
A novel wrapper method for feature selection and its applications

Gang Chen n, Jin Chen
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, NO. 800 Dongchuan Road, Minhang District, Shanghai, China

a r t i c l e i n f o

Article history:
Received 2 August 2014
Received in revised form
19 January 2015
Accepted 20 January 2015
Communicated by “Jiayu Zhou”
Available online 16 February 2015

Keywords:
Cosine similarity measure
Feature selection
Support vector machines
Bayesian interpretation

a b s t r a c t

This paper introduces a wrapper method, namely cosine similarity measure support vector machines
(CSMSVM), to eliminate irrelevant or redundant features during classifier construction by introducing
the cosine distance into support vector machines (SVM). Traditionally, feature selection approaches
typically extract features and learn SVM parameters independently or in the attribute space, which
might result in a loss of information related to classification process or lead to the increase of
classification error when introduce the kernel SVM. The proposed CSMSVM framework, however, jointly
performs feature selection, SVM parameter learning and remove low relevance features by optimizing
the shape of an anisotropic RBF kernel in feature space. Moreover, the Bayesian interpretation of the
novel methodology reveals its Bayesian character, which builds the proposed method on solid theory
foundation, and the iteration algorithm, which is proposed to optimize the feature weight, has achieved
to maximize the maximum a posterior (MAP). Comparing the novel method with well-known feature
selection techniques with experiments, CSMSVM outperformed the other methodologies in improving
the pattern recognition accuracy with fewer features.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection addresses the dimensionality reduction issue
by determining a subset of the available features from large
dimensionality domains via predetermined evaluation criteria.
Thus feature selection is significance for reduction of the compu-
tational complexity and improvement of classifier’s generalization
ability. The reason for this is quite evident, since features irrele-
vant and redundant usually occur in application fields, especially
in high-dimensional feature vectors or large dataset. Additionally,
a low-dimensional representation will reduce the risk of over
fitting [1,2]. Therefore, many researchers have spent their energy
in the studying of feature selection process and have developed
dozens of feature selection algorithms [3–7].

Based on the evaluation procedure, the existing feature selection
methods can be sorted into three categories, namely the wrapper
method, filter methods and hybrid methods. Filter methods perform
the feature selection process independently without involving any
learning algorithm [8], while wrapper methods [9] utilize a pre-
determined learning algorithm for feature subset evaluation which
makes the final selected subset features be correlated with the
chosen relevance measure and the hybrid methods combine the
filter and wrapper methods, respectively. Intuitively, the hybrid

methods are based on the other two methods and proposed to
overcome the drawbacks of the filter and wrapper methods. Since
the filter methods have low computational cost with the selected
feature subset shows insufficient reliability for classification. In the
other side, the wrapper approaches achieve superior classification
accuracy, but need much more computational power. The drawbacks
and complementarity of the twomethods lead to the development of
the hybrid method, such as the SAGA [5] and the normalized mutual
information feature selection method which used a genetic algo-
rithm to form a hybrid method called GAMIFS [10].

These existing methods, including the filter, the wrapper and
the hybrid method, have improved the features’ discrimination
for classification. When they come to the classification algorithm
itself, however, they have not overcome the classification algo-
rithm’s drawbacks. In the other words, the feature selection
process has not enhanced the classification algorithm but enh-
anced the features. Moreover, the wrapper and hybrid method,
even though they have achieved a high classification accuracy,
they fail to address the computational efficiency. To deal with this
issue, this paper proposes a cosine similarity measure support
vector machines (CSMSVM) that selects relevant features during
classifier construction by introducing the cosine distance into
SVM. The CSMSVM not only optimizes the margin in SVM, but
also decreases the intra-class distance during the feature selection
process which will reduce the classification error rate. In terms of
the computational effort, the CSMSVM performs feature selection
process and classification simultaneously, which makes it evade a
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further validation step to find the adequate number of ranked
feature. Thus the proposed CSMSVM has improved the computa-
tional efficiency to a large extent.

The rest of the paper is organized as follows: Section 2 reviews
previous work on SVMs and some relative work. Section 3
introduces the proposed CSMSVM and the Bayesian interpretation
of the CSMSVM is presented in Section 4; The learning of feature
weights in kernel space is presented in Section 5; Section 6
demonstrates the proposed methodology with two experiments;
Then the conclusions are drawn in Section 7.

2. Previous work

2.1. Support vector machine

Support vector machine (SVM) is a state-of-the-art learning
machine which is an effective classification method with signifi-
cant advantages. Since it is an algorithm that absence of local
minima, a representation that depends on few parameters and an
adequate generalization to new objects [11,12], SVM has seen its
prosperity and has been widely applied to many fields for the past
20 years. It has exerted an indispensable role in pattern recogni-
tion [13], disease diagnosis [14], forecasting [15], etc.

