequency domain based on the
resulting frequency response function. By employing the IFT and a signal decomposition technique, nonlinear chirp components
are successfully extracted. The VNCCD effectively demonstrates the phenomenon of magnitude increase compared to the inherent
nonlinear chirp component from the original signal. Experimental research and simulations provide substantial evidence of the
proposed approach’s efficacy in diagnosing gear faults. However, our study still has the following drawbacks:

∙ The transfer path function of the gearbox is typically a nonlinear time-varying function, but we modeled it as a linear
time-invariant function, which has low accuracy requirements.

∙ The time–frequency feature extraction algorithm based on ridges requires a high-quality initial ridge; an inappropriate initial
ridge can lead to erroneous results.

To address these issues, our future research will focus on the mechanical properties of the gearbox and more robust time–
frequency feature extraction algorithms.
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Table 5
Main parameters of the numerical example.

Parameters Value Parameters Value

Number of teeth 𝑍1 = 28, 𝑍2 = 40, 𝑍3 = 34, 𝑍4 = 34 (kg/m3) 7850
Young’s modulus (GPa) 210 Radius of the shaft (mm) 24
Poisson’s ratio 0.3 Module (mm) 3
Face width (mm) 16 Pressure angle (◦) 20
Addendum coefficient 1 Bottom clearance coefficient 0.3
Mass (kg) 𝑀4 = 1, 𝑀5 = 2, 𝑀3 = 3, 𝑀7 = 23.5 Damping ratio 0.02
Damp(N s/m) 𝑐36 = 1e4, 𝑐25 = 1e4, 𝑐14 = 1e4 Stiffness (N/m) 𝑘36 = 1e7, 𝑘25 = 1e7

𝑘14 = 1e7
Damp(N s/m) 𝑐47 = 1e3, 𝑐57 = 1e3, 𝑐67 = 1e3 Stiffness (N/m) 𝑘47 = 1e8, 𝑘57 = 1e8

𝑘67 = 1e8

Appendix A. Detailed parameters of the numerical example

The differential equation of the lumped parameter model is as follow:

𝐌𝑞 + 𝐂�̇� +𝐊𝑞 = 𝐆 (A.1)
Where the symbols 𝐌, 𝐂 and 𝐊 stand for the mass matrix, the damping matrix and the stiffness of the lumped model, respectively.
The Table 5 lists the specific parameters. 𝑞 and 𝐆 represents the generalized coordinate vector and the generalized force. The
generalized coordinate vector of lumped parameter model is as follows:

𝑞 = [ 𝑥1 𝜃1 𝑥2 𝜃2 𝑥3 𝜃3 𝑥4 𝑥5 𝑥6 𝑥7 ] (A.2)

Where 𝑥𝑖 and 𝜃𝑖 stand for the linear and angular displacement of 𝑖th part of the lumped model, respectively. The global mass matrix
of the model is:

𝐌𝑐𝑜𝑢𝑝 = diag( 𝑚1 𝐽1 𝑚2 𝐽2 𝑚3 𝐽3 𝑚4 𝑚5 𝑚6 𝑚7 ) (A.3)

Where 𝑚𝑖 and 𝐽𝑖 stand for the mass and moment of inertia of the 𝑖th part of the lumped model, respectively.
The FRFs of the total system is as follows:

𝐇𝑐𝑜𝑢𝑝 = 𝜔2(−𝜔2𝐌𝑐𝑜𝑢𝑝 + 𝑗𝜔𝐂𝑐𝑜𝑢𝑝 + 𝐂𝑐𝑜𝑢𝑝)−1 (A.4)

The time-varying damping and stiffness matrices of the coupled system are denoted by 𝐂𝑐𝑜𝑢𝑝 and 𝐊𝑐𝑜𝑢𝑝, respectively. The mass
matrix of the passive part is as follows:

𝐌𝐷𝑒𝑐𝑜𝑢𝑝 = diag( 𝑚4 𝑚5 𝑚6 𝑚7 ) (A.5)

