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Abstract
In the domain of flexible manufacturing, Deep Reinforcement Learning (DRL) has emerged as a pivotal technology for
robotic assembly tasks. Despite advancements in sample efficiency and interaction safety through residual reinforcement
learning with initial policies, challenges persist in achieving context generalization amidst stochastic systems characterized
by large random errors and variable backgrounds. Addressing these challenges, this study introduces a novel framework
that integrates task attention-based multimodal fusion with an adaptive error curriculum within a residual reinforcement
learning paradigm. Our approach commences with the formulation of a task attention-basedmultimodal policy that synergizes
task-centric visual, relative pose, and tactile data into a compact, end-to-end model. This model is explicitly designed to
enhance context generalization by improving observability, thereby ensuring robustness against stochastic errors and variable
backgrounds. The second facet of our framework, curriculum residual learning, introduces an adaptive error curriculum that
intelligently modulates the guidance and constraints of a model-based feedback controller. This progression from perfect
to significantly imperfect initial policies incrementally enhances policy robustness and learning process stability. Empirical
validation demonstrates the capability of our method to efficiently acquire a high-precision policy for assembly tasks with
clearances as tight as 0.1 mm and error margins up to 20 mmwithin a 3.5-hour training window-a feat challenging for existing
RL-based methods. The results indicate a substantial reduction in average completion time by 75% and a 34% increase
in success rate over the classical two-step approach. An ablation study was conducted to assess the contribution of each
component within our framework. Real-world task experiments further corroborate the robustness and generalization of our
method, achieving over a 90% success rate in variable contexts.
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1 Introduction

Assembly maintains its pivotal role in the manufactur-
ing landscape, yet it is still predominantly labor-intensive.
Although industrial robots are widely used in modern indus-
trial systems because of their ability to perform complex
tasks, the integration of robotic systems into these assembly
processes presents significant challenges. A comprehensive
examination of progress in this domain is detailed in [1]. The
principal challenges, as delineated by [2], encompass: (1)
the requirement for assembly systems to efficiently navigate
an extensive spectrum of interrelationships and environmen-
tal conditions, (2) the imperative for precise manipulation
using universally applicable equipment, and (3) the neces-
sity to achieve consistent reliability and high success rates
within industrial contexts. The task of peg-in-hole insertion
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represents a quintessential benchmark in robotic assembly,
categorizing it as a task rich in physical contact (contact-rich)
within the realm of robotic manipulation.

In addressing the challenges posed by robotic assem-
bly, the formulation of effective policies, both manually
designed and those based on learning algorithms, is essential.
Robotic assembly systems often incorporate vision-based
methods for broad localization and force-based techniques
for precision adjustments, as explored in studies by [3,
4]. However, the real-world application of these two-tiered
strategies encounters difficulties in terms of design intricacy
and operational effectiveness, often necessitating specialized
expertise. Deep Reinforcement Learning (DRL) has been
proposed as a potential solution to these issues, with its abil-
ity to handle complex tasks via reward mechanisms that are
easier to design, as discussed in [2, 5]. Nevertheless, the
requirement of DRL for proactive exploration and extensive
interaction poses significant challenges, thereby constraining
its broader application, as observed by [6].

Residual Reinforcement Learning (RL) has emerged as a
viable strategy to address the concerns of unsafe exploration
and large data requirements typical ofDRL, by building upon
existing solutions for directed exploration, as demonstrated
by [7]. This approach focuses on refining these existing solu-
tions and has shown potential in various integrative methods
within the residual RL framework, including few-shot learn-
ing [8] and meta-learning [9]. The residual policy aims to
enhance system robustness by learning from variability and
supports the transferability of acquired skills across differ-
ent scenarios by adapting a simple initial policy, a concept
further explored by [10]. However, the adaptation of systems
to new contexts with substantial stochastic positional errors
and diverse environmental conditions remains a challenge
for both tactile-based [11] and vision-based [12] residual
learning methods. As illustrated in Fig. 1, tactile sensors,
while offering localized contact state data, may lack robust-
ness against significant errors due to their limited range [11].
Conversely, vision sensors provide a broader range of sensing
butmay strugglewith variable backgrounds comprising task-
independent features and lack precision in pose estimation
[12]. Additionally, the learning of a residual policy to address
substantial uncertainties in initial strategies is inefficient in
low-clearance and contact-rich tasks by random exploration.
The extensive error range can provide misleading guidance,
complicating the identification of small clearance holes.

The primary aim of our research is to develop efficient
methods for acquiring context-generalizable assembly skills,
leveraging multimodal fusion and residual Reinforcement
Learning (RL). Our objectives include enhancing the robust-
ness of the residual policy in the face of random errors
and fluctuating backgrounds, as well as improving the sam-
ple efficiency of residual learning amidst the large range of
stochastic pose errors. To accomplish these objectives, our

approach integrates multimodal data to bolster observabil-
ity and employs a specially designed policy, encompassing
a curriculum and attention, to steer the residual agent’s
exploration and observation. This paper introduces a novel
hybrid framework for assembly manipulation tasks, merging
a model-based controller with a context-adaptive residual
policy. The model-based controller, grounded in modified
Cartesian compliance control and a partial model, is geared
towards improving the safety and efficiency of the residual
policy’s exploration. The residual policy aims to heighten
robustness in context generalization by assimilating high-
dimensional multimodal information into a succinct fusion
model, thereby simplifying the design and enhancing the
operational efficiency of the model-based controller. To
address the inefficient exploration caused by uncertainties
linked to the initial policy during the learning phase, we
propose an adaptive curriculum for residual learning. This
curriculum offers structured guidance and imposes con-
straints for exploration within a set context, progressively
increasing the uncertainty of the initial policy and decreas-
ing its reliance as the agent’s policy gains reliability, thus
effectively tackling exploration challenges stemming from
potentially misleading initial strategies. Furthermore, we
confront the challenge of learning invariant features across
various contexts in real robot learning by harnessing ini-
tial policy guidance and introducing a task-focused attention
mechanism for observation. This mechanism allows the
agent to concentrate on the immediate task while min-
imizing the impact of the variable environment, thereby
enabling context generalization through the guidance of
learning invariant features. Experimental results show that
our proposed framework outperforms existing methods in
both learning cost and strategyperformance.Ablation experi-
ments demonstrate that residual learning can efficiently learn
multimodal strategies to improve robustness under larger ran-
dom errors, curriculum residual learning has a significant
impact on learning efficiency, and task-focused observation
can improve generalization. Real robot experiments show
that our method has considerable application potential.

Our key contributions are as follows:

1. We present a framework for assembly tasks based on
residual RL, combining a Cartesian compliance control
and trajectory with a residual multimodal fusion policy.
This innovative framework is adept at efficiently learning
the robust policy on real robots and low-cost adapting to
diverse contexts.

2. We construct a task-focused attention mechanism for
high-dimensional multimodal sensory data to be inte-
grated by a streamlined neural network architecture. This
design significantly aids in the formation of a robust
residual policy capable of managing substantial random
errors and adapting to various environmental settings.
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Fig. 1 The proposed framework for context generalization with large
position error and variable backgrounds. (a) Different from the point
or line contact with a small error, a large error will result in a region
with only normal contact force, which provides an undifferentiated con-
tact state. (b) A wide view consists of task-related information, such as

the edge of the hole, and background information, such as the edge of
the tray and workpiece. (c) This work proposes a framework of Task
attention-based multimodal fusion and curriculum residual learning for
context generalization

3. We further the application of adaptive curriculum learn-
ing within the realm of residual learning by an automated
system dynamically modulating the uncertainty inher-
ent in the initial policy. This breakthrough enhances the
learning efficiency and stability for robust residual policy.