For a typical binary classification problem with dataset S in the
form of xi; yi

� �m
i ¼ 1, where the training vectors xiARn, a vector of

labels yARm; yiA �1;1f g, and x jð Þ denotes the jth feature of
vector x. Hence x jð Þ

i is the jth feature of the ith instance. Linear
SVM aims to separate the training patterns by find the optimal
hyper plane f xð Þ ¼wTxþb though machine learning technique.
This hyperplane can be obtained by solving the following convex
optimization problem

min
w;b

1
2

wj jj j2

subject to

yi w
T�xiþb

� �
Z1; i¼ 1;2;…;m ð1Þ

To solve the optimization problem, we look at the dual
formulation of the problem, introducing the Lagrangian multi-
pliers αi i¼ 1;2;…;mð Þ for the constraint and the Lagrangian is as
follows:

Lðw; b; αÞ ¼ 1
2
‖w‖2�

Xm
i ¼ 1

αi½yiðwTdxiþbÞ�1� ð2Þ

Then the primal problem can be expressed as finding the
saddle point of Lagrange. Hence, the dual Lagrangian is trans-
formed into:

max
α

Xm
i ¼ 1

αi�
1
2

Xm
i ¼ 1

Xm
j ¼ 1

αiαjyiyjxi
Txj

subject to :
Xm
i ¼ 1

αiyi ¼ 0;0rαi ð3Þ

Obviously, it is a quadratic optimization problem (QP) with
linear constraints and can be solved by many methods and the
linear discriminant function f(x) given by SVM can be defined by

f ðxÞ ¼ sgn
Xm
i ¼ 1

αiyix
Txþb

 !
ð4Þ

In many cases, the features in attribute space cannot be linearly
separated. However, Kernel representations offer an alternative
solution by projecting the data into a high dimensional feature
space, namely the feature space, which has increased the computa-
tional power of the linear learning machines greatly. Fortunately, the
use of linear machines in the dual representation makes it possible to

perform this process implicitly, as in this representation the number
of tunable parameters does not depend on the number of attributes
being used. In the nonlinear SVM, the kernel functions are used to
perform a nonlinear mapping to a high dimensional or infinite
dimensional feature space without increasing the number of tunable
parameters and the computation of the kernel function takes the
place of computing the inner product of the feature vectors. For the
applications where linear SVM does not produce satisfactory perfor-
mance, nonlinear SVM is a good choice. The nonlinear SVM is to map
the feature matrix by a kernel function. When map the feature
vectors into a higher dimensional space, the dual formulation of
the maximal margin of SVM’s Lagrange multipliers can be found
from [16]

max
α

Xm
i ¼ 1

αi�
1
2

Xm
i ¼ 1

Xm
j ¼ 1

αiαjyiyjK xi; xj
� �

subject to :
Xm
i ¼ 1

αiyi ¼ 0; 0rαirC; i¼ 1;2;…;m ð5Þ

For the question whether a function can be used as a kernel
function, Mercer’s theorem pictures the characteristic of a kernel
function K(x,y). It indicates that many symmetric functions that
satisfy the Mercer conditions can be a kernel function [17]. Among
a variety of existing kernel function, the polynomial and the radial
basis function (RBF) are the most popular functions and have a
widely applications [18].

� Polynomial function: K xi; xj
� �¼ xi�xjþ1

� �d
� Radial basis function: K xi;xj

� �¼ exp � ‖xi�xj‖2=2ρ2
� �� �

where dAN is the degree of the polynomial and ρ40 is the
parameter controlling the width of the kernel.

2.2. Cosine similarity measure

Cosine similarity measure is a classical criterion for evaluating
the distance between two vectors or points. The cosine similarity
measure used in this paper is the within-class scatter matrix
whitened cosine similarity measure which is among the most used
similarity measures in the pattern recognition field. The cosine
similarity measure can be described as follows:

CSMðu; vÞ ¼ ðWtuÞt ; ðWtvÞ� �
‖Wtu‖‖Wtv‖

ð6Þ

where CSM u; vð Þ represents the whitened cosine similarity mea-
sure between feature vector u and vector v. The two pattern
vectors are with a dimension of d, namely u; vARd and W is the
whitening transformation matrix, which can be expressed by
means of the covariance matrix. The covariance matrix of all
instances can be described as the within-class scatter matrix
Σi ¼ Sw ¼ PL

i ¼ 1 P wið Þε χ�Mið Þ χ�Mið Þt jwi
� �

. When in the view of
PCA, the covariance matrix can be described as Σi ¼ΦΛΦt . Where
εfdg is the expectation operator and Mi is the mean vector of class
i, Φ is a matrix constructed by the eigenvector thus it is an
orthogonal matrix, and Λ is a diagonal eigenvalue matrix. Then
the whitening transformation can be described by W ¼ΦΛ�1=2,
and Eq. (5) can be represented by