For the passive part, the stiffness matrix is:

𝐊𝐷𝑒𝑐𝑜𝑢𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

k47 0 0 −k47
0 k57 0 −k57
0 0 k67 −k67

−k47 −k57 −k67 k47+k57 + k67 + k07

⎤

⎥

⎥

⎥

⎥

⎦

(A.6)

For the passive part, the damping matrix is:

𝐂𝐷𝑒𝑐𝑜𝑢𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

c47 0 0 −c47
0 c57 0 −c57
0 0 c67 −c67

−c47 −c57 −c67 c47+c57 + c67 + c07

⎤

⎥

⎥

⎥

⎥

⎦

(A.7)

For the passive part,The theoretical decoupled FRFs can be obtained as:

𝐇𝐷𝑒𝑐𝑜𝑢𝑝 = 𝜔2(−𝜔2𝐌𝐷𝑒𝑐𝑜𝑢𝑝 + 𝑗𝜔𝐂𝐷𝑒𝑐𝑜𝑢𝑝 +𝐊𝐷𝑒𝑐𝑜𝑢𝑝)−1 (A.8)

The global stiffness matrix of the gear system is 𝐊𝑐𝑜𝑢𝑝 = [𝐾𝑐𝑜𝑢𝑝
1 , 𝐾𝑐𝑜𝑢𝑝

2 ], where

𝐾𝑐𝑜𝑢𝑝
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

k14+k1(t) rb1k1(t) −k1(t) rb2k1(t) 0
rb1k1(t) r2𝑏1k1(t) −rb1k1(t) rb1rb2k1(t) 0
−k1(t) rb1k1(t) k1(t)+k2(t) −rb2k1(t)+rb3k2(t) −k2(t)
rb2k(t) rb1rb2k1(t) −rb1k2(t)+rb3k2(t) r2b2k1(t) + r2b3k2(t) −rb3k2(t)

0 0 −k2(t) −rb3k2(t) k2(t)
0 0 rb4k2(t) rb3rb4k2(t) −rb4k2(t)

−k14 0 0 0 0
0 0 −k25 0 0
0 0 0 0 −k36

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(A.9)
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0 −k47 −k57 −k67 k47+k57 + k67 + k07

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.10)

here 𝑘𝑖𝑗 is the stiffness between part 𝑖 and 𝑗. 𝑟𝑏𝑖 stands for base radius of 𝑖th gear. 𝑘𝑖(𝑡) represents the time-variable meshing
tiffness of gear pair 𝑖 (see Table 5). The global damp matrix of the gear system is 𝐂𝑐𝑜𝑢𝑝 = [𝐶𝑐𝑜𝑢𝑝

1 , 𝐶𝑐𝑜𝑢𝑝
2 ], where

𝐶𝑐𝑜𝑢𝑝
1 =
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c14+c1(t) rb1c1(t) −c1(t) rb2c1(t) 0
rb1c1(t) r2𝑏1c1(t) −rb1c1(t) rb1rb2c1(t) 0
−c1(t) rb1c1(t) c1(t)+c2(t) −rb2c1(t)+rb3c2(t) −c2(t)
rb2c(t) rb1rb2c1(t) −rb1c2(t)+rb3c2(t) r2b2c1(t) + r2b3c2(t) −rb3c2(t)

0 0 −c2(t) −rb3c2(t) c2(t)
0 0 rb4c2(t) rb3rb4c2(t) −rb4c2(t)

−c14 0 0 0 0
0 0 −c25 0 0
0 0 0 0 −c36
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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here 𝑐𝑖𝑗 is the stiffness between part 𝑖 and 𝑗. 𝑐𝑖(𝑡) represents the time-variable meshing stiffness of gear pair 𝑖.