4. Through a range of comparative and ablation studies, the
efficacy of our proposed framework is rigorously vali-
dated.We also perform extensive evaluations to establish
its robustness in a variety of assembly tasks and under
different environmental conditions.

2 Related work

This section summarizes the background and foundations
related to our approach. The related works of robotic assem-
bly tasks through multimodal information and DRL are
summarized, and the concepts and methods of vision atten-
tion mechanism and curriculum learning are discussed.

2.1 Robotic assembly tasks withmultimodal
information and deep reinforcement learning

Robotic assembly, integral to flexible manufacturing and
contact-rich manipulation, has undergone significant research

developments in recent decades. The integration of mul-
timodal information has been pivotal in augmenting the
robustness and reducing the noise sensitivity in stochastic
systems, as evidenced by the literature [1]. Noteworthy in
this context is the contribution of [13], who implemented
haptic feedback in admittance control for adaptive response
to environmental disturbances, and [14], who introduced an
innovative compliant control method using Gaussian Mix-
ture Models (GMM) to assimilate learning from the manual
assembly. Further, the works of [3] and [4] have enriched
this domain by integrating vision and tactile information
to enhance robustness and precision in manipulation tasks.
Despite these advancements, the conventional two-step pro-
cess of coarse vision-based positioning followed by fine
force-based alignment remains suboptimal. This limitation
is analogous to the challenges in human assembly learn-
ing, where acquiring skills from expert demonstrations or
predefined policies is complex and often inadequate. Fur-
thermore, the costs associated with reprogramming policies
or collecting expert data escalate with the growing diversity
of assembly tasks.

Deep Reinforcement Learning (DRL) has emerged as a
promising method for learning optimal perception and con-
trol policies through iterative interactions. Various studies
have employed DRL-based techniques to fine alignment and
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insertion policies in assembly tasks, presupposing the correc-
tion of pose errors by vision systems and the implementation
of safe interaction controllers [15–19]. For the integration of
RL and compliance controllers, other methods have investi-
gated approaches such as variable impedance control and
learning-based force control frameworks to dynamically
adapt to different stages of assembly [20–23]. Residual RL
has been proposed to utilize a foundational policy, guiding
and constraining the exploration of agents in initial learning
stages, thus improving exploration and learning efficiency
[8, 24]. However, these methods have not fully integrated
visual information in the agent, necessitating the provision
of precise assembly positions (error less than 2mm) for initial
policy through specialized, costly demonstrations or vision
systems.

The application of multimodal information through DRL
has been explored in recent studies. Some research has
focused on learning latent state spaces and incorporat-
ing these compact representations into RL frameworks to
enhance sample efficiency and generalization [5, 25]. Others
have distinguished between perception and policy, address-
ing the sim-to-real gap and generalization to novel object
shapes through domain randomization and impedance con-
trol [26–29]. Direct visual-haptic fusion has also been
explored, with policies initially trained in simulated envi-
ronments and subsequently fine-tuned or transferred to real-
world settings [2, 30, 31]. Although sim-to-real approaches
can reduce real robot learning time, the disparity between
simulated and real environments or different object shapes
presents challenges in real-world tasks, leading to consider-
able performance declines during generalization. The depen-
dency on high-quality simulation environments restricts their
practical manufacturing applicability.

Our work diverged from these methodologies by intro-
ducing a residual RL approach that leverages both visual
and force data for completing the three stages of peg-in-
hole assembly tasks. Our robust multimodal residual policy
simplifies the design complexity and parameter tuning of
the initial policy, facilitating swift adaptation to new con-
texts through modifications to the initial policy’s waypoints.
Guided by the initial policy, we directly train the residual
policy in real-world settings and repurpose it across vari-
ous contexts, effectively bypassing generalization gaps and
promising improved performance metrics, such as success
rate, insertion efficiency, and operational delicacy. This strat-
egy aligns with the goals of [32], while also addressing the
limitations of suboptimal teaching data highlighted by [23].

2.2 Curriculum learning for precise tasks

Curriculum Learning (CL) has been recognized as a potent
methodology for augmenting the sampling efficiency of

Reinforcement Learning (RL). It achieves this by progres-
sively increasing task complexity and strategically guiding
exploration during the learning phase, as discussed in liter-
ature [33–35]. The work of Dong et al. [36] exemplifies the
effectiveness of CL in progressively more complex insertion
tasks (wall→corner→U→hole). By systematically escalat-
ing the complexity of these tasks, they achieved enhanced
data efficiency and facilitated broader generalization across
various objects. Similarly, Jin P et al. [31] further advanced
CL by tailoring task difficulty to correlate with sensory data
inputs, thereby dividing the training process into pure visual
policy learning with larger peg-hole clearance and continued
vision-force policy learning with narrowed peg-hole clear-
ance. In terms of exploration curriculum within a single
task, Luo et al. [37] employed a curriculum that incremen-
tally increased task complexity and gradually relaxed safety
constraints, successfully training an RL agent for a dynamic
insertion task. This approach began with a non-randomized
and static socket pose, maximizing the likelihood of task
completion through random exploration. Hermann et al. [38]
tackled exploration challenges by introducing an adaptive
curriculum generation algorithm that modulated difficulty
via varying the sampling of initial states from demonstra-
tion trajectories. This method initiated task engagement with
simpler conditions and maintained rewards within a desir-
able success rate range by initially sampling states from the
end of trajectories, gradually moving towards the start. How-
ever, despite these innovations, existing implementation of
task curricula often requires a sequence of simplified tasks
and modifications to the task environment during learning,
necessitating significant human intervention and potentially
incurring costs in real-world insertion task training. More-
over, existing methods for exploration tend to focus on
modulating the onset and step size of exploration without
offering comprehensive guidance.

Diverging from these existing approaches, our research
delves into the application of adaptive curriculum learning
within the context of residual learning, specifically tar-
geting imperfect trajectories and compliance control. By
adaptively adjusting trajectory error and controller stiff-
ness, our methodology streamlines the learning process for
complex assembly operations, reducing the dependency on
manually crafted curricula and minimizing the need for
human intervention. This innovative curriculum strategy
first enables agents to learn contact force feedback-based
force control with small errors and then to learn vision-
based error compensation, providing more robust guidance
and demonstrating practical utility for robotic assembly
tasks. This approach represents an improvement in the
autonomous learning of precision tasks, contributing sub-
stantially to the field of robotic assembly and machine
learning.
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2.3 Task-centric attentionmechanisms for context
generalization

Context generalization is a paramount consideration in
robotic task execution, especially when a robot is expected
to function in diverse locations and under various back-
ground conditions. Existing methods can be divided into
those that increase the similarity between training and test-
ing environments, and those that explicitly aim to handle
differences [39]. A common strategy to increase the sim-
ilarity between training and testing environments involves
training an end-to-end policy in a wide array of contexts, to
explicitly improve adaptability [40]. To achieve generaliza-
tion across different backgrounds or tasks, techniques such
as data augmentation, domain randomization, and task distri-
bution have been utilized during training. These techniques
focus on extracting invariant features that are consistent
regardless of variations between training and testing envi-
ronments [41]. Nonetheless, applying these techniques in
real-world robot learning faces two major obstacles [42].
Firstly, developing a policy that generalizes across multiple
contexts often requires additional human input for context
reconfiguration and extensive data collection. Secondly, the
arbitrary visual representations learned may not effectively
contribute to control tasks. Recent advancements in general-
ization for robotic systems in unfamiliar environments have
highlighted the effectiveness of incorporating scene priors
[43]. Among various strategies, the use of keypoint-based
representations has emerged as a notable approach. These
representations focus on encoding task-specific, simplified
information, often termed ‘attention’ [25].While thismethod
has shown promise by decoupling perception from plan-
ning and control to enhance sample efficiency, it inherently
depends on learning across diverse contexts. In one hand, the
process of identifying keypoints typically involves human
labeling, a task that is not only labor-intensive but also a bot-
tleneck for scalability [44, 45]. In the other hand, selecting
the appropriate key points to represent the state of the task-
robot and the reliance on human-labeled data for keypoints
identification continues to be a significant challenge.

Our research diverges notably from pure learning-based
and knowledge-based invariant feature acquisition methods
by introducing a unique approach that harnesses coarse task
knowledge to direct attention. Central to this approach is the
use of rectangular boxes, steered by a foundational policy, to
strategically focus attention, representing the application of
Regions of Interest (ROIs) as amechanism for attention. This
technique enables Reinforcement Learning (RL) to focus
on the task’s most crucial, contact-dense segments, thereby
honing the feature learning scope to key elements. Addition-
ally, integrating an eye-in-hand camera system grants the
agent an advantageous perspective for task execution. The
employment of ROIs for attention is particularly efficacious

to obviate the need for manual keypoints identification and
training across diverse contexts. This innovation signifies a
substantial leap forward in robotic task learning, offering a
viable and efficient resolution to the challenges of context
generalization and attention allocation in robotic systems.

3 Problem statement

This study addresses the intricacies of robotic assembly tasks,
marked by stochastic position errors and dynamic back-
ground changes. We frame the problem within a stochastic
control system context. This system includes the robot and
its interactive configuration spacewith the task. The observa-
tion state of the robot at a given time t , represented as Y (t), is
determined through measurements that incorporate an error
component N (t). The robot’s control actions are denoted as
u(t). Challenges arise due to uncertainties in grasping and
motion control, introducing a random disturbance V (t) in
the assembly process. Consequently, the system’s dynamics
are modeled as follows:

Ẋ(t) = A(t)X(t) + B(t)u(t) + V (t)

Y (t) = C(t)X(t) + N (t)
(1)

where, X(t) indicates the state of the robot, starting from the
initial condition X(t0) = X0. The matrices A(t), B(t), and
C(t) represent time-variant system parameters.

The manipulation process, particularly in contact-rich
scenarios, is primarily challenging due to uncertainties in
geometry, pose, and dynamics. To tackle this, the pro-
cess is segmented into free-space motion and contact-rich
manipulation, with the latter being further divided into deter-
ministic and stochastic components. While a model-based
controller may be adequate for free-space motion and the
deterministic part of contact-rich interactions, the stochastic
disturbances in dexterous contact-rich manipulation necessi-
tate a learning-based residual policy.

The control architecture is formalized as follows:

ut = Ch (πh (t) , πθ (st )) (2)

where the action ut is the output of the hybrid con-
troller Ch(∗), integrating a hand-designed policy πh(t)and
a learning-based policy πθ (st ).

To effectively manage stochastic systems with significant
random errors and diverse backgrounds, it is imperative to
efficiently develop a policy πθ (st ) in one context and reuse it
in multiple contexts. Given the random nature of localization
errors across different contexts, the policy must demon-
strate robustness. Furthermore, systemdesign should account
for variable backgrounds to ensure consistent deployment

123



C. Wang et al.

performance across various contexts, highlighting the impor-
tance of policy generalization.

4 Method

In this work, we introduce a practical framework for robotic
assembly manipulation, which is schematically represented
in Fig. 2. The framework is structured around three pivotal
components: (1) Hybrid Policy Architecture (HPA): We pro-
pose an innovativeHPA that integratesmodel-based planning
for contact-rich scenarios as Manipulation Primitive (MP),
ensuring effective motion control and safe interactions. To
address estimation and motion errors, the HPA is augmented
with a residual policy, enhancing its reliability and perfor-
mance. (2)TaskAttention-basedMultimodalResidual Policy
(TA-MRP): As the core of the residual policy, we employ a
task attention-based multimodal model for stochastic policy.
Thismodel leverages task-focused attentionmechanisms and
multimodal sensory inputs to bolster its resilience against
significant random position errors and diverse background
conditions. (3) Adaptive CurriculumResidual RL (ACRRL):
To optimize the training of the residual policy, we employ a
novel Adaptive Curriculum Residual Reinforcement Learn-
ing strategy. This method utilizes a curriculum generation
policy that systematically orchestrates the RL agent’s explo-

ration, progressively enhancing its ability requirement to the
error of the initial policy. The detailed introductions of the
three components are in the following sections.

4.1 Hybrid policy architecture

In this study, we present a hybrid policy architecture that syn-
ergistically combines residual reinforcement learning (RL)
with parallel position and force control. This architecture
is designed to facilitate efficient manipulation skill learning
and reconfiguration on a rigid robot. Our approach dis-
tinguishes between contact-rich and contact-free segments
of the manipulation task, basing the skill design on the
applicability of traditional feedback control. Specifically, the
contact-rich segment is further divided into a portion address-
able by conventional feedback control and a residual segment
managed by a parameterized residual policy, as shown in
Fig. 3. We propose a contact-rich motion planning strategy
to ensure safe interactions and provide initial guidance for
the manipulation task.

4.1.1 Cartesian compliance control for rigid robot

We have developed a compliance control system for a rigid
robot equipped with a wrist-mounted 6D force/torque sen-
sor and a kinematic solver. The compliance control aims to

B) Task Attention-based Multimodal Residual Policy

RL Algorithm

C) Adaptive Curriculum Residual RL

Data buffer

U
p

d
at

e 

(
, 
a

, 
, 

+
1
, 

)

Difficulty parameters
1) Degree of Random error

2) Constraint of Error space

Curriculum criterion
1) Success rate

Fusion model and 

Stochastic policy

Trajectory

A) Hybrid Policy Architecture

Multimodal feedback
Pose, Force/Torque, Image

Position/force

Controller
Stiffness 

Adaptive Curriculum 

Task

Attention

Actor 

Critic  P
o
li

cy
 E

v
al

u
at

io
n
  

P
o
li

cy
 I

m
p
ro

v
em

en
t 

 

Data

Fig. 2 System overview of the proposed method. A) Hybrid pol-
icy architecture combines model-based planning with learning-based
residual policy for assembly manipulation. B) Task attention-based
multimodal fusion encodes and fuses task attention-based multiple

information modalities to generate the stochastic residual force policy.
C) Curriculum residual reinforcement learning automatically adjusts
the exploration guidance for efficient and stable learning

123



Task attention-based multimodal fusion...

Fig. 3 Hybrid policy for contact-rich manipulation in a peg-in-hole task. The trajectory and low-stiffness controllers acted as coarse guidance and
constraints. The residual policy is used to compensate for their accuracy

modulate the dynamic behavior of the robot during interac-
tion, characterized by the relationship between the external
force and the robot’s motion. This relationship is modeled
as a mass-spring-damper system, described by the following
equation:

F = K (Xd − X) + B(Ẋd − Ẋ) + M(Ẍd − Ẍ) (3)

where M , B, and K represent the virtual mass, damping, and
stiffness matrices, respectively. F and Fd are the measured
interaction force and the desired force. X and Xd denote the
current and desired poses, respectively.

To minimize overshoot and ensure smooth motion, we
assume that the command Xd remains static over short inter-
vals, allowing us to neglect Ẋd and Ẍd .We introduce a virtual
force Fd into the model to manage the dynamic interaction,
leading to:

F − Fd = K (X − Xd) + B Ẋ + MẌ (4)

Employing the virtual force-driven spring-mass-damping
modal and robot kinematics, we utilize a modified Cartesian
parallel position and force controller as the low-level con-
trol for robot learning, generating velocity commands. The
control law for joint velocities q̇ is expressed as:

·
q = J−1M−1

s + M−1B
[K (Xd − X) − (Fd − F)] (5)

where Jacobian matrix J provides the relation between end-
effector and joint velocities. Desired poses and forces Xd and
Fd govern the behavior, with the stiffnessmatrix K balancing
the six-dimensional tracking error for position/orientation
and force/torque. The inertia matrix M and damping matrix
B influence the response speed and stability.

4.1.2 Hybrid policy

For the efficient derivation of policies suitable for complex
assembly tasks, we define a hybrid policy-based MP that
fuses model-based planning with model-free learning for
control architecture in (2), as follows:

·
q = fc (τ (t), K , πσ (s)) (6)

where fc represents the parallel position and forces con-
troller. The trajectory τ(t) produces a time series of desired
poses Xd . The stiffness matrix K pertains to the compliance
controller. They work as the hand-designed policy πh(t) to
deal with the known part A(t), B(t), and C(t) of the system
in (1). πθ (st ) generates a force profile Fd in both translation
and rotation based on the state st to handle the measurement
error N (t) and random disturbance V (t) in (1).

We utilize partial model-based planning to define the
hand-designed policy πh(t), which includes the trajectory
τ(t) and the stiffness K . Initially, we assume that a partial
model of the geometry and contact requirements is avail-
able, as shown in Fig. 3. This model enables us to identify
the estimated pre-assembly point X̂i and target assembly
point X̂g for manipulation. The contact safety requirement
Fmax serves as a safety constraint for both the robot and the
product. The error range Er is the distance between the real
target assembly point Xg and X̂g . Subsequently, we propose
contact-rich motion planning to generate the trajectory and
stiffness. A linear trajectory τ(t) is generated using the pre-
assembly point X̂i and the target assembly point X̂g . The
relationship between the trajectory deviation and the force is
derived from (2), as demonstrated in (7). Taking into account
the geometric constraints and the estimation error Er , a devi-
ation workspaceW is formed as shown in (8). Using the half
contact safety requirement Fmax as the action space range of
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the agent, the safe interaction constraint is achieved through
the stiffness matrix K , as indicated in (9).

K (Xd − X) = (Fd − F) (7)

W = Er +
(
X̂i − X̂g

)
(8)

K = 1/2 ∗ Fmaxdiag(W )−1 (9)

Thevirtual desired force Fd is capable of compensating for
trajectory errors and geometric constraints by generating an
offset Xd − X . Additionally, the contact force F should meet
the contact safety requirement Fmax . Therefore, the defined
K aims to balance position tracking with the exploration
capabilities and safety of the residual policy, which generates
Fd to account for trajectory discrepancies and variable force
policies.

4.2 Task attention-basedmultimodal residual policy

This section presents the TA-MRP, as depicted in Fig. 4,
designed to address uncertainties inherent in planned initial
policy and variations in the operational environment. TA-
MRP leverages preliminary task information and planned
motion guidance to enhance the agent’s observability over
random errors and maintain focus on the task, thereby facil-
itating context generalization. The state representation is

preprocessed with obvious prior knowledge to encapsulate
only the task-relevant information and cover the full task’s
properties. A compact neural network for multimodal infor-
mation fusion and stochastic policy is designed to learn
features directly from the raw sensory inputs and generate
actions.

4.2.1 Knowledge-based task attention for data
preprocessing

To effectively encode the state of the robot and task, st , our
approach integrates three distinct types of sensor data as the
observation space for the policy: the gray-scale image from
the eye-in-hand I eiht , proprioceptive data about the tool’s
pose Xt , and tactile feedback from the wrist-mounted force-
torque sensor Ft , collectively described as follows:

st = [I eiht , Xt , Ft ] (10)

Guided by the initial policy, the feedback data undergoes
preprocessing to concentrate on the task at hand. For pose
information, we adopt a strategy that sets the target pose X̂g

as the task’s ‘origin’ and expresses spatial information in
terms of the relative pose Xrt , in line with the methodol-
ogy presented in [37]. This representation of relative pose is
invariant to the manipulation task’s pose, facilitating context
generalization. The tactile sensor data Ft is intrinsically task-
focused, providing direct feedback on the contact state at the
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specific interaction point under the guidance of the initial
policy, independent of environmental variations. To enhance
tactile perception in localizing the contact, we maintain a
history of the last 32 readings of relative poses Xr ′

t and tac-
tile data F ′

t , capturing the force distribution over the object’s
surface.

The raw image I eiht is cropped to a defined region of
interest (ROI), centering the image on the task at hand. This
process effectively isolates the task-relevant visual informa-
tion, resulting in a focused image I attent , as shown in Fig. 4.
Given the limitations of position error manageable by the
hand-designed controller and visual region related to the
task, we focus on a restricted camera field of view to bolster
policy robustness. The vision input I eiht offers a comprehen-
sive view of the environment, contributing to observability
but potentially compromising generalization. To counter-
act this, we decompose the context into subcomponents,
such as the end-effector, table, background, gear, and task
board. With prior knowledge of the task, we define an ROI
[(xmin, ymin), (xmax , ymax )] that encapsulates the task’s crit-
ical features while excluding visual noise [46]. For example,
the ROI for the gear assembly task includes the peg-in-hole
and gear mesh but ignores the table. Additionally, consid-
ering the uncertainty of the hand-designed controller, vision
provides essential information about the pose of the assem-
bled objects, particularly during the search and alignment
phases. Therefore, the adjustedROImust encompass the nec-
essary featureswithin themaximumallowable error range Er

across n search directions. For instance, in the gear assem-
bly task, the robot needs to be aligned in the X , Y , and Rz

directions before the insertion operation, and theROI is deter-
mined by the intersection of the ROIs within the Er range
at pre-assembly point X̂i across the three alignment direc-
tions. The formula for determining the task-centric attention
mechanisms’ ROI is as follows:

ROI = [min(ximin, y
i
min),max(ximax , y

i
max )], i = 0, ..., n

(11)

4.2.2 Multimodal fusion and stochastic policy

Distinct domain-specific models are employed to capture
the unique characteristics of each sensory modality [5]. For
physical contact state identification, we utilize a 2-layer
Long-Short-TermMemory (LSTM) network with 64 hidden
nodes to encode the time series data from touch and pro-
prioception [47], resulting in a 6-dimensional feature vector.
The visual feedback is processed through a 3-layer Convo-
lutional Neural Network (CNN), which converts the 80×80
gray-scale image into a corresponding 6-dimensional feature
vector. The convolutional layers use progressively increasing

kernel sizes and stride parameters to extract relevant features
from the image.

The extracted feature vectors from each modality are con-
catenated into an 18-dimensional vector and passed through a
fusionmodule, which integrates themultimodal information.
A stochastic policy, represented by a neural network, then
processes the fused feature vectors to establish a paramet-
ric probability distribution. The policy network comprises
two fully connected layers with 256 units each, which output
the mean μ and standard deviation θ for a 6-dimensional
Gaussian distribution. Actions at are sampled from this
distribution and correspondingly mapped to the predefined
range of the desired force Fd , which constitutes the residual
policy for robot control.

at = [Fd ] = πθ (st ) (12)

4.3 Adaptive curriculum residual reinforcement
learning

In tackling contact-rich problems, we model the compen-
sation for the hand-designed policy as a Markov decision
process (MDP).Deep reinforcement learning (DRL) emerges
as an apt approach for training a deep model in such tasks by
maximizing cumulative rewards. The policy is trained within
a structured environment enrichedwith information pertinent
to the hand-designed policy and task-associated rewards, as
illustrated in Fig. 5. An adaptive curriculum generation in
Residual RL for guidance and constraint is designed to refine
the efficiency of residual learning and enhance the robustness
of the residual policy.

4.3.1 Curriculum learning for the robust residual policy

Within the residual RL framework, the initial policy serves
as guidance for the RL agent, which in turn compensates
for uncertainties. To ensure robustness against the variabil-
ity of the initial policy and the compliance controller across
different contexts, we introduce errors into the initial pol-
icy to induce sufficient variability during training. This is
achieved by generating initial and goal points with an error
component sampled from a uniform distribution within an
error range Er , as shown in (13). The resulting error-infused
guidance necessitates a broader search range for the residual
agent. As defined in (9), the search range is governed by the
stiffness matrix K, which moderates the balance between the
initial policy and the TA-MRP. For smaller K value results
in a larger trajectory deviation for a given force, effectively
increasing the search step size. The exploration range for
pose error in workspace W is defined as Exr .

error ∼ U (−1, 1) ∗ Er (13)
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Fig. 5 The error and exploration in the residual learning. (a) The
real goal pose is known in the structured training environment, which
provides necessary information for reward and curriculum. (b) The
estimated goal pose is evenly distributed within the margin of error.

However, the agent conducts random exploration similar to Gaussian
distribution within a certain range around the estimated pose. (c) Ran-
dom error and exploration range determine the robustness of residual
policy, which directly impacts the task’s difficulty

X̂i = Xi + error (14)

X̂g = Xg + error (15)

As depicted in Fig. 5 (a) and (b), the challenge in learn-
ing TA-MRP is tied to the guidance and constraints imposed
by the initial policy. Large errors may cause the exploration
center to deviate significantly from the true position, and an
excessively large step size may hinder the precision required
for tasks like insertion. It is crucial to maintain an initial
exploration range that exceeds the estimated pose error of Xg

to ensure the agent can locate the target by searching. Our
approach introduces a curriculum that incrementally esca-
lates the task’s difficulty, as shown in Fig. 5 (c). Initially,
the error and exploration range are minimal, providing the
most accessible configuration and effective guidance through
prior knowledge. During training, we progressively increase
the difficulty using coefficients δ ⊂ [0, 1]. Finally, training
with realistic levels of uncertainty is vital to develop a robust
policy.

Following the principles outlined by [38], we define
ACGRL to refine our policy training. While progressively
enhancing thedifficulty level is beneficial, excessivedwelling

on a limited error range can impede training progress. Con-
versely, escalating the error range too rapidly may preclude
the policy from receiving any reward. Our ACGRL strategy
modulates the degree of misleading guidance (variance in
position and orientation error Er ) and the exploration area
(Exr constrained by the stiffness matrix K ) based on the cur-
rent success rate, adjusting the challenge to keep the agent’s
performance within a target success rate window [α, β] (16).

δ = δ + ε · 1(sr>α) − ε · 1(sr<β) (16)

4.3.2 Reward and context generalization TA-MRP learning

The optimal behavior is characterized by rapid and smooth
task completion. In structured training environments, dense
and sparse rewards are formulated using normalized ground
truth distances and contact forces. The reward function is
weighted byw1,w2, andw3 to promote the desired behavior.

rt (st+1) = −w1

∥∥∥∥
X − Xg

W

∥∥∥∥ − w2

∥∥∥∥
F

Fmax

∥∥∥∥ + w3rsucc (17)

rsucc, d =
{
100, 1 if X − Xg < Eth

0, 0 otherwise.
(18)
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whereW and Fmax represent the estimated exploration range
and maximum contact force, respectively, which normalize
the reward terms for task-invariant weight ratios. The suc-
cess reward rsucc and the signal d are contingent upon the
distance between the current pose X and the ground truth
target pose Xg being less than a threshold Eth . || ∗ || denotes
the Euclidean norm.

In this work, we augment the soft actor-critic (SAC)
off-policy algorithm with multimodal actors and critics to
achieve context generalization in residual TA-MRP learn-
ing. The multimodal SAC interacts with the environment
and trains the policy as outlined in Algorithm 1. The
algorithm initializes the learning architecture (lines 1-5),
which includes defining the hand-designed part of the skill,
determining the uncertainty range, obtaining the ROI, and
designing the reward function. Lines 6-10 detail the learning
of the residual TA-MRP through environmental interaction,
policy updates via SAC, and curriculum generation based
on the success rate. In the interaction, we collect the stack
position and force/torque time series and vision as states,
compute the reward, and store them in the replay buffer R.
The episode is terminated upon successful insertion or max-
imum steps. In the training process, we train the multimodal
actor and critic by sampling from R. In particular, the mul-
timodal fusion and the stochastic policy are trained together
by interaction without any additional pre-training effort.

Algorithm 1 Learning context-generalized TA-MRP with
ACRRL)
1: Initialize the learning architecture

2: Define the hand-designed part of the skill with (14)
3: Determine the error range Er
4: Obtain the ROI for Er with (11)
5: Design reward for learning objective with (17) and (18)
6: Choose curriculum parameters for Er with (14) and (16)
7: Learn residual TA- MRP

8: For n in max-episodes
9: Interact with environment
10: Update the policy with SAC
11: Generate curriculum with (16)
12: For end

5 Experiment

We propose an innovative manipulation primitive framework
tailored for robotic assembly tasks. This framework inte-
grates a learning-based residual policy with a model-based
feedback controller, to learn and adapt efficiently across var-
ious contexts. To improve the context generalization of the
policy and sample efficiency of residual RL, especially under
the uncertainties of a low-cost context setup, we introduce

several methodological enhancements. In the following, we
evaluate the performance of our task attention-based multi-
modal policy and the curriculum residual learning approach
through peg-in-hole and gear assembly tasks. Our evaluation
comprises a comparative analysis with existing methods, an
ablation study to assess the contribution of each enhance-
ment, and a validation of the framework in real-world tasks.

5.1 Simulation experiments

5.1.1 Experiment setup

Hardware and software The simulation experiments are
conducted using an Nvidia Titan RTX GPU and an Intel i9-
7940X CPU. We employ Gazebo version 11, utilizing the
Open Dynamics Engine (ODE) for physics simulation, to
create a virtual environment for the robot and assembly tasks.
TheRobotOperatingSystem (ROS) serves as themiddleware
facilitating communication between the learning algorithms,
control systems, and simulation modules.

Task andmanipulator The assembly tasks involve a task
board secured to a worktable and a robot arm equipped with
either a peg or gear, as shown in Fig. 6. The peg-in-hole
task requires precise insertion, while the gear assembly task
demands the alignment of gear teeth with a mating wheel on
a shaft. These tasks necessitate tolerances below 0.1 mm
and 0.03 rad, respectively, which exceed the capabilities
of most contemporary assembly robots, particularly those
using commercial-off-the-shelf (COTS) components. [48].
Moreover, the learned strategies must be transferable across

(a) (b)

(c)

40

UR5

Force/torque

sensor

Mono camera
Gear

Task board

Gripper

20

Fig. 6 Simulation assembly task and robot. (a) and (b) show the geo-
metric information of the assembly task. (c) is the manipulator for the
assembly task
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various scenarios. To simulate real-world inaccuracies, we
introduce pose errors for the initial strategies along the x, y,
and z axes within a range of ±20 mm, and rotational errors
about the z-axis within ±0.1 rad. The context variability is
further reflected by modifications in product variables and
the unstructured nature of the environment, such as different
assembly positions or alterations in surrounding objects.

EvaluationmetricsTo evaluate the sample efficiency and
context generalization of the proposedmethod, the following
metrics are presented: success rate (SR), completion time
(CT), and contact force (CF). Cumulative reward (CR), error
range (Er), and exploration range (Exr).

Initial policy and reward design According to the
geometry information, operation requirement, and estimated
localization of the fixed task board, the trajectory is gener-
ated with the starting point, target point, and required time.
Maximum contact force Fmax is set as 10 N. The hybrid pol-
icy updates the pose and force commands to the controller at
5 Hz. The controller receives the inputs, including reference
commands and feedback, and generates the target joint veloc-
ity for the robot at 120 Hz. Each episode lasts a maximum
of 120 steps. We updated the policy nets for 200 gradient
steps per episode. The reward weights w1, w2, and w3 are
set as 1, 0.8, and 1 determined by a preliminary experiment
to balance operation speed and smoothness.