CSMðu; vÞ ¼ utΣ�1v
‖Wtu‖‖Wtv‖

ð7Þ

However, owing to its inadequacy in addressing both the
distance and the angular measure, the cosine similarity measure
fails to indicate the actual distance between two pattern vectors in
Euclidean space. Moreover, when the angle between the two
vectors is greater than π/2, ambiguity will arise and lead to
misunderstanding. To overcome these problems, the normalized
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correlation measure [19] which uses the absolute value of the
cosine similarity, have been proposed. These methods, however,
could not fully address all the problems and usually lead to new
drawbacks. To solve the inadequacy problems of cosine similarity
measure, this paper introduces the SVM’s maximum margin
property to evaluate its actual distance between two pattern
vectors.

3. The novel methodology

It is universally acknowledged that when the support vector
machine finds a hyperplane, which separates the feature with
maximum margin in feature space, it fails to address the scatter of
the features in feature space. On the one hand, when the features
in the training set are closed to each other, the probability that a
smaller distance between features in the same class will be higher.
Thereby the classifier will have a lower classification error. Taking
the fact that the cosine similarity measure cannot address the real
distance of two pattern vectors into consideration and to over-
come the SVM’s ignorance of feature scatter and the cosine
similarity measure’s intrinsic problems, this paper combines them
together and construct a novel criterion for feature selection and
classification, which selects the features and classifies the patterns
simultaneously. We name the novel feature selection method as
cosine similarity measure support vector machine and CSMSVM
for short. The CSMSVM can be defined as follows:

max
w;b;v;M

MffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j
1þyiyj

2 1�CSM ϕðxi; vð Þ;ϕðxj; v
� �q 	

subject to : yiðw�ϕðxi; vÞþbÞZM; ‖w‖¼ 1; 8 i ð8Þ
where v is a parameter vector that adds weight values to the
features and maps from the input space to the feature space, M is
the margin of the standard SVM. According to the definition of the
CSMSVM, the proposed method takes both the margin of the
separation hyperplane and the within-class distance into consid-
eration simultaneously, and the function for optimization is the
margin to within-class distance ratio.

Letw¼w=M; b¼ b=M and ψ vð Þ ¼P
i;j
ð1þyiyj=2Þ 1�CSM ϕðxi; vð Þ;ð

ϕðxj; vÞÞ then substitutes them in Eq. (7), we have

max
w;b;M;v

1
‖w‖2

ffiffiffiffiffiffiffiffiffiffi
ψ vð Þ

p
subject to : yi w

Tϕðxi; v
� �þbÞZ1 8 i ð9Þ

Transform the above equation to a minimize optimal problem,
Eq. (8) is equivalent to

min
w;b;v

1
2
ψ vð Þ‖w‖22

subject to : yi w
Tϕðxi; v

� �þbÞZ1 8 i ð10Þ

Using the soft-margin instead of hard-margin, we have

min
w;b;v;ξ

1
2
ψ vð Þ‖w‖22þC

Xm
i ¼ 1

ξi

subject to : yi w
Tϕðxi; v

� �þbÞZ1�ξi; ξiZ0; 8 i ð11Þ

Let WðxÞ ¼ max
w;b;M;v

‖w‖2=
ffiffiffiffiffiffiffiffiffi
ψ vð Þ

p
, then the criterion for feature

selection or the score for a feature p can be defined as

CðpÞ
score ¼

W x�pð Þ�W xð Þ½ �
W xð Þ ð12Þ

where x–p means the training data with feature p removed.

Obviously, the feature selection criterion evaluates the influ-
ence of the removed feature p on the margin to cosine similarity
measure ratio, and the lower of a C pð Þ

score for a feature, the more
important of the feature will be. After feature rank algorithm has
been obtained the feature rank, the feature selection process can
be realized by the kick-one-out strategy. Namely, we remove the
feature with maximum score, then goes to the next ranking cycle
to kick out the next feature until the classification accuracy
reaches its maximum value.

4. Bayesian interpretation of the novel methodology

To build the proposed method on a theoretical foundation, this
section discusses the Bayesian interpretation of the novel method.
Through the analysis of the novel criterion, the connection of the
novel method with the Bayes decision rule for minimum error will
be revealed.

First, we reconsider the cosine similarity measure. As in a
d-dimensional feature space, the feature vector αARd and α
belongs to one of the predefined L classes which can be defined
as ω1;ω2;…;ωL, the conditional probability density functions and
the prior probabilities can be described as p αjω1ð Þ; p αjω2ð Þ;
…; pðαjωLÞ and P ω1ð Þ; Pðω2Þ;…; P ωLð Þ, respectively. Then the multi-
class Bayes decision rule for minimum error could be written as
follows [20]:

ln p αjwkð ÞP wkð Þ½ � ¼ max
L

i
ln p αjwið ÞP wið Þ½ �-αAwk ð13Þ

Eq. (13) denotes that the conditional density function of α given
ωk and if its prior probability is the largest among the L classes, the
feature vector α can be classified to ωk. When it comes to a
multivariate normal distribution with mean vector MiARd, and the
covariance matrix, ΣiARd�d, we will have

p αjwið Þ ¼ 1

2πð Þd=2 jΣi j 1=2
exp �1

2
α�Mið ÞtΣ�1

i α�Mið Þ

 �

ð14Þ

Then the multiclass Bayes decision rule for minimum error
described by Eq. (14) becomes

δi αð Þ ¼ �1
2

α�Mið ÞtΣ�1
i α�Mið Þþ ln 2πð Þþ ln Σið Þ� �þ ln P wið Þ½ � ð15Þ

To make Eq. (15) simple, we assume that the prior probabilities
are equal with each other, which is usually used, then the covariance
matrix of the L classes, Σi, are identical to the covariance matrix of all
instances, in other words Σi ¼ Σ. Then Eq. (14) can be simplified as
follows:

δiðαÞ ¼ �1
2
α�Mið ÞtΣ�1

i α�Mið Þ ð16Þ

In fact, Eq. (16) is valid under two other assumptions, namely,
the conditional probability density functions, pðαjωiÞ, are multi-
variate normal and the prior probability, pðωiÞ, are all equal. After
we introduce the within-class scatter whitened matrix into Bayes
rule, the connection between the whitened cosine similarity
measure and the Bayes rule can be revealed by:

δiðαÞ ¼ �1
2

‖Wtα‖2þ‖WtMi‖2�2‖Wtα‖‖WtMi‖CSM α;Mið Þ� � ð17Þ

For the probabilistic interpretation of SVM classification [21],
one can regard the optimization function (5) as defining a
negative log-posterior probability for the parameters w and b
for SVM. Then the traditional SVM classifier can be interpreted
as the maximum a posterior (MAP) solution of the correspond-
ing probabilistic inference problem. As the novel criterion only
relates to the first term of function (1), here we give the prior
Q w;bð Þpexp �ð1=2Þ‖w‖2�ð1=2Þb2B2

� 
. Obviously, this is a
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Gaussian prior on w with the components of w that are
uncorrelated with each other. Moreover, the components have
unit variance. The Gaussian prior on b with variance B2 is
usually used as only the ‘latent function’ values θ xð Þ ¼wϕ xð Þþb
rather than w and b individually occur in the second term of (1).
The θ(x) also has a joint Gaussian distribution with covariance
can be defined as follows:

θðxÞθðx0Þ� �¼ ðϕðxÞdwÞðϕðx0ÞdwÞ� �þB2 ¼ ϕðxÞϕðx0ÞþB2 ð18Þ
Then the SVM prior can be represented as a Gaussian process

(GP) over the function θ with zeros mean whose covariance
function can be described as

Kðx; x0Þ ¼ ϕðxÞϕðx0ÞþB2 ð19Þ
Only take the first term of (5) into consideration, the MAP

solution for a data set S is θn ¼ arg max PðθjSÞ. Where log-posterior
of the model is

ln PðθjSÞ ¼ �1
2

X
x;x0

θðxÞK �1ðx; x0Þθðx0Þ ð20Þ

Combining the cosine similarity measure and the SVM, one can
regard the first tern of (11) as defining a negative log-posterior
probability for the parameters θ which can be defined as follows:

lnP θjSð Þ ¼ �1
2

X
i;j

1þyiyj
2

ð1�CSM ϕ xi; vð Þ;ϕ xj; v
� �� �0

@
1
A�

X
x;x0

θ xð ÞÞK �1 x; x0ð Þθ x0ð Þ ð21Þ

If we assume that the whitened pattern vectors, WTα and
WtMi are normalized to unit norm, then Eq. (21) can be represent
as

lnP θjSð Þ ¼
XL
i ¼ 1

Xli
j ¼ 1

CSM xj;Mi
� �0

@
1
AX

x;x0
θ xð ÞK �1 x; x0ð Þθ x0ð Þ ð22Þ

where L is the number of classes and li is the number of instances
in class i.

