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Rolling element bearings are widely used components in modern rotary machines, and
accurate diagnosis and interpretation for faults of bearings are significant for equipment
maintenance. This paper introduces a fault diagnosis method with a formal specification
language, which overcomes the difficulty of understanding the decision process of fault
diagnosis. The formal specification is written with a novel formal language, called
frequency-temporal-logic, defining the time-frequency properties of time series signals,
which not only is a classifier to diagnose the faults but also gives interpretations for the
fault signals with its semantics. To find an optimal description for the fault signals, the
Bayesian optimization with Bayesian neural networks has been utilized to infer the struc-
ture and parameters of the formal specification. The semantics of frequency-temporal-logic
then gives the fault interpretation. Moreover, the quantitative semantics for the formal lan-
guage is defined based on a novel satisfaction metric, which has a noise resistance prop-
erty. Analysis of the proposed method shows that the formal description can deal with
noisy signals and variable speed operations of the bearings. Finally, comparison experi-
mental results indicate the proposed method can obtain high fault diagnosis accuracy.

Published by Elsevier Ltd.
1. Introduction

Rolling element bearings are widely used components in modern rotary machines, and faults occurring in bearings may
lead to the fatal breakdown of machines [1]. Therefore, accurate detection and diagnosis of the condition of bearings are sig-
nificant for the continuing operation of these machines. Moreover, a good interpretation for the fault diagnosis process is
significant for timely response to the fault occurring [2,3]. This argument can be illustrated with the implement of bearing
condition monitoring techniques to a wind turbine in [4]. If the monitoring system can detect deterioration of bearings, e.g.,
finding that the high temperature causes the faults. The experts then can find out that the high temperature is due to insuf-
ficient or inefficient lubricant properties with his domain knowledge. However, few existing methods can be found that can
obtain good fault diagnosis and fault interpretation results simultaneously.
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Hitherto, vibration signals, which have been demonstrated by many scholars [5,6], have carried rich information on bear-
ing conditions and are sensitive to bearing faults. A variety of signal processing techniques have been extensively investi-
gated to interpret the vibration signals and accurately extract fault characteristics [7–9]. Many signal processing methods
are based on the interpretation that the fault signals come from the strikes of rollers on the fault surface and excite the res-
onant frequencies of structures between the bearing and transducers, which are called mechanism-based methods. These
methods interpret the fault mechanism as a series of impacts or impulses, which excite the entire system where the bearing
is mounted, thus called mechanism-based methods. Mechanism-based signal analysis methods, therefore, justify themselves
by depicting the relationships between the vibration signals and the fault mechanisms, such as kurtosis [10], cyclostationary
[11], envelope analysis [12], Bandwidth EMD [13]. Based on the fault mechanisms and its associated patterns, a good
mechanism-based signal analysis technique should explicitly extract the periodic information of the impulsive response
of a faulty bearing.

Mechanisms-based fault diagnosis methods provide good interpretations of the decision process.However, these
methods usually based on knowledge of domain experts, which is hard to obtain. To overcome this issue, another class
of fault diagnosis methods, which are called data-driven fault diagnosis approaches, is proposed to diagnose the faults
with machine learning algorithms based on the extracted features from the vibration signals. However, data-driven
approaches pay little attention to the fault mechanisms and try to determine the health state of the rolling element
bearings automatically with feature diagnosis techniques. The decision process for these methods usually is not trans-
parency to human users, which acts as a black box for end-users. For example, hidden Markov model (HMM) [14–
17], k-nearest neighbors [18], support vector machine (SVM) [19,20], and Gaussian process [21], have been applied to
fault diagnosis of rolling element bearings and obtained good performance, but these methods pay little attention to
the interpretability of the models. Another typical example of data-driven methods is to use Deep Neural Networks
(DNN) