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Temporal-Logic-Based Semantic Fault
Diagnosis With Time-Series Data From
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Gang Chen , Member, IEEE, Mei Liu , and Zhaodan Kong , Member, IEEE

Abstract—The maturity of sensor network technologies
has facilitated the emergence of an industrial Internet of
Things (IIoT), which has collected an increasing volume
of data. Converting these data into actionable intelligence
for fault diagnosis is key to reducing unscheduled down-
time and performance degradation, among other exam-
ples. This article formalizes a problem called semantic fault
diagnosis— to construct the formal specifications of faults
directly from data collected from IIoT-enabled systems. The
specifications are written as signal temporal logic formu-
las, which can be easily interpreted by humans. To tackle
the issue of the combinatorial explosion that arises, we
propose an algorithm that combines ideas from agenda-
based searching and imitation learning to train a policy
that searches formulas in a strategic order. Specifically, we
formulate the problem as a Markov decision process, which
is further solved with a reinforcement learning algorithm.
Our algorithm is applied to time-series data collected from
an IIoT-enabled iron-making factory. The results show em-
pirically that our proposed algorithm is both scalable to the
size of the data set and interpretable, therefore allowing
human users to take actions, for example, predictive main-
tenance.

Index Terms—Fault diagnosis, industrial Internet of
Things, reinforcement learning, signal temporal logic,
time-series classification.

I. INTRODUCTION

THE industrial Internet of Things (IIoT) is the application
of the Internet of Things (IoT) to the realm of various

industries [1]. The connection of devices equipped with sens-
ing, communication, and actuation capabilities has dramatically
transformed the operation of many existing and new industrial
systems, and achieved numerous successes in terms of, e.g.,
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rapid manufacturing of new products and real-time optimization
of industrial production. However, the complex, connected, and
dynamic nature of many IIoT-enabled systems also brings the
issues of safety and security to a scale and level far beyond that of
traditional industrial systems. A small performance degradation
or security risk in one sensor/processor/actuator may lead to
catastrophic consequences to the entire system. Time-series
data has been demonstrated to have rich information about
these performance degradation or security risk. As a result,
recently, there has been a surge of interest in the development
of new time-series-based fault diagnosis theories, techniques,
and practices for IIoT-enabled systems to ensure their safe and
secure operations [2].

Existing methods on fault diagnosis can be roughly divided
into two classes: data-driven and knowledge-driven. Data-driven
methods do not depend extensively on expert-crafted knowledge
or the construction of a reasoning mechanism. They mainly rely
on the application of machine learning techniques to extract
fault features from IIoT data directly [3]–[5]. For example,
the fault detection method in [6] used reinforcement learning
to find the optimal fault vector (feature) for fault detection.
Data-driven methods are powerful tools for systems that are ill
or difficult to specify or understand [7]. One important issue
with these generalized fault diagnosis methods, however, is
their lack of interpretability. Data-driven methods have obtained
excellent performance in fault diagnosis, but humans find it hard
to understand why they can reach good results. Humans still
play an indispensable role in many, if not all, IIoT applications,
particularly when the system involved is safety-critical [8].
The fault features extracted by machine learning techniques
generally reside in some high-dimensional feature space and
their meanings can be hard for humans to grasp, in the context
of, e.g., identifying the causal chain that may lead to a fault and
generalizing the learned knowledge to other scenarios.

Knowledge-driven methods, on the other hand, rely heavily
on mechanical principles and the empirical knowledge of human
experts [9]. These methods put the semantic interpretation of
the IIoT-enabled systems at their core, leading to what is called
“semantic IIoT systems” [10]. However, currently, most of these
knowledge-driven methods are developed for processing static
data and require domain experts to manually construct the rules
that can be used, e.g., for ontology-based reasoning [11]. The
construction process itself is time-consuming. Moreover, the
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predefined rules can be incomplete and/or brittle. As more and
more IIoT-enabled systems are becoming increasingly complex,
it is hard to scale these methods up, at least not in a straight-
forward manner, and ensure the robustness of the predefined
rules [12].

In this article, we combine the data-driven and knowledge-
driven methodologies together into solving a problem called
semantic fault diagnosis. The method begins with data collected
from an IIoT-enabled system—thus is data driven. But different
from existing data-driven methods, our framework attempts to
infer/learn a set of formulas written in signal temporal logic
(STL) [13]. These formulas are, first of all, easily understand-
able by humans and, second, provide a formal description of
the fault(s) exhibited by the system, therefore enabling further
knowledge-based reasoning [14].

In recent years, temporal logic has proved to be a powerful
and natural framework to describe complex temporal proper-
ties of industrial systems [15]. Since temporal logic formulas
describe temporal patterns between events in a form that is
close to our way of thinking, they can be intelligible and easily
acceptable by humans. The availability of software and hardware
for real-time verification makes this approach very attractive
in monitoring engineered systems. Many temporal logic-based
formal languages have been applied to monitoring tasks, such as
first-order temporal logic [16], metric temporal logic [17], and
linear temporal logic [18]. But these languages are defined over
the discrete event, which indicates that they are not suitable for a
continuous system. To address this issue, STL has been defined
over continuous signals and is perfect for time-series monitoring.

Techniques exist for learning STL formulas from time-series
data, under the name requirement mining [19]–[22]. Most of
these methods assume that the output of the requirement mining
problem is a temporal logic formulaϕθ with a fixed structure but
an unknown parameter θ. Under this assumption, with the help of
the concept of “robustness degree” [13], the requirement mining
problem can be transformed into an optimization problem, the
goal of which is to find a parameter θ∗, such that ϕθ∗ (the fixed
structure together with the optimal parameter θ∗) can distinguish
time-series data labeled as “positive” from those labeled as “neg-
ative” and, in the meantime, maximize the “distance” (defined
with respect to the robustness degree of ϕθ∗) between the two
data sets. For example, the binary search algorithm is used to
find the optimal parameters for logic expression in [20].

A less restricted (but more general) scenario relaxes the
fixed-structure assumption and attempts to infer a discrimi-
native temporal logic formula without specifying its structure
first [22]–[24]. The investigation of this scenario is still in its
infancy. One major flaw shared by existing methods is they
suffer from the issue of combinatorial explosion or curse of
dimensionality. To use the English language as an analogy,
they begin their search from formulas of length one (one-letter
words) alphabetically and then proceed to formulas of length two
(two-letter words); they will continue to search all syntactically
correct formulas (English sentences) according to such a fixed
order until an appropriate formula (sentence) has been found. For
example, the method in [22] tries all the combinations of basic
formulas according to a predefined order and then selects the

best structure. Some methods try to deal with the problem, such
as [24] starts by devising a data-driven statistical abstraction of
the system. Then, it proposes general optimization strategies for
selecting formulae with high satisfaction probability. Bombara
et al. [25] use a decision tree to explore the structure of the
formula, which grows the formula by adding nodes to the
decision tree. These methods do not fully solve the scalability
problem or are under some assumptions.

The semantic fault diagnosis problem solved in this article
fundamentally belongs to the less restricted case of requirement
mining. But it pertains to the IIoT domain. More importantly,
to overcome the issue of combinatorial explosion, instead of
following a predefined order, this article proposes a new agenda-
based algorithm where syntactically correct formulas are ranked
in an agenda (priority queue) according to a scoring function; at
each step, the formula with the highest score (priority) is popped
from the agenda and evaluated against the collected data set; the
evaluation result, measured in terms of the formula’s ability to
distinguish positive and negative examples, is used to update the
scoring function and subsequently the agenda. Essentially, our
idea is inspired by imitation learning [26], [27]; we utilized the
IIoT data to guide the search of discriminative formulas (with the
English language analogy, this is similar to using English lan-
guage patterns, e.g., the relative frequencies of words, appearing
in the documents under investigation). We cast the agenda-based
semantic fault diagnosis process as a Markov decision process
(MDP), and solve the problem with reinforcement learning.
Since the semantic fault diagnosis problem is a delayed reward
(reward can only be obtained after all the actions are completed)
and sequential action (a sequence of actions should be taken)
process, it is suitable to use reinforcement learning to solve the
problem. Specifically, the major contributions are as follows.

1) Algorithm: This article presents a semantic fault diagnosis
problem and proposes an agenda-based, learning-enabled
algorithm to tackle the issue of combinatorial explosion.
To the best of our knowledge, our algorithm is the first
instance where reinforcement learning has been used to
solve requirement mining problems in the less restricted
setting. The algorithm can easily be generalized to other
domains where requirement mining is critical.

2) Application: The proposed algorithm is used to solve a
semantic fault diagnosis problem with real data collected
from 176 sensing devices on a blast furnace in an IIoT-
enabled iron-making factory. The results demonstrate the
scalability, diagnosis accuracy, and interpretability of our
algorithm in the IIoT domain.

This rest of this article is organized as follows. Section II
formulates the semantic fault diagnosis problem. Section III
presents an agenda-based, learning-enabled algorithm to solve
the problem. Section IV applies the algorithm on data collected
from an iron-making factory. Finally, Section V concludes this
article.

II. SEMANTIC FAULT DIAGNOSIS PROBLEM

In this section, we will first introduce STL, the logic used
in this article. Then, we will provide an illustrative example
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to show the expressiveness of STL in IIoT fault diagnosis.
Next, we will propose an attribute grammar, called STL attribute
grammar, which can be used to construct syntactically correct
STL formulas. Finally, we will present the formal definition of
the semantic fault diagnosis problem.

A. Signal Temporal Logic

Given two sets A and B, F(A,B) denotes the set of all
functions from A to B. Given a time domain R+ := [0,∞),
a continuous-time, continuous-valued signal is a function x ∈
F(R+,Rn). In this article, we use x(t) to denote the value of
signal x at time t.

Definition 1: STL is a temporal logic defined over sig-
nals [13]. Its syntax is defined recursively as

ϕ ::= μ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|♦[τ1,τ2)ϕ|�[τ1,τ2)ϕ (1)

where τ1 and τ2 are nonnegative finite real numbers, and μ is a
predicate over a signal, which can be defined as l(x(t)) ∼ c
with l ∈ F(Rn,R) being a function, ∼∈ {≤, <,≥, >}, and
c ∈ R being a constant. The Boolean operators ∨ and ∧ are
disjunction (“or”) and conjunction (“and”), respectively. The
temporal operators♦ and� stand for “eventually” and “always,”
respectively. STL is equipped with a quantitative semantics
called robustness degree defined as follows.

Definition 2: STL is equipped with a quantitative semantics
called robustness degree ρ : F(R+,Rn)×Ψ→ R which maps
an STL formula ϕ ∈ Ψ and a signal x ∈ F(R+,Rn) to a real
value. ρ(x, ϕ) indicates how far a signal x is away from satisfy-
ing STL formula ϕ and is defined as [13]

ρ(x, (l(x) < c), t) = c− l(x(t))

ρ(x, (l(x) ≥ c), t) = l(x(t))− c

ρ(x, ϕ1 ∧ ϕ2, t) = min (ρ(x, ϕ1, t), ρ(x, ϕ2, t))

ρ(x, ϕ1 ∨ ϕ2, t) = max (ρ(x, ϕ1, t), ρ(x, ϕ2, t))

ρ(x,�[a,b)ϕ, t) = min
t′∈[t+a,t+b)

ρ(x, ϕ, t′)

ρ(x,♦[a,b)ϕ, t) = max
t′∈[t+a,t+b)

ρ(x, ϕ, t′).

B. Illustrative Example

Example 1: STL formulas are quite expressive and inter-
pretable. With knowledge on the syntax and semantics of STL,
a human user can easily parse STL formulas. For instance, we
can use an STL formula ϕn = ♦[0,38.9](♦[0,2.22](wp < 0.88) ∧
�[2.22,11.4](wp > 0.9)) to distinguish normal and abnormal cold
blast pressure signals shown in Fig. 1 (wp in the formula
is the cold blast pressure). ϕn can be dissected as follows:
ϕn := ♦[0,38.9]ϕ

′, ϕ′ := ϕ1 ∧ ϕ2, ϕ1 := ♦[0,2.22](wp < 0.88),
and ϕ2 := �[2.22,11.4](wp > 0.9). ϕn reads as “the property ϕ′

must eventually be satisfied at a time t between 0 and 38.9
hours”; ϕ′ reads as “properties ϕ1 and ϕ2 must both be true
at t to satisfy ϕ′ at t”; ϕ1 reads as “wp must be smaller than
0.88 at least once within the next 2.22 hours”; and ϕ2 reads as
“wp must always be larger than 0.9 within the next 2.22 and
11.4 hours”. In summary, ϕn can be translated into an English

Fig. 1. Cold blast pressure time-series data collected from a blast
furnace. ti, i = 1, . . . , 4, are the time instances that ϕ′ (see text) is
satisfied.

TABLE I
PRODUCTION RULES OF GST L

sentence “the following property must be satisfied at a time t
between 0 and 38.9 hours: the blast pressure wp must be smaller
than 0.88 at least once within the next 2.22 hours (i.e., during
the time interval [t, t+ 2.22]) and always be larger than 0.9
within the next 2.22 and 11.4 hours (i.e., during the time interval
[t+ 2.22, t+ 11.4]).”

C. STL Attribute Grammar

To enable the learning process for semantic fault diagnosis,
we define the following STL attribute grammar.

Definition 3: The STL attribute grammarGST L is an attribute
grammar 〈VN , VT , P, S, g〉with the following components [28]:
VN = {A,B}, where each element of VN corresponds to an
STL fragment (partial formula); VT = {μ,♦,�,∨,∧}, where
the meanings of the symbols are the same as those in (1)
and μ,♦,� represent predicates and temporal operators with
different attributes; P = {P1, . . . , P7} is the set of production
rules, where the production rules are shown in Table I (there
are five categories of rules, namely Instance, Eventually, Al-
ways, Or, and And); S is the start variable (or start symbol),
used to represent the whole sentence (here VN = S); g maps
each node to two types of attributes: (a) time attributes that
specify the time bounds of the temporal operators used in
the node and (b) predicate attributes that specify the predi-
cates used in the node. Specifically, the predicate attributes
include signal name, comparison operator, and constant. To
give an example, for a terminal node μ : (wp < 0.88), its list
of time attributes is μ.time = [], which is empty, and its list
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Fig. 2. The parsing tree of ϕn = ♦[0,38.9](♦[0,2.22](wp < 0.88) ∧
�[2.22,11.4](wp > 0.9)). The time and predicate attributes of a node are
shown immediately underneath the corresponding node.

of predicate attributes is μ.pre = [(wp, <, 0.88)] (we use the
notations .pre and .time throughout the article). Both types
of attributes are synthesized [29]. For instance, production rule
P6 : A→ A ∨B implies thatA.time = A.time⊕B.time and
A.pre = A.pre⊕B.pre, where ⊕ denotes the concatenation
operator of two lists, e.g., [(wp, <, 0.88)]⊕ [(wp, >, 0.9)] =
[(wp, <, 0.88), (wp, >, 0.9)].

Example 1: (Continued) This grammar can be best demon-
strated with an example. Here, VN = {A,B}, VT = {μ1 :=
(wp < 0.88), μ2 := (wp > 0.9),�[2.22,11.4],♦[0,38.9],♦[0,2.22],
∧,∨}, S = VN , P and g are defined in Table I, where P1 has
two forms as A|B → μ1, A|B → μ2. We want to generate
formula ϕn in this illustrative example. It can be easily
seen that the STL formula ϕn = ♦[0,38.9](♦[0,2.22](wp <
0.88) ∧�[2.22,11.4](wp > 0.9)) can be derived by following a
sequence of production rules A→ ♦A, A→ A ∧B, A→ ♦A,
A→ μ1, B → �B, B → μ2. The parsing tree is shown in
Fig. 2.

III. AGENDA-BASED, LEARNING-ENABLED ALGORITHM

In this section, we will present our framework to solve the
formula inference problem. The main challenge is the issue
of combinatorial explosion as mentioned in Section I. The
number of syntactically correct (thus candidate) formulas grows
exponentially with respect to the length of the formula. Our
algorithm adopts two main strategies to tackle the issue. First,
inspired by agenda-based semantic parsing (the task of mapping
natural language to semantic representations) [27], we develop
an agenda-based framework to search for a satisfying discrim-
inative formula (Section III-A). Second, we borrow ideas from
imitation learning [26], [27], cast the agenda-based semantic
fault diagnosis process as a MDP, and solve the problem with
reinforcement learning.

A. Agenda-Based Strategy

Fig. 3 shows our agenda-based framework to solve the se-
mantic fault diagnosis problem. The framework takes the STL

Fig. 3. Our agenda-based strategy to solve the semantic fault diagno-
sis problem.

TABLE II
AGENDA Q AND CHART H GENERATED IN THE FIRST

THREE STEPS OF EXAMPLE 1

attribute grammar GST L and a set of labeled signals X as the
inputs and generates an optimal STL formula d∗. At step t, the
Agent chooses a formula, dt, from agenda Q and adds it to chart
H (the roles of Q and H will be explained later) based on a
policy π(st) at current state st of the H and Q. The Evaluator
evaluates the performance of the formula dt with respect to
X and the Learner updates the policy function according to
the performance. Then the agenda Q is updated based on the
formulas in H and dt (the state is updated and will be described
later). The Agent selects actions based on the current policy,
which is related to the scoring function learned by the Evaluator
and the Learner. Therefore, the efficiency and effectiveness of
our agenda-based framework are completely determined by the
quality of policy π(·). In Section III-C, we will focus on how to
systematically learn π(·) from data. But first, let us elaborate on
the rules to update agendas and charts.

1) Agenda and Chart Update: Agenda Q and chart H are
updated whenever the Agent chooses a formula from agenda Q.
At step t, after the Agent has chosen a formula dt from agenda
Q, the agenda and chart are updated as follows:

H ← H ∪ sp(dt),

Q← Q \ dt ∪ {sp(�[a,b]dt)∪, sp(♦[a,b]dt)}
{dt ∧ ϕH(i), dt ∨ ϕH(i) | ∀ϕH(i) ∈ H}. (2)

Specifically, sp(·) simplify the formula by combining the same
temporal operator expansion, e.g., �[a,b]�[c,d] → �[a+c,b+d],
and formulas �[a,b]dt,♦[a,b]dt, dt ∧ ϕH(i) and dt ∨ ϕH(i), i =
1, . . . , |H| are generated by production rules P3, P2, P7, and P6

and added to agenda Q. The temporal interval [a, b] is generated
randomly to avoid the syntactically and semantically equivalent
cases.

Example 1: (Continued) Table II shows how agenda Q and
chartH are updated in the first three steps of Example 1. Agenda
Q is initialized with formulasϕ1 andϕ2 and chartH is initialized
as an empty set. At step 0, the Agent chooses formula ϕ2 from
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agenda Q and put it into chart H . The chosen formula is used to
generate new formulas �ϕ2 and ♦ϕ2 with production rules P3

and P2 (as H is empty initially, production rules P4 and P5 are
not applied). All these new formulas are added to agenda Q. At
step 1, the Agent chooses formula ϕ1, generating new formulas
�ϕ1, ♦ϕ1, ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2 with production rules P3, P2,
P5, and P4, respectively. The new formulas are added to Q and
ϕ1 is added to H . At step 2, the Agent chooses formula ϕ1 ∧ ϕ2,
then formula ϕn in Example 1 can be generated with production
rule P2. The Agent can proceed with choosing a formula from
agendaQ, putting it to chartH , generating new formulas, adding
them to agenda Q, and continuing until the number of formulas
in the chart, |H|, reaches the limitation T .

B. Problem Definition

Problem 1: (Semantic Fault Diagnosis): Given the STL at-
tribute grammar GST L =< VN , VT , P, g >, a positive integer
T , and two labeled sets of signals, X+, positive signals of an
IIoT-enabled system, and X−, negative signals of the system,
find an optimal policy π(·), such that after T steps, the Agent
chooses a formula dT , such that

ρ(X, dT ) = min
(
min
x∈X+

(ρ(x, dT )
)
, min
x∈X−

(
ρ(x,¬dT ))

)
(3)

is expected to be maximized, where X = X+ ∪X−, ρ(x, dT ),
and ρ(x,¬dT ) denote the robustness degrees ofxwith respect to
dT and its negation, respectively. T denotes the number of steps
used to generate dT , which is equal to the number of formulas
in H and the value is set based on experimental result, and ¬dT
is the negation of formula dT .

Here, positive signals can correspond to normal signals, while
negative signals are those that are abnormal. However, the
signals need not always be classified as such (remember we
may wish to diagnose different types of faults; more details are
provided in Section IV-B).

C. Reinforcement Learning for Solution

1) Agenda-Based Semantic Fault Diagnosis as MDP:
The agenda-based semantic fault diagnosis process is essentially
a sequential decision process. At each step, the Agent needs to de-
cide on which formula to choose based on the current formulas in
agendaQ; a sequence of decisions made by the Agent will finally
lead to a formula d (or ϕ). Therefore, we can conveniently cast
the agenda-based fault diagnosis process as a traditional MDP
M = 〈S,A,�(·|·, ·), r(·|·, ·), γ〉 as follows (here we continue
to use Example 1): the set of states S = 〈Q,H〉 is the set of
all possible charts and agendas, e.g., a state s ∈ S corresponds
to the formulas in the second and the third columns of a row
of Table II; the actions available at state s, denoted as A(s),
are the formulas in the corresponding agenda Q; the transition
probability �(s′|s, d) is either 1 or 0. It is 1 if formula d is
chosen to transit state s, i.e., agenda Q and chart H , to state s′,
i.e., agenda Q′ and chart H ′ (from one row of Table II to the
next row); otherwise, it is 0; the immediate reward r(s′|s, d) is
the robustness degree over all the signals in X with respect to
formula d, as defined in (3); γ ∈ [0, 1] is a constant.

Here we would like to point out that we only use the MDP for
the construction process of the agenda-based formulas, thereby
enabling us to utilize reinforcement learning to solve the problem
later. As in the mainstream reinforcement learning setting [30],
the MDP model will not be explicitly constructed.

2) Reinforcement Learning of Optimal MDP Policy: In
the following, we will present a reinforcement-learning-based
algorithm to solve the semantic fault diagnosis problem in the
context of the MDP formalism. We will first introduce features
used to characterize formulas and then elaborate on two com-
ponents, Agent and Learner (see Fig. 3).

Features: In this article, the set of features, which capture the
essential characteristics of an STL formula, includes: 1) the start
and end times of time attributes, 2) the maximum and minimum
values of predicate attributes, 3) the logarithm of the number
of time bounds, 4) the logarithm of the number of production
rules, 5) the logarithm of the number of predicates, conjunction,
and disjunction operators, and 6) the logarithm of the number of
“always” and “eventually” temporal operators. These features
are selected based on the features in [27] and empirical trails,
which have been demonstrated to have good performance.

Agent: The Agent takes the role of the actor, which, at step t,
observes the current state st (i.e., the current chartHt and agenda
Qt) and chooses an action (formula) dt ∈ A(st). A policy π
induces a distribution over trajectories ε of the MDP (i.e.,
sequences of formulas constructed during the fault diagnosis
process) as follows:

pπ(ε) = p(s0)

T−1∏
t=0

�(st+1|st, dt)π(dt|st). (4)

The Agent attempts to find an optimal policy π that maximizes
the expected accumulative robustness degree over the distribu-
tion (4) as follows:

π∗ = argmax
π

Epπ(ε)

[
T−1∑
t=0

γtρ(X, dt)

]
(5)

where ρ(X, dt) is the robustness degree for choosing dt [as
defined in (3)]. In our setting, the discounting factor γ is set
to 0.2, which is quite small. Since the formula in the chart might
not be on the same production branch, we use a small discount
factor, such that we focus more on the current reward. We assume
that the formulas in the chart with an optimal policy are on the
same production branch, which is a reasonable assumption since
we need a complex formula to reach better performance in terms
of that simple formula cannot obtain good performance. Here
we can approximate the reward with a linear dynamic system,
due to the fact that we can find a policy, which can increase the
performance of the formula step by step. When the formula is
simple, the reward function can be monotonic, thus it can be
approximated with a linear system.

The optimal policy π∗ (5) is a time-varying one, i.e., π(dt|st).
We approximate the policy π(dt|st) by a time-varying paramet-
ric function π(dt|st, wt), where wt ∈ RF (t = 0, . . . , T − 1)
are the parameter vectors with F being the dimension of the
feature space, and W = {w0, w1, . . . , wT−1} denotes the para-
metric matrix [30]. The policy π(dt|st) defines a conditional
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probability density function of an action (formula) dt given
current state st, denoted as

πwt
(dt|st) =

exp{f(dt)Twt}∑
d′∈A(st)

exp{f(d′)Twt}
(6)

where the probability indicates the preference of the Agent to
choose action dt at state st. During the learning process, the
agent will randomly choose a formula inQ at the beginning, and
then a formula dt will be chosen with probability π(dt|st). The
preference function is a linear function, h(d) = f(d)Tw, where
f(d) ∈ RF is the feature vector, and w ∈ RF is the parameter
vector to be obtained. With such a parameterization method (6),
(5) can be transformed into the following equation:

w∗ = argmax
w

Epπw (ε)

[
T−1∑
t=0

γtρ(X, dt)

]
. (7)

Now the problem of searching for an optimal policy π∗ (with
a search space of infinite dimensions) has been converted into
the problem of searching for an optimal parameter w∗ (with a
search space of F dimensions).

Learner: The role of the Learner is to find an optimal value
for w (7) by using reinforcement learning [30]. It can be ob-
served from (6) that the state s only provides the support for
the distribution, and the policy πw(dt|st) depends only on the
feature f(dt) and the parameter vector w. In this article, the
Learner applies the Monte–Carlo policy gradient method to
learn the optimal policy [30]. At each step t, the Learner samples
full-sized trajectories ε based on the current policy πw. Then,
the policy parameter w is updated by

wt ← wt + αγtRt∇wt
ln π(dt|st) (8)

where α is the learning rate and Rt =
∑T

k=t+1 ρ(X, dk) is
the rewards received after step t. The gradient of each policy
decision is defined as follows:

∇wt
ln π(dt|st) = f(dt)−

∑
d′∈A(st)

πwt
(d′|st)f(d′). (9)

Overall Algorithm: The overall algorithm to solve the se-
mantic fault diagnosis problem is shown in Algorithm 1. Line
1 initializes the state s0. During the initialization process, we
choose a sequence of time instances τ = (t0, t1, . . . , tn) ran-
domly as the time attributes. Combining these time bounds with
temporal operators � and ♦, we can get temporal operators
with different time bounds. We treat the predicate attributes
the same way. With the initialization process, the agenda Q
will be initialized with a set of simple formulas, each of which
is constructed by combining a timed temporal operator and a
predicate; chart H will be initialized as an empty set. During
the training process, the size of s0 can be small, while after
the optimal policy has been obtained, a larger s0 will lead to a
better formula with a little computational cost. Line 6 updates
the chart and the agenda. During the formula generation process,
the agenda-based approach can make sure all the generated
formulas are syntactically correct and avoid pathological cases.
Moreover, the horizon limitation of the MDP limits the length
of the formula.

Algorithm 1: Reinforcement-Learning-Enabled Fault
Diagnosis.

Input: A set of labeled signals X = X+ ∪X−, STL
attribute grammar GST L, episode horizon T , learning
rate α, number of training episodes M

Output: The optimal parameter vector w.
1: Initialize state s0 by randomly generating 100 atomic

STL formulas, having the form of ♦[a,b](xi ∼ c) or
�[a,b](xi ∼ c), where a, b, c ∈ R, 0 ≤ a < b, are
random number and ∼∈ {≤,≥<,>}.

2: Initialize each parametric vector wt

(t = 0, . . . , T − 1), to vector 0 ∈ RF .
3: for m = 1 to M do
4: for t = 0 to T − 1 do
5: Choose a formula from current agenda Q, with dt

having probability π(dt|st, wt) been chosen.
6: Update (H,Q) to get state st+1 based on (2) and

reward ρt based on (3).
7: for t = 0 to T − 1 do
8: Rt ←

∑T
k=t+1 ρ(X, dk)

9: wt ← wt + αγtRt � lnπ(dt|st, wt)

D. Complexity Analysis

Finding an STL formula is a structure inference problem,
known to be NP-complete. With our agenda-based paradigm,
the semantic fault diagnosis problem can be transformed into an
MDP with finite states and finite actions. Let us assume the time
and predicate domains have been divided intoU andV intervals,
respectively. Moreover, let us fix the episode horizon asT . Then,
the total number of states (denoted as |S|) and actions (denoted
as |A|) of the MDP are of the orders ofO(V |X|U2|X|(T−1)) and
O(V |X|U2|X|T ) with |X| being the dimension of the signals
in set X (see Problem 1), respectively. Using reinforcement
learning to solve MDP has a well-established complexity of
O(|S||A|) [31]. Therefore, our framework has a complexity that
is exponential with respect to the dimension of the signals |X|,
which is generally small, and the horizon length T .

The complexity of the proposed algorithm is different from
the decision tree approach in [25]. Denote the complexity of the
algorithm in [25] as C(N), which is defined as

C(N) = Θ

(
N ·

(
1 +

∫ x

1

g(u)

u2
du

))
(10)

where N is the number of signals and g(·) is the complexity
of the local optimization algorithm, and x is the local number
of signals. C(N) is a function of the N , since the algorithm
partitions the signals with the decision tree and terminates when
all the signals are partitioned. Obviously, the algorithm assumes
all the signals can be partitioned with a decision tree, while
there exist scenarios that the signals cannot be classified with a
temporal logic-based decision tree due to the existence of noise.
On the contrary, the algorithm in this article tries to learn a
policy that maximizes the expected robustness degree, which
can deal with noise signals by statistical testing mentioned in
the following section. Moreover, with an optimal policy, a good
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Fig. 4. Illustrative diagram of the IIoT-enabled blast furnace.

formula can be obtained by increasing the size of initial state s0
with little computation cost.

IV. CASE STUDY: SEMANTIC FAULT DIAGNOSIS FOR AN

IIOT-ENABLED BLAST FURNACE

During an iron-making process, raw iron-containing mate-
rials, e.g., sinter, pellet, and lump ore, and coke are charged
into the top of a furnace with a charging system. These raw
materials are pre-heated, creating a large amount of heat and
producing gas consisting of carbon monoxide and hydrogen.
The combustion process inside the furnace is complex, making
it quite difficult to monitor the furnace and diagnose faults if
they happen. The IIoT-enabled blast furnace illustration diagram
is shown in Fig. 4, where the signals come from the wireless
sensors, and the semantic fault diagnosis process is carried out
in the cloud. In this section, based on data collected from an
IIoT-enabled iron-making factory (Section IV-A), we will show
how our proposed methodology can effectively and efficiently
facilitate the fault diagnosis process (Section IV-B).

A. Collected Time-Series Data

Data covering three years of operation were collected from
a blast furnace inside an iron-making factory. The furnace was
equipped with an array of sensors. A total of 176 variables were
measured. Only a fraction of these variables are used in the case
study. They include blast kinetic energy (x9) in kJ, theoretical
flame temperature (x12) in ◦C, total pressure drop (x19) in kPa,
total temperature drop (x30) in ◦C, bosh gas volume (x10) in m3,
enriched oxygen pressure (x17) in MPa, resistance index (x28),
and blasting humidity (x29). We choose these variables based
on experts’ recommendations and their performance in practice.

B. Semantic Fault Diagnosis for Blast Furnace

In this subsection, we will conduct three experiments on
the collected data to illustrate both the effectiveness (in terms
of interpretability and expressiveness) and scalability of our
proposed semantic fault diagnosis algorithm.

1) Effectiveness of Our Algorithm: The blast furnace un-
der investigation exhibited five types of conditions, a normal
one and four abnormal ones, including Low Stock Line, Cooling,
Heating, and Chimney. In the first experiment, we study whether
it is possible to use Algorithm 1 to learn four separate STL

formulas, ϕL, ϕC , ϕH , and ϕCh, that can specify the four ab-
normal conditions, i.e., distinguishing one abnormal conditions
from other abnormal ones as well as the normal one. We hand-
pick four variables, x9,x12,x19, andx30, and use the time-series
data related to these variables to learn the formulas. Specifically,
the dataset X is of dimension 5× 4× 1440× 20, where 5 is the
number of conditions, 4 is the number of variables, 1440 is the
number of time instances (the length of a signal), and 20 is the
number of signals/repetitions/trials for each condition. Before
the application of our algorithm, the data points corresponding to
the same variable are normalized. Moreover, 80% of the signals
(i.e., 16 out of 20) are used for training while the remaining 20%
(i.e., 4 out of 20) are left for testing. All the performance results
presented in this subsection are evaluated with respect to the
testing data.

To further illustrate how to apply our algorithm, let us take
the learning of ϕL, the STL formula for the Low Stock Line
condition, as an example. First, we set X+ as all the data
corresponding to the Low Stock Line condition (a total number
of 4× 1440× 16 data points), and X− as the data belonging
to other conditions (a total number of 4× 4× 1440× 16 data
points). Then, we apply Algorithm 1 (the horizon T is set to
3 and the iteration limitation M is set to 5) to the data set
X = X+ ∪X−. The algorithm will be terminated when either a
satisfactory formulaϕL has been found or the iteration limitation
has been reached. Here a satisfactory formulaϕL means that any
signal inX+ has a nonnegative robustness degree with respect to
ϕL, while any signal inX− has a negative robustness degree with
respect to ϕL. Or equivalently, the robustness degree defined
as (3) is nonnegative. We would like to point out that if such a
satisfactory formula has been found, it has a 100% classification
accuracy.

The four STL formulas, one for each abnormal condition,
learned from the training data are listed in Table III. In the table,
“Time” means the computational time, i.e., the time it takes for
the algorithm to terminate when applied to the training signals,
and “Robust.” means the robustness degree, (3), of the testing
signals with respect to the formulas learned from the training
data. All the learned formulas have positive robustness degrees,
implying that each one of them can perfectly distinguish its cor-
responding abnormal condition from the three other abnormal
conditions and the normal one. Note that the variables used in
the formulas are determined by the algorithm, and there may be
other formulas that lead to positive robustness.

These formulas can easily be understood by humans and the
semantic fault diagnosis process can be conducted by checking
whether the signal is satisfied by the formula, and interpreting the
meaning of the formula explicitly. For instance, formula ϕL can
be translated into an English sentence, “the following property
must be true at a time instance t between 0 and 14 400 seconds:
within the next 6208 seconds, the total pressure drop must always
be larger than 0.444 (normalized value) and the total temperature
drop must always be smaller than 0.0211 (normalized value).”
With such explicit knowledge, a human user can either take
actions to maintain a small pressure drop and a large temperature
drop or further study the furnace to determine factors which may
prevent a large pressure drop and a small temperature drop.
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TABLE III
SEMANTIC FAULT DIAGNOSIS RESULTS FOR THE FOUR ABNORMAL CONDITIONS

Fig. 5. Illustration of ϕC together with the relevant data.

Fig. 6. Illustration of ϕCh together with the relevant data. The green
region in the top figure corresponds to fragment ♦[2151,5354](x19 ≥
0.352), while the one in the bottom figure corresponds to fragment
♦[9976,12354](x30 ≥ 0.461).

Figs. 5 and 6 illustrate ϕC and ϕCh, the STL formulas for
the Cooling and Chimney conditions, respectively. We can use
the same parsing method as explained in Section II-B to dissect
ϕC andϕCh. For instance,ϕC := ♦[0,14400](♦[5324,9051](x19 ≤
0.9) ∧�[5324,9051](x9 ≥ 0.2)) can be parsed sequentially as
follows:ϕC := ♦[0,14400]ϕ

′ (meaning “there is a time t between
0 and 14 400 s that propertyϕ′must be true at t”),ϕ′ := ϕ1 ∧ ϕ2

(meaning “properties ϕ1 and ϕ2 must be true at t at the same
time”), ϕ1 := ♦[5324,9051](x19 ≤ 0.9) (meaning that “at t, x19

must be less than or equal to 0.9 (the upper bound of the green

region shown in the top plot of Fig. 5) for at least one time within
the next 5324 and 9051 s”), and ϕ2 := �[5324,9051](x9 ≥ 0.2)
(meaning that “at t, x9 must be larger than than or equal to
0.9 (the lower bound of the green region shown in the bottom
plot of Fig. 5) for at least one time within the next 5324 and
9051 s”). Actually, as shown in the top plot of Fig. 5, ϕ1 is able
to separate all the red trajectories (positive examples) from the
blue ones (negative examples), except for one blue trajectory,
which can subsequently be described by ϕ2, illustrated by the
bottom plot of Fig. 5. Figs. 5 and 6 also show the expressiveness
of STL formulas for the purpose of semantic fault diagnosis.
For instance, we cannot simply use thresholds to distinguish
the positive (red) and negative (blue) signals shown in Fig. 5.
However, when we combine thresholds with “always” � and
“eventually” ♦ operators, such as ϕC , the two sets of signals are
now distinguishable.

2) Scalability of Our Algorithm: In the second experiment,
we validate the scalability of our proposed algorithm by inves-
tigating the change in computational time as the number of
variables increases from four to eight. Specifically, we solve
the semantic fault diagnosis problem in a similar fashion as
in the first experiment. The only difference is that the list of
variables is expended to include x9, x12, x19, x30, x10, x17,
x28, andx29. Their corresponding robustness degrees (evaluated
against testing data) and computational times (evaluated against
training data) are used as the evaluation metric. We would like
to point out that the reason we chose x9, x12, x19, and x30 in
the first experiment is that these four variables have been shown
to be good indicators based on the experience of blast furnace
operators. These variables are currently used in conditioned
monitoring in practice [32]. Interestingly, our results show that
some other variables, such as x10 regarding the Cooling fault,
have comparable capabilities in terms of specifying faults [quan-
tified by (3)]. These variables may require further investigation.

The results are shown in Fig. 7, which shows that the com-
putational time of our algorithm increases roughly linearly with
respect to the number of variables (the size of the data set X is
5× 4× 1440× 16 with four variables and 5× 8× 1440× 16
with eight variables). While the robustness degrees are not
linearly increased with respect to the number of variables. They
are random values. There are two main reasons for this. First,
the algorithm is terminated when a satisfactory formula has
been found, and this formula may not be the optimal one.
Second, the formula found in different settings contains different
variables. As shown in Table IV, the formulas for Heating have
different variables. These formulas will lead to an inconsistent
robustness degrees pattern. Along the same line of thought, the
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Fig. 7. Obtained robustness degrees and computational times with
respect to the different numbers of variables used in the seman-
tic diagnosis of three abnormal conditions. (a) Heating. (b) Cooling.
(c) Chimney.

TABLE IV
FRACTION OF SEMANTIC FAULT DIAGNOSIS RESULTS WITH

EIGHT VARIABLES

STL formulas obtained with respect to different variables, taken
together, may offer a more comprehensive picture of possible
mechanisms that may lead to faults. Let us take the Heating
fault as an example. Formulas in Table IV show that such a
fault can be caused or indicated by a large bosh gas volume,
formally specified by ϕH − 7 := ♦[0,14400](�[4590,9963](x10 ≥
0.325)), or a large total total pressure drop, formally specified by
ϕH − 8 := �[7000,10550](x19 ≥ 0.664)). Such data-generated
knowledge can be utilized by human users to improve the safety
and efficiency of the IIoT-enabled blast furnace, which provides
a fine example of how data-driven and knowledge-driven proce-
dures can be integrated holistically.

In order to demonstrate both the effectiveness and the effi-
ciency of our approach over other state-of-the-art methods, we
compared our method with that developed in [22] for the low
stock line diagnosis. Both methods can find an STL formula
for semantic fault diagnosis. The results are shown in Table V.
An eight-core HP desktop was used. For these comparisons, we
controlled the number of episodes in the agenda-based method,
and the number of learning cycles for [22]. We used five-fold
cross-validation to test the performance. Both methods were
repeated 10 times. Table V shows the average time, average
error rate, and standard deviation among the 50 results, denoted
as T , ε̄, and εσ , respectively. The results show that, with the
former method, a satisfactory STL formula can be derived in
265 s, while such a formula cannot be obtained with the latter
method within roughly 1000 s (the error is 6% and the robustness
is still negative after 1033 s). One reason for this is due to the
lack of scalability for the latter method.

For the purposes of optimal policy evaluation, a robust metric
to use is the success rate (SR) for each environment. The
agenda-based learning tasks are designed so that the successful
rewards are positive, while negative rewards indicate a failure.

Fig. 8. Average success rates of different faults at chosen episodes.

Given a list of rewards R, the success rate is computed as
∑

1
[R ≥ 0]/|R|. The average success rate for optimal polices,
trained within 300 s CPU time, is shown in Fig. 8 and the
five-fold cross-validation is used to evaluate the performance.
The average shows the algorithm can achieve a high success
rate within 300 s (25 episodes).

Table V and Fig. 8 show the performance of the proposed
method increases almost linearly with episodes, while the
method in [22] cannot increase performance with time linearly.
The method in [22] searches the structure of the formula first
based on some predefined order, then finds the optimal parame-
ters for the formula. When the length of the formula increases,
the number of parameters that need to be optimized will increase.
Within relatively the same CPU time, this method cannot reach
the optimal parameters. Moreover, searching along a predefined
order may lead to local optimal formula.

3) Statistical Testing: Machine learning algorithm usually
is robust to noise. The learning algorithm in this article chooses
formula based on the current policy, with dt having prob-
ability π(dt|st, wt) been chosen, but the agenda is initial-
ized randomly. The probabilistic approach indeed may raise
failure percentile. However, since the there is noise in the
data, probabilistic approach has high probability to overcome
the effect of noise, which can be illustrated with statistical
testing.

Let us consider a t-test for a given STL formula: (a) the
robustness for a baseline fault signal is a random variable hav-
ing a normal distribution with unknown mean ρ̄ and unknown
standard deviation ρ̄σ; and (b) the robustness for a signal that
must be diagnosed is also normally distributed with unknown
mean ρ̂ and unknown standard deviation ρ̂σ . The t-test compares
means of values of two fragments of time series, and thereby a
whole time-series fragment for a fault occurrence is tested. In
other words, if the result of the test is that the null hypothesis is
rejected, the current signal cannot be categorized as faults in the
baseline samples.

In several cases in our study, the nature of the robustness
degree does not imply a normal distribution, due to the operators
in the given STL formula. In this case, the objective of the fault
classification problem is to test the equality of value distributions
in the robustness from the baseline and tested operating modes.
For this purpose, the two-sample Kolmogorov–Smirnov test
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TABLE V
COMPARISON RESULTS BETWEEN OUR PROPOSED METHOD AND THE METHOD IN [22]

TABLE VI
STATISTICAL TESTING RESULTS

(K-S test) is used. As a result, a chosen window of a sensor
time series is considered an outlier if a null hypothesis of value
distribution equality is rejected with a level of significance.

During the t-test and K-S test, the significance level is set to
0.05. To test the hypothesis, we segmented the signal that to be
diagnosed using a window of length 10000 and used the signal
in the window to calculate the robustness. Next, we moved this
window forward 20 steps along the time axis and repeated the
calculations. The resulting trace of robustness values was used
to determine the distribution. To test ϕL, the other classes of
conditions’ signals are used as baseline samples and the 20 low
stock line signals are tested. The results are shown in Table VI,
which shows the formula is robust to noise.

V. CONCLUSION

This article solved a semantic fault diagnosis problem, where
formal, but human-understandable specifications of faults can
be learned from data collected from IIoT-enabled systems. The
algorithm proposed in this article adopted two mechanisms to
tackle the issue of combinatorial explosion: an agenda-based
strategy and imitation learning. The scalability and effectiveness
of the algorithm were demonstrated by a case study, where the
algorithm was applied to sensor data collected from an IIoT-
enabled blast furnace inside an iron-making factory.
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