5.1.2 Comparative study

In our comparative analysis,we assess the performance of our
proposed manipulation primitive framework against estab-
lished methods in the domain of industrial assembly tasks,
a simulated peg-in-hole task. The comparison encompasses
both classical approaches and contemporary reinforcement

learning (RL)-based strategies. Baseline 1 employs a two-
step method, as outlined in [49–51], which divides the gear
assembly process into reach, search, and insertion phases.
These phases are tackled using a visual servo and a spiral
search complemented by contact state detection. Baseline 2
represents a Vanilla multimodal RL approach without a base
policy, drawing parallels with the works of [2, 19, 30]. Base-
line 3 integrates vision-based RL with force control, akin
to the methods described in [26–28]. Baseline 4 leverages a
keypoint-based vision representation fused with tactile feed-
back, similar to [45].

5.1.3 Experiment result

Our method exhibits remarkable efficiency in the simulated
peg-in-hole task, as depicted in Fig. 7. Benefiting from an
initial policy that provides directional guidance, our policy
demonstrates a notable probability of completing the peg
insertion through random exploration alone. The ACRRL
mechanism enables the residual agent to initially concentrate
on the insertion task, even with a minimal error range. Upon
reaching a predefined success rate threshold, the trained
policy swiftly adjusts to increasing positional errors. The
TA-MRP integrates visual and force feedback, equipping the
agent to handle significant random errors and achieve pre-
cise localization. After 200 training episodes, the policy’s
performance, evaluated over 20 test trials, is summarized in
Table 1. The learned TA-MRP attains a 100% success rate,
with an average completion time of 2.41 seconds and average
contact forces of 12.14 N, 6.29 N, and 3.23 N in the X, Y,
and Z directions.

In contrast, the two-stepmethod is hindered by its reliance
on intricate policy design and extensive parameter tuning,

Fig. 7 Learning curves of the policies with three kinds of observations. (a) is the cumulative reward in each episode. (b) is the guidance error range
of the fixed policy
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Table 1 Comparison of execution with three strategies

Task Success rate Completion time (s) Contact force-x (N) Contact force-y (N) Contact force-z (N)

Two-step 0.533 19.000 ± 5.751 13.21 ± 4.53 13.22 ± 4.02 9.78 ± 2.074

Vanilla RL - - - - -

Visual RL - - - - -

Keypoint RL 0.96 4.27 ± 2.97 8.02± 4.37 5.13± 2.58 3.07± 0.87

Ours 1.0 2.41± 1.93 12.14 ± 7.97 6.92 ± 4.05 3.23 ± 1.17

resulting in suboptimal success rates and efficiency, as indi-
cated in Table 1. The search-based policy is notably slower,
taking approximately 15.65 seconds-four times the duration
required by learning-based approaches. The low success rate
is due to the bumps and tight clearance, which makes it diffi-
cult for robots to detect holes and tend to get stuck on uneven
surfaces. Vanilla RL, lacking the base policy’s guidance,
struggles with tasks that involve small-clearance assembly,
maintaining a consistently lowCumulativeReward (CR), and
demonstrating the difficulty of hole location and insertion
via exploration alone. Approaches that rely solely on visual
RL face challenges in task learning when vision is the only
state space input. Although these methods can complete the
task through exploration and achieve a moderate CR, they
fall short in the error curriculum, primarily due to the diffi-
culty in extracting precise positional information from pixel
data through learning. The keypoint visual representation-
based fusion method matches our framework’s efficiency
and assembly performance. However, our method offers the
advantage of not requiring the intricate design and training
processes associated with keypoint visual representation.

In summary, our proposed framework not only demon-
strates superior performance in terms of efficiency and
success rate but also simplifies the implementationprocess by
eliminating the need for complex feature engineering inher-
ent in other methods.

5.1.4 Ablation study

To demonstrate the efficacy of our proposed framework’s
components, we conducted an ablation study during both the
training and deployment stages in the gear assembly task.

Evaluating robustness to position error with multi-
modal sensory inputWe assessed the impact of integrating
multiple sensory modalities and temporal data on policy
robustness. Three observation types were compared: (1)
Proprioceptive-Tactile (Proprio-Tactile), which includes the
robot’s current 6-dimensional position and Euler angles
along with force/torque data, which were encoded using a
Multilayer Perceptron (MLP); (2) Temporal Proprioceptive-
Tactile (Time Series P-T), which extends the Proprio-
Tactile data over the last 32 time steps; and (3) Temporal

Proprioceptive-Tactile with Vision (Time Series P-T-V),
which adds current visual information to the Time Series
P-T data. We trained each policy variant under an increasing
error range and a constant exploration range of 10 mm. The
final error range is compared after 200 episodes.

Assessing curriculum residual learning efficiency We
examined the influence of fixed policy uncertainty on resid-
ual learning by considering position errors of 10, 20, and
30 millimeters. Specifically, we evaluated the curriculum’s
effectiveness in scenarios with significant uncertainty (using
a 30 mm error as a case study) and compared it against tradi-
tional residual learning approaches. The adaptive curriculum
adjusted the guidance error range by 0.5 mm and the explo-
ration constraint based on the current success rate, within the
bounds of [0.5, 0.7]. Three baseline curriculums were tested:
(1) Curri-g2-c30, which starts with an error range of 2 mm
and maintains a 30 mm exploration range; (2) Curri-g2-c10,
which begins with a 2 mm error and a 10 mm exploration
range, increasing both parameters once a 10 mm error range
is reached; and (3)Curri-g2-c2,which scales both parameters
starting from 2 mm.

Validating context generalization with task attention
We trained policies using different Regions of Interest (ROIs)
to validate the designed attention mechanism, as shown in
Fig. 8, represented by ROI-800*800, ROI-300*300, ROI-
200*200, and ROI-100*160. In the ROI-x-y, the x and y
represent the height and width of the ROI. The policies
trained with ROIs of ROI-800*800 and ROI-300*300 were
tested in varying contexts: one with the task board placed
at four different table locations (ROI-800-l and ROI-300-l),
and another with varying backgrounds by introducing addi-
tional objects into the scene (ROI-800-b and ROI-300-b).
The learned policies were evaluated on context generaliza-
tion capabilities, measured by average cumulative reward.

5.1.5 Experiment result

The cumulative reward, success rate, error range, and explo-
ration range in three repeated experiments are smoothed by
convolution and estimated by Seaborn to show the learning
process, where the estimatedmeans and bootstrap confidence
intervals of the variables are plotted as line and error bars.
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Fig. 8 Four kinds of ROI for task attention. (a) represents the full image
without attention. (b) represents the view with suitable task attention.
In (c) and (d), the restricted view makes important assembly features
invisible

Cumulative reward is used to qualify the performance of
trained policy in other contexts, which consists of success,
completion time, and contact force.

Robustness with multiple sensors Multimodal sensory
input enhances the robustness of residual policies to initial

pose errors, as shown in Fig. 9. The residual policies with
three types of observations can be learned to solve the gear
insertion task with a random pose error of 2mm.However, as
the error increases, the widely used policy with only propri-
oception and wrist force/torque information performs worse,
with an uncertainty tolerance of only 5 mm. The time series
baseline behaves better but is limited. The full multimodal
model with vision achieves the best performance, which is
robust under 10 mm random error. A continuous increase
in random error causes only a small decrease in cumulative
reward and a rapid recovery. Using a fixed policy, the mul-
timodal residual policy can be learned end-to-end with 100
episodes.