According to Eq. (22), the Bayesian property of the novel criterion
is revealed, since the feature selection process selects the feature
subset that can achieve the maximum MAP. In other words, the
feature selection result of the novel criterion has achieved a optimal
feature subset that improve the performance of SVM as it has
optimized the MAP. Taking the angle and margin into consideration,
the introduction of cosine similarity measurement into SVM have
enhanced the performance of SVM in classification and equips the
standard SVM with minimum error character.

5. Learning feature weights

The feature ranking method defined by Eq. (12) has the ability to
select the feature already. However, if directly rank the featurewith Eq.
(12), the features in feature space have not been reconstructed.
Fortunately, Eq. (12) also provides an access to improve the feature
space as the features’ weight v in Eq. (12) are set to 1. To achieve a
better future space, this section proposes a method to learn the feature
weights and reconstruct the features in feature space.

As ϕðxi; vÞ assigns different weights to different features, hence
ϕðxi; vÞ ¼ ϕ diag vð Þxið Þ, where v¼ ½v1; v2; v3;…; vl�T are the feature
weights. Then we simplify the cosine similarity measure and have

ψ vð Þ ¼
X
i;j

1þyiyj
2

1� ϕðxi; vÞ;ϕðxj; vÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðxi; vÞTdϕðxi; vÞ

q
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðxj; vÞTdϕðxj; vÞ

q
0
B@

1
CA

ð23Þ

In the CSMSVM, the RBF kernel is utilized as the kernel
function, and define

Kðϕðxi; vÞ�ϕðxj; vÞÞ ¼K xi; xj; v
� �¼ exp �‖xn

i v�xn

j v‖
2

� 
.Then Eq.

(23) is equivalent to

ψ vð Þ ¼
X
i;j

1þyiyj
2

1�K xi; xj; v
� �� � ð24Þ

Therefore, the optimization problem can be described as
follows:

min
w;b;v;ξ

1
2
P
i;j

1þyiyj
2

1�K xi; xj; v
� �� � !

‖w‖22þC
Xm
i ¼ 1

ξi

subject to : yi w
Tϕðxi; v

� �þbÞZ1�ξi; ξiZ0; 8 i ð25Þ

To solve the optimization problem defined by Eq. (25), the
Lagrangian function was introduced and was defined as

L w;b; ξ;α; vð Þ ¼ 1
2
ψ vð Þ w�wh iþC

Xm
i ¼ 1

ξi�
Xm
i ¼ 1

αi yi w�ϕðxi; vÞ
� ���

þbÞ�1þξi� ð26Þ
where αi are the Lagrange multipliers.

The corresponding dual is found by differentiating with the
variances as follows

∂L w;b; ξ;α; vð Þ
∂w

¼Ψ vð Þw�
Xm
i ¼ 1

αiyixi ¼ 0

∂L w;b; ξ;α; vð Þ
∂b

¼
Xm
i ¼ 1

αiyi ¼ 0

∂L w;b; ξ;α; vð Þ
∂v

¼ 1
2
dΨ vð Þ
dv

w;wh i�
Xm
i ¼ 1

αiyi w;
dϕðxi; vÞ

dv

� �
¼ 0 ð27Þ

Since the above formulation is difficult to solve, while it shows
some relationships between the variances. To address this issue,
an iterative algorithm has been developed as an approximation for
this optimization problem. According to [22], the two-step meth-
odology can be utilized to solve this problem.

� First the tradition dual formulation of SVM for a fixed weight
value or fixed kernel width v is solved, and the corresponding
Lagrangian for the 1-norm soft margin optimization problem is

max
α

Xm
i ¼ 1

αi�
1

2Ψ vð Þ
Xm
i;s ¼ 1

αiαsyiysK xi; xs; vð Þ

subject to :
Xm
i ¼ 1

αiyi ¼ 0; 0rαir
C

Ψ vð Þ; i¼ 1;2;…;m ð28Þ

� In the second step the algorithm solves the above non-linear
formulation for a given solution α. To obtain the optimal
feature weights, we introduce a penalization function f(v)
based on the 0-norm in [23], and the penalization function is
as follows

f ðvÞ ¼
Xl
j ¼ 1

1�exp �βvj
� �� � ð29Þ

And according to Eq. (26), the non-linear optimization problem
can be described as follows

min
v

H vð Þ ¼ 1
2Ψ vð Þ

Xm
i;s ¼ 1

αiαsyiysK xi; xs; vð ÞþC2f vð Þ

subject to : vjZ0; j¼ 1;2;…; l ð30Þ

To appropriate the optimal value of v, a numerical iterative
algorithm using the gradient of the objective function that updates
the weight value v is used. The mechanism of the feature section
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process is eliminating the features that their weight values are
below a given threshold. The algorithm that learns the weight
value and feature selection process can be described as follows.
Algorithm 1
Weight value learning and feature selection process