ppendix B. Bearing dynamic force estimation

In this section, we introduce the algorithm for identifying bearing forces and briefly demonstrate the concept of this algorithm.
he proof of the consistency and unbiasedness of the algorithm can be found in [47], which is shown in Table 6. Note that we omit
he scripts of ‘‘Decoup’’ and ‘‘mh’’ to focus on the algorithm itself.

emma ([60]). The least upper bound of the raw matrix is 𝛿𝐅
𝐅 ≤ 𝑘(�̃�) ‖𝐀‖‖𝛿𝐲‖

‖𝐀‖‖𝐲‖ +𝑘(�̃�) ‖𝛿𝐀‖
‖�̃�‖

. where 𝑘(�̃�) = ‖

‖

�̃�‖
‖

‖

‖

‖

�̃�†‖
‖

‖

, 𝐀 = 𝐇𝑇𝐇 and 𝐲 = 𝐇𝑇 𝐱
in (13). The symbol 𝛿 and ‖‖ stands for error and Frobenius norm of matrix.

Corollary. The least upper bound of the with weighted matrix is 𝛿𝐟
𝐟 ≤ 𝑘(�̃�𝐖) ‖𝐀‖‖𝐖‖‖𝛿𝐲‖

‖𝐀𝐖‖‖𝐲‖ + 𝑘(�̃�𝐖) ‖𝛿𝐀𝐖‖

‖�̃�𝐖‖

where 𝑘(�̃�𝐖) stands for the
condition number of �̃�𝐖.

Proof. We use Lemma to analysis the Eq. (14):

𝛿𝐟
𝐟

≤ 𝑘(�̃�𝐖)
‖𝐀𝐖‖ ‖𝛿𝐲‖
‖𝐀𝐖‖ ‖𝐲‖

+ 𝑘(�̃�𝐖)
‖𝛿𝐀𝐖‖

‖

‖

̃𝐀𝐖‖

‖

(B.13)

Due to ‖𝐀𝐖‖ ≤ ‖𝐀‖ ‖𝐖‖, the equation can be written as:

𝛿𝐟
𝐟

≤ 𝑘(�̃�𝐖)
‖𝐀‖ ‖𝐖‖ ‖𝛿𝐲‖
‖𝐀𝐖‖ ‖𝐲‖

+ 𝑘(�̃�𝐖)
‖𝛿𝐀𝑊 ‖

‖

‖

�̃�𝐖‖

‖

(B.14)

The proof is finished.
The purpose of the weighting matrix is to reduce the upper bound of the correlation error, the following is constrained:

𝑘(�̃�𝐖)
‖𝐀‖ ‖𝐖‖ ≤ 𝑘(�̃�)‖𝐀‖ , 𝑘(�̃�𝐖)

‖𝛿𝐀𝐖‖ ≤ 𝑘(�̃�)‖𝐀‖ (B.15)
17

‖

‖

�̃�𝐖‖
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‖

�̃�‖
‖

‖

‖
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‖

‖

‖

�̃�‖
‖
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Table 6
Bearing dynamic force estimation.

1:Initialize: 𝐟 (0) ← 0,𝐖(0) ← 𝐼, 𝑟 ← 0, 𝑘 ← 1, 𝑥,𝐇, 𝜀

2: while 𝑘(𝐇𝐓𝐇𝐖(0) …𝐖(𝑟+1)) ≤ 𝑘(𝐇𝐓𝐇𝐖(0) …𝐖(𝑟))

3:Compute W(𝑟+1) for matrix A
4: HTHW(0) …W(𝑟) ← HTHW(0) …W(𝑟+1)

5:𝑟 ← 𝑟 + 1 , end while
6: 𝛼 ← obtain the value through GCV

7: 𝐟 (1) ← Solve (𝐇𝐓𝐇𝐖(0) …𝐖(𝑟) + 𝛼𝐈)𝐟 (1) = 𝐇𝐓x + 𝛼𝐟 (0) by LU Decomposition.
8: while ‖