Curriculum learning for large position error Curricu-
lum learning is effective for managing large position errors
with the adaptive curriculum outperforming traditional resid-
ual learning, particularly in early learning stages, as shown
in Fig. 10. Comparing the common residual learning in
three types of errors, we observe that the large uncertainty
of the initial policy will significantly reduce the effect of
residual learning. With the error of 10 mm, the cumulative
reward and success rate increase rapidly, reaching 70 and
0.9 with 300 episodes. The error bars show that the learn-
ing performance fluctuates slightly. However, when the error
increases to 20 mm, the learning performance decreases,
with the cumulative reward and success rate reaching 20
and 0.6 after 300 episodes. And the learning performance
fluctuates significantly even without convergence. The larger
errors, 30mm, cause further performance degradation. The
remaining learning benefits from the guidance of the gradu-
ally increasing difficulty. Compared with the 30mm-nocurri,
curri-g2-c30 increased the uncertainty from 2mm with a
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Fig. 9 Learning curves of the policies with three kinds of observations. (a) is the cumulative reward in each episode. (b) is the random error range
added to the hand-designed policy
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Fig. 10 Learning curves of the policies with different curriculums. (a) is the cumulative reward in each episode. (b) is the success rate during the
last 15 episodes. (c) is the guidance error range of the fixed policy. (d) is the constrained exploration range of the fixed policy

constant constraint of 30mm according to the increasing suc-
cess rate, as shown in Fig. 10 (c) and (d). More precise
guidance can accelerate the cumulative reward and success
rate. curri-g2-c10, which starts the constraint curriculum
from 10 mm, further accelerates the learning. However, a
stronger constraint, curri-g2-c2, had similar behavior. Com-
paring curri-g2-c10 and 20mm-nocurri, experiments show
that the former achieves better and more stable cumulative
reward and success rate in the early stages, but similar final
performance.

Context generalization with task attention Appropri-
ate task attention is crucial for both learning efficiency
and context generalization. Policies trained with suitable
ROIs demonstrate robust performance across different back-
grounds and locations, while those without proper attention
show significant performance degradation (Figs. 11 and 12).
Task attention that is not well designed significantly affects
the convergence and final performance. For the attention
ROI-100*160, which does not cover the main task features,
the guidance curriculum reaches only 7 mm, similar to no
vision. ROI-200*200, which covers more features but not

all in maximum error, increases the robustness in a limited
uncertainty range. ROI-300*300 and ROI-800*800, which
cover enough features, are robust in a larger range and more
efficient in the learning process. In particular, ROI-800*800,
which includesmore background, has the fastest convergence
speed. However, the redundant environmental information
will prevent context generalization due to false feature depen-
dence. The average cumulative reward of the policy with
attention changes slightly, from 61.19 to 54.73 in different
backgrounds and from 69.23 to 46.46 in different locations.
However, the baseline without task attention decreases sig-
nificantly, from 61.12 to -23.06 in different backgrounds and
from 59.51 to -14.65 in different locations. Furthermore, the
decrease in performance is related to the degree of contex-
tual variability. For backgrounds, the magnitude of reward
attenuation is related to the size of the object in the visual
field. For locations, the magnitude of reward attenuation is
related to the distance between training and test locations.

In summary, these results underscore the importance of
multimodal sensory input, adaptive curriculums, and task
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Fig. 11 Learning curves of the policies with four kinds of ROI. (a) is the cumulative reward of each episode. (b) is the guidance error range of the
fixed policy

attention in enhancing the robustness and generalizability
of policies for robotic tasks.

5.2 Real experiment for the comprehensive
evaluation

5.2.1 Experiment setup

In this real-world evaluation, we focus on peg-in-hole and
gear-insertion tasks to assess the sample efficiency and con-
text generalization capabilities of our approach. Similar to
our simulation experiments, we utilize a 3D-printed task
board secured to a table and employ a UR5 robot arm
equipped with a two-finger gripper for task execution. The

ROI and contexts
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Fig. 12 Average cumulative reward of policieswith different task atten-
tion (ROI) in different backgrounds and locations

setup includes a wrist-mounted force/torque sensor and a
USB camera for tactile and visual data acquisition. After
adjusting the Region of Interest (ROI) to the actual cam-
era’s field of view and using the goal pose as the original
point for task-centric observation, our learning strategy inte-
grates three types of sensory modalities with a fusion model
to learn the residual uncertainties. Our adaptive curriculum
based on the residual learning framework controls the error
and exploration range, targeting a success rate between 0.5
and 0.7, with adjustments made in 0.5 mm increments.

This work directly trains the policy on a real robot for
300 episodes. Each episode encompasses the full operation
cycle-grasp, transfer, and assembly, as depicted in Fig. 13
(a) and (b). The robot autonomously executes the assembly
phase using the learned residual and a hand-designed policy,
while other operation parts rely solely on the hand-designed
policy. Post-training, we assess the policy across different
contexts to gauge its reliability and generalization capabili-
ties by placing task boards at different locationswith fixtures,
where positions are determined by demonstration as shown
in Fig. 13 (c) and (d). The success rate (SR), completion
time (CT), and cumulative reward (CR) are measured over
20 episodes using a trajectory that simulates a series of posi-
tional errors.

Understanding why an input leads to a particular output is
critical to both safety and performance when using the mod-
els in a real robotic system. It explains how system inputs
trigger specific responses and why a model may not gen-
eralize to new situations. Specifically, it provides a deeper
understanding of how data-driven models work and allows
us to thoroughly evaluate and improve them according to
the task. In this work, the input and output are visualized to
explain the behavior. In addition, important regions of the
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(d)

(b)

Assembly Grasp 
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Other contexts (c)

(a)
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Grasp 

Other contexts 

Transfer 

Fig. 13 Experimental platform of the precision assembly system. (a) and (b) are the manipulator and tasks in the training context. (c) and (d) are
the tasks in the test context 1 and 2

image corresponding to each decision of interest are visual-
ized in high-resolution detail.

5.2.2 Experiment result

The learning curves (Fig. 14) illustrate the sample efficiency
of ourmethod on the real robot, highlighting the slight reduc-
tion due to real-world noise factors. For example, in the gear
task, the policy overcomes dynamic uncertainties within the
first 50 episodes, achieving a success rate of 0.7. The cur-
riculum’s dynamic adaptation is evident as the error margin
and success rate fluctuate, ultimately reaching a 20 mm error
range after 300 episodes, or 3.5 hours, confirming the effi-
cacy of multimodal policies and curriculum residual learning
in precise insertion tasks despite significant pose errors. The
similar learning efficiency in peg-in-hole and gear insertion
tasks with different geometries shows the stable capability
of our learning method.

Table 2 and Fig. 15 present the performance of learned
policies across different contexts and error margins, demon-
strating an admirable success rate of over 0.9 for tasks
with guidance errors up to 15 mm. This stability across
contexts underscores the robustness of ourRLassembly strat-
egy, facilitated by focused visual and tactile information.
The comparison of learned policy with different geometries
shows that the peg-in-hole task with simpler geometries has
less completion time than gear insertion. Video of exper-
iments is shown in https://github.com/WangChuang-163/
Task-attention-based-multimodal-residual-RL/blob/main/
README.md

Figure 16 visualizes the behavior over one episode, map-
ping observations and actions to a normalized range. The

peg-insertion task has three phases: a search phase before
contact (Yellow), a search phase after initial contact (Red),
and an insertion phase (Green). The task is solved in about
30 steps, where the state of the image, the relative pose and
contact force, and the action of the desired force Fd have
a clear response to the phases. Before contact (Yellow), the
desired force is generated based on visual servo for rough
alignment. For errors in the x-negative and y-positive direc-
tions, the agent generates the desired force in the x-negative
and y-positive directions. The learned important regions of
the image, apart from the grasped gears, are initially the shaft
for larger deviations, and then more attention is paid to the
gears of the task board when it is obscured, which explains
why a model can generalize to new situations. After the first
contact with the surface (Red), Fd is drastically reduced in
the x and y directions and the contact force is maintained in
the z direction, thus improving the local search for the fine
alignment. Then, when the pin is properly aligned (Green),
Fd is increased to apply force to insert the pin against the
friction of insertion and to complete the task faster.