Initialization:
v¼ v0; ϵ¼ ϵ0; η¼ η0; γ¼ γ0; ρ¼ ρ0;flag¼true; loop¼0;
Start:
While (Jwcycleþ1�wcycle JrρÞ

While (flag¼¼true)
Train SVM (step 1) for given v;
calculate wcycleþ1

v loopþ1 ¼ vloop�γ△HðvloopÞ
for (vloopþ1

j rϵÞ
vloopþ1
j ¼ 0;

end for;
if (jvloop�vloopþ1 j≼ηÞ then
flag¼false;
end if
loop¼ loopþ1;

end while;
cycle¼cycleþ1;
end while
end

After the optimal v has been obtained, the iteration algorithm
goes back to step one to get the updated w. The cycle of updating v
and w will be continued until the change of v and w are below a
pre-set threshold.

Algorithm 1 indicates that the main point of the iterative
process is computing the gradient of the objective function
described by Eq. (30) for a given solution from the standard SVM
α. After introducing the features’ weight value, the feature selec-
tion process can be conducted by a more efficient way. Algorithm 1
shows that when the weight value is below a given threshold, the
weight value will be set to 0, then the corresponding features will
be eliminated from the feature subset. In other words, the feature
selection process is achieved with the optimization of weight
value. Look in detail and for a given feature j, the gradient of
function H vð Þ can be given by

ΔjH vð Þ ¼

Â
I

m

i;s ¼ 1
vj x jð Þ

i �xðjÞs
� 2

αiαsyiysK xi; xs; vð Þ

0
B@

1
CA Â

I

m

i;s ¼ 1

1þyiys
2

1�K xi; xs; vð Þð Þ

0
B@

1
CA

þ Â
I

m

i;s ¼ 1
vj x jð Þ

i �x jð Þ
s

� 2
1þyiys
� �
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As discussed in [22], the main objective of Eq. (30 )is to find the
sparse solutions which makes zero as many components of v as
possible. For this reason, this paper takes the 0-norm penalization
into consideration instead of 1-norm penalty (LASSO penalty) or
2-norm, even though they might bring us a good feature selection
and classification result.

6. Applications

6.1. Rolling element bearings fault diagnosis

To validate the efficiency of the proposed CSMSVM, an experi-
ment based on the rolling element bearings was conducted. For
rolling-element bearing, many features are useful for fault diagnosis,
including the time-domain features and frequency-domain features.
Intuitively, however, we know many features are sensitive to the
classification algorithm. In other words, some features are efficient
for classification only for some certain algorithms and inefficient for
some other algorithms. To improve the algorithm’s generalization
ability and decrease the computation, feature selection process is a
perfect choice to handle this situation. In this paper, 40 features are
extracted as candidate features for selection, namely the wavelet
packet energy (8 features), singular value spectrum (former 15 order
singular value), time domain statistics (12 features, they are average,
variance, peak, average amplitude, RMS, skewness, kurtosis, 2-order
central moment etc.) and intrinsic mode functions (IMFs) energy
(former 5 order IMFs). The wavelet packet energy comes from the
wavelet package transform and each instance was decomposed into
eight bins of wavelet package coefficients via WPT at level 3(in the
wavelet package transform, the db4 wavelet is used); the singular
value spectrum comes from the singular value decomposition of a
Hankel matrix composed by the time domain signal and the IMFs
come from the empirical mode decomposition (EMD). Before these
features are fed as input to the machine learning algorithm, three
kinds of features are normalized.

In order to evaluate the classification performance of the
CSMSVM, we compared the results for a given number of features
(determined by the threshold ε set in Algorithm 1) with different
features selection algorithms for SVMs. The features for standard
SVMs come from the Fisher score based feature selection result and
the genetic algorithm based feature selection method. Fisher based
method, which is a filter method, was chosen because the fisher
score is relative to the within classes distance to between classes
distance ratio, and the proposed criterion also addresses the margin
to within classes distance. The genetic algorithmwas chosen because
it is hybrid method that is close to the wrapper method.

In the experiments, the time series data collected from the
rolling element bearing test rig was split into 200 parts and 2048
samples for each part. Then we got 800 pieces of data as we have
four kinds of running state for the rolling element bearing. To
construct the dataset, 410 instances are chosen for each running
state and the number of variables, number of examples, and
proportion of examples in the predominant class are 40,410 and
0.64, respectively. The detail of the instances is shown in Table 1.