𝐞(𝑘)
‖

‖
𝐟 (𝑘)
‖

≥ 𝜀

9: 𝑟𝑘 ← HT𝑥 −HTHW(0) …W(𝑟)f(𝑘)

10: 𝑒(𝑘) ← Solve (H𝐓HW(1) …W(𝑟) + 𝛼I)e(𝑘) = 𝑟(𝑘) by LU Decomposition.
11:f(𝑘+1) ← f(𝑘) + e(𝑘),𝑘 + 1 ← 𝑘 + 1

12: end while
13: 𝐹 ← 𝐖(1) …𝐖(𝑟)𝐟 (𝑘)

Considering ‖

‖

�̃�𝐖‖

‖

≤ ‖

‖

�̃�‖
‖

‖𝐖‖, the above constraints are modified to:

𝑘(�̃�𝐖) ≤ 𝑘(�̃�), ‖

‖

�̃�‖
‖

‖𝐖‖ = ‖

‖

�̃�𝐖‖

‖

and ‖𝛿𝐀𝐖‖

‖

‖

�̃�𝐖‖

‖

≤ ‖𝛿𝐀‖
‖

‖

�̃�‖
‖
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For the above formula, we can obtain ‖𝛿𝐀𝐖‖

‖𝛿�̃�𝐖‖

= ‖𝛿𝐀𝐖‖

‖�̃�‖‖𝐖‖

≤ ‖𝛿𝐀‖‖𝐖‖

‖�̃�‖‖𝐖‖

= ‖𝛿𝐀‖
‖�̃�‖

and 𝑘(�̃�𝐖) ‖𝐀‖‖𝐖‖

‖�̃�𝐖‖

= 𝑘(�̃�𝐖) ‖𝐀‖‖𝐖‖

‖�̃�‖‖𝐖‖

≤ 𝑘(�̃�) ‖𝐀‖
‖�̃�‖

. Obviously,
the three constraints will hold if the second constraint is satisfied.

The weighted matrix 𝐖 can be written:

𝐖 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2,… , 𝑤𝑚), 𝑤𝑘 =

√

√

√

√

∑𝑚
𝑖=1 𝑎

2
𝑖𝑘

∑𝑚,𝑚
𝑖=1,𝑗=1 𝑎

2
𝑖𝑗

(B.17)

When the weighted matrix 𝐖 is introduced:

‖

‖

�̃�‖
‖𝐹 ‖𝐖‖𝐹 =

√

√

√

√

𝑚
∑

𝑖=1
𝑎2𝑖1 +

𝑚
∑

𝑖=1
𝑎2𝑖2 +⋯ +

𝑚
∑

𝑖=1
𝑎2𝑖𝑚

√

𝑤2
1 +𝑤2

2 +⋯ +𝑤2
𝑛

≥

√

√

√

√𝑤2
1

𝑚
∑

𝑖=1
𝑎2𝑖1 +𝑤2

2

𝑚
∑

𝑖=1
𝑎2𝑖2 +⋯ +𝑤2

𝑚

𝑚
∑

𝑖=1
𝑎2𝑖𝑚

=

√

√

√

√

𝑚
∑

𝑖=1
𝑤2

1𝑎
2
𝑖1 +

𝑚
∑

𝑖=1
𝑤2

2𝑎
2
𝑖2 +⋯ +

𝑚
∑

𝑖=1
𝑤2

𝑚𝑎
2
𝑖𝑚 = ‖

‖

�̃�𝐖‖

‖𝐹

Due to the Cauchy Inequality,
∑𝑚

𝑖=1 𝑎
2
𝑖1

𝑤2
1

=
∑𝑚

𝑖=1 𝑎
2
𝑖2

𝑤2
2

= ⋯ =
∑𝑚

𝑖=1 𝑎
2
𝑖𝑚

𝑤2
𝑚

=
∑𝑚,𝑚

𝑖=1,𝑗=1 𝑎
2
𝑖𝑗 = 𝑐, the second constraint does hold.
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