6 Discussion

This research introduces a compact model that integrates
visual and force information through curriculum-based resid-
ual reinforcement learning (RL), drawing inspiration from
human perceptual and learning mechanisms in manipulation
tasks. Our approach demonstrates the capability of a sim-
ple initial policy to be enhanced by a residual policy that
compensates for contact dynamics and positional inaccura-
cies, facilitating efficient learning and transferability across
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Fig. 14 Learning curves of the proposed method on the real robot. (a) is the cumulative reward in each episode. (b) is the success rate during the
last 15 episodes. (c) is the guidance error range of the fixed policy. (d) is the constrained exploration range of the fixed policy

Table 2 The performance of learned policies

Context Perf. Error
5 mm 10 mm 15 mm 20 mm

Peg-in-hole Training SRI 1.00 1.00 1.00 0.80

COT 5.81s 6.11s 7.13s 8.08s

ACR 78.37 ± 5.86 74.49 ± 6.65 65.53 ± 9.80 53.49 ± 18.9

Unseen1 SRI 1.00 1.00 0.90 0.75

ACR 80.25 ± 6.47 74.38 ± 9.36 66.11 ± 10.49 53.47 ± 20.98

Unseen2 SRI 1.00 1.00 1.00 0.80

ACR 79.07 ± 5.56 75.78 ± 7.88 67.20 ± 13.92 53.59 ± 19.99

Gear-insertion Training SRI 1.00 1.00 0.95 0.70

COT 6.91s 7.04s 7.45s 7.75s

ACR 63.84 ± 5.99 61.52 ± 7.11 54.92 ± 9.11 53.58 ± 10.26

Unseen1 SRI 1.00 1.00 0.90 0.85

ACR 57.17 ± 10.99 58.45 ± 7.60 52.48 ± 9.30 45.63 ± 15.77

Unseen2 SRI 1.00 1.00 0.90 0.85

ACR 61.53 ± 11.70 62.57 ± 8.66 48.33 ± 17.33 46.63 ± 17.51
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Fig. 15 Average cumulative reward of policies with different task attention (ROI) in different backgrounds and locations

S-
noisiV

Fig. 16 Behavior visualization. The behavior over one episode is visualized, mapping observations and actions to a normalized range. The three
phases are discussed, including a search phase before contact (Yellow), a search phase after initial contact (Red), and an insertion phase (Green)
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contexts. The potential of residual RL for improving sam-
pling efficiency and ensuring safer interactions has been
corroborated by [8]. The integration of multimodal informa-
tion is crucial for executing precise tasks with large random
errors, as also noted by [5]. Our work expands on these by
employing multimodal information to inform residual policy
learning. Utilizing the structured guidance of a fixed policy,
we have simplified the exploration process, resulting in a
more rewarding learning transition and enabling the efficient
acquisition of a model with multimodal fusion tailored for
error compensation. In scenarios necessitating precise detec-
tion and secure contact as discussed in [4], we observed that
the process is inherently slow, with increased pose errors
amplifying the cost steps of the spiral search and visual servo.
Mechanisms of leveraging force and visual features for align-
ment and search policies require design and tuning efforts
for specific tasks, where performance relies on expert expe-
rience. The process of designing and tuning parameters is
also inherently an interactive learning process. By interac-
tively learning perception and control with the end-to-end
policy, we circumvent the need for extensive design efforts
and facilitate the extraction of salient features to develop a
coherent policy.

The significance of a well-structured curriculum for mas-
tering precise tasks with large errors has been echoed in
the work of [31]. Our approach based on residual learn-
ing offers more effective guidance, centering the exploration
near the actual target location and imposing stringent con-
straints to minimize the search space and incremental steps.
The optimal initial policy facilitates exploration by enhanc-
ing the likelihood of successful search and insertion amidst
random explorations. Nonetheless, the introduction of error
randomization within realistic bounds is imperative to the
development of a robust policy. Our adaptive curriculum is
meticulously designed to modulate task difficulty by varying
the error and exploration range, thereby optimizing residual
learning in the face of substantial uncertainties. Furthermore,
the attention mechanism can interpret generalization learn-
ing as agents selectively focusing on invariant features while
ignoring variable features [25]. This mechanism is particu-
larly critical when dealing with the problem that a narrow
field of vision may compromise observability and dimin-
ish robustness to uncertainties, while a wide field of vision
may introduce irrelevant background information, adversely
affecting performance in different contexts. By employing an
initial policy, the agent is required to explore and learn within
a confined domain. Task attention, informed by prior knowl-
edge, assists the agent in maintaining focus on the essential
elements of the task, facilitating generalization across vary-
ing contexts without the need for data augmentation or
domain randomization. Learning coarse pose information
directly from pixel information shows similar sample effi-
ciency to that of prior visual representations [31], which are

mainly due to high-quality samples guided by the initial pol-
icy.

Our experimental validation using peg-in-hole and gear
assembly tasks substantiates the efficiency of our policy
learning and its successful transferability to other contexts.
This suggests that our approach is theoretically capable of
satisfying the demands of high-precision assembly tasks
within flexible manufacturing environments. Moreover, we
posit that this method holds promise for application in
simulation-to-reality transfers or meta-reinforcement learn-
ing to enhance sample efficiency and generalization capabil-
ities.

Notwithstanding the progress made, our approach is sub-
ject to several noteworthy limitations that merit further
discussion. For instance, the attention Region of Interest
(ROI) must exclude background distractions while capturing
adequate task features to strike a balance between feature
invariance and observability. The restricted robustness and
context generalization can be attributed to the limitations
inherent in hand-designed ROIs. Although curriculum resid-
ual learning stabilizes the learning process and enhances
sampling efficiency, the number of episodes needed to learn
a stable policy is directly proportional to the level of uncer-
tainty. Learning a robust policy requires data distribution of
the whole error space. These findings highlight the need to
balance the engineering efforts expended on manual con-
troller design against the learning costs.Ourmethod trains the
policywithin a structured environment, where the reward and
success criteria are predicated on distancemetrics. Designing
conditions for initiating and concluding episodes becomes
challenging when the agent operates in an unstructured envi-
ronment.

7 Conclusion and future work

The proposed method integrates a model-based policy and
residual learning for skill formulation, facilitating learning
and reconfiguration for context generalization.With a simple
hand-designed initial policy, task attention-basedmultimodal
observation and curriculum residual learning enable efficient
learning of the robust residual policy. The state representa-
tion to encapsulate only the task-relevant information and
compact neural network for fusion and stochastic policy is
designed to enhance the robustness and context generaliza-
tion, reducing reliance on high-precision initial strategies.
Adaptive curriculum generation in residual RL for guidance
and constraint is designed to refine the learning efficiency
of the robust policy, mapping directly from the raw sen-
sory inputs to residual actions. Adjusting the waypoints of
the initial policy permits rapid adaptation to novel contexts,
which has been validated through our experiments with high-
precision peg-in-hole and gear assembly tasks requiring tight
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clearances and large pose errors. In future work, we plan to
incorporate stable pre- and post-conditions recognition with
multimodal data from the agent learning process. Further
investigation into the integration of a vision model with our
task attention-based multimodal residual policy is expected
to yield improvements in robustness and adaptability, particu-
larly in unstructured environments. In addition, research into
sim-to-real for the task attention-based multimodal residual
policy is needed to further improve the training cost.
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