6.2. Mild cognitive impairment diagnosis

Effective and accurate diagnosis of mild cognitive impairment
(MCI), which is the early stage of Alzheimer’s disease (AD), has played
a pivotal role in dealing with AD. The electroencephalogram (EEG)
signal has been proved to be a good biomarker for the diagnosis of

Table 1
Number of variables, number of examples, and proportion of examples in the
predominant class for all six data sets.

Variables Examples Predominant class proportion

Inner fault 40 410 0.64
Outer fault 40 410 0.64
Rolling element 40 410 0.64
Normal bearing 40 410 0.64
MCI 128 560 0.643
Normal cognitive 128 560 0.786
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MCI. The EEG signal used in this paper came from the Shanghai Sixth
People’s Hospital. In the test, the data were digitized at a sampling
rate of 500 Hz, 50 MCI patients, 30 Normal cognitive (NC) people and
60 AD patients ’s data were used in this experiment. 16 channels of
EEG activity were recorded continuously from 21 sites by using
electrodes set in an elastic cap and positioned according to the 10–
20 international system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, CZ, C4, T4,
T5, P3, Pz, P4, T6, O1, O2, A1 and A2).

As the frequency band is an important feature for the diagnosis of
MCI, this paper decomposed the EEG signals with wavelet package
transform. In this paper, the Daubechies wavelet with order 5 was
chosen in the wavelet package transform and the signals were
decomposed by 3 levels, thus 8 frequency bands were obtained.

In this case, the EEG signal of each person was divided into
4 parts, and wavelet package transform was applied to each part.
The features were the normalized energy of the wavelet coefficient
at level 3. Thus we have 4 features for every piece of signal and 128
features for 16 channels. For every person, we have extracted
4 feature vectors and every feature vector we have 64 features.
Therefore, in the feature subset, there are 560 feature vector,
which is a 560�64 data matrix. The number of variables, number
of examples, and proportion of examples in the predominant class
for the diagnosis of NC and MCI are shown in Table 1. In this
experiment, the feature dimensions are above 100, which can
indicate the proposed method’s ability in feature selection when
the feature dimensions are high. The number of samples, however,
is restricted by the number of patients in our projects and is still
relatively small. To address this problem and the relatively noisy
estimate of predictive performance, the cross-validation, which is
illustrated in Fig. 1, is used in this experiment. The technique of
S-fold cross-validation, illustrated here for the case of S¼4, allows
a proportion (S�1)/S of the available data to be used for training
while making use of all the data to assess performance. The 3 of
the groups are used to train the models that are then evaluated on
the remaining group. The procedure is then repeated for all S
possible choices for the held-out group, and the performance
scores from the S runs are the averaged.

6.3. Results and discussions

For the diagnosis of rolling element bearing fault, MCI and
Normal cognitive (NC), the extracted features were fed to the
CSMSVM, and the result is shown in Table 2. To make the result
comparable, the number of features selected by Fisher score and
genetic algorithm are the same with the number of the CSMSVM.
Table 2 shows that the proposed method outperforms all other
approaches in terms of classification error for a given number of
features, especially for the diagnosis of MCI and rolling element’s
normal state. For the CSMSVM, as the weight values are vary with

the features, after the weight values have been added to the
features, the feature space has been changed. To investigate the
change of the feature space, the within classes distance to between
classes distance ratio is calculated. Table 2 also shows the change
of the ratio between the weight values has been added to feature
and without adding the weight values to features, and the change
shows that the CSMSVM has gotten a smaller within classes
distance to between classes distance ratio. Even though this
change is very small, but its influence on diagnosis result is
significance. Table 2 also shows that a larger variables will lead
to more significant performance for the proposed method.

The proposed CSMSVM method can achieve an optimal feature
subset and maximize the MAP to reduce the classification error.
However, through the application to the rolling element’s fault diagnosis
and the diagnosis of MCI, we found that some parameters should be
carefully chosen. As shown in Algorithm 1, there are many parameters
should be predefined, such as v0, ϵ0, γ0; etc: To find the optimal value
of these parameters, some experiments should be conducted before
applying the CSMSVM to the real fields. Fig. 2 shows the results of some
experiments. Fig. 2(a) shows the searching of optimal parameter ϵ0 for
the diagnosis of rolling element’s fault and Fig. 2(b) shows the searching
of optimal parameter ϵ0 for the diagnosis of outer race fault. Fig. 2
(a) and (b) also show the change of the number of selected features
against the varying of the parameter ϵ0. In Fig. 2(a) and (b), a larger ϵ0
will lead to fewer features in the optimal feature subset, while a larger
ϵ0 do not mean a higher performance of the CSMSVM. Only a suitable
ϵ0 is chosen, can the higher performance of the CSMSVM be achieved.
In our application, the suitable ϵ0 is chosen according to the experiment
which varies the value of ϵ0 and then chooses the ϵ0 that corresponding
to the best performance. For the parameter v0, to make it simple, all the
experiments’ v0 are set to 1. Fig. 2(c) and (d) shows the optimization of
parameter β and γ for the diagnosis of rolling element’s fault. Fig. 2
(c) indicates that β is not very sensitive to the performance of the
CSMSVM, thus the awide range of β can be chosen. Fig. 2(d) shows that
even though a smaller value of γ can reach a better performance, but
smaller γ also means the larger number of iteration. However, in the
other side, a larger γ will lead to the oscillation of the performance. In
the searching of optimal parameter, the number of features in the
feature subset is the same and by varying the parameter and observe
the classification performance, some conclusions can be drawn as
follows: C2 has a great influence to the iteration algorithm, a smaller
C2 will increase the iteration cycle or increase the computational time to
obtain an optimal weight value. However, a larger C2 will lead to the
oscillation iteration process and cannot approach the optimal value in a
pre-set limit cycle; γ is also related to the necessary iterations for
optimization process: a larger γ leads to a smaller number of iterations
while if too large, oscillation phenomenon will arise; β have a weak
influence to the classification and have less influence to the optimiza-
tion process, while β and C2 should match each other if an optimal
optimization process is needed.

Fig. 1. The technique of S-fold cross-validation, illustrated here for the case of S¼4,
involves taking the available data and partitioning it into 4 groups. The 3 of the
groups are used to train the models that are then evaluated on the remaining
group. The procedure is then repeated for all S possible choices for the held-out
group, and the performance scores from the S runs are the averaged.

Table 2
Number of selected features n, effectiveness (error rate), change of within classes
distance to between classes distance ratio (only for CSMSVM) using three different
feature selection methods.

n FisherþSVM CSMSVM GAþSVM Change of distance
ratio

MCI 6 0.1429 0.0286 0.10 0.91
Normal cognitive 5 0.1286 0.0143 0.0857 0.90
Normal 6 0.0625 0.0063 0.0625 0.91
Inner fault 5 0.1125 0.0375 0.0437 0.93
Outer fault 7 0.0438 0.0125 0.0563 0.94
Race fault 9 0.0125 0 0.0063 0.97
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7. Conclusions

In this paper, a cosine similarity measure support vector
machine has been present. The proposed feature selection method
is a kind of wrapper method as it is an integration of feature
selection and pattern classification. The CSMSVM has utilized a
novel feature selection criteria, namely the margin verses cosine
distance ratio, which adds a weight value to the features to
maximize the margin verses cosine distance ratio. Compared to
other feature selection proposals, the CSMSVM has decreased
classification error by increasing the degree of polymerization of
data. Additionally, the cosine distance has the advantage over the
Euler distance or other distance on increasing the probability of
correct classification, which can be obtained from the Bayesian
interpretation of the novel methodology.

The optimization process of the proposed feature selection
method has shown that the iterative approximation algorithm can
achieve the optimal weight value. The application of the CSMSVM to
rolling element bearing’s fault diagnosis and MCI diagnosis show that
the CSMSVM has great capacity in feature selection and pattern
recognition. As the proposed methodology is a general method, and it
has been built on a solid theory foundation. Hence, it can be used in
an active area in pattern recognition, machine learning, data mining
and statistic. However, as the novel method is based on the SVM, it
application fields could not overpass the application fields of standard
SVM, when the data set is too larger, or the features is too larger, the
efficiency of the proposed method is open to doubt. Although much
progress has been carried out by applying the CSMSVM in industrial

field, there are still many aspects of the CSMSVM can be enhanced
and many characteristics of the CSMSVM need excavating. In the
application of the proposed methodology, we find that the iteration
process is very sensitive to the parameters which is bad for the
application of the novel method to industry fields. Therefore, for
future work, we will improve the computational efficiency, especially
enhance the optimization process and extend the application fields of
the cosine similarity measure support vector machine. Other direc-
tions, such as combining the proposed method with multi-class SVM,
replacing the RBF kernel with other kernel functions, investigating the
undesirable effects caused by unbalance data sets, etc.
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Fig. 2. Parameter optimization process (a) the optimization of parameter ε for the diagnosis of rolling element’s fault; (b) the optimization of parameter ε for the diagnosis of
outer race’s fault; (c) the optimization of parameter β for the diagnosis of rolling element’s fault; (d) the optimization of parameter γ for the diagnosis of rolling
element’s fault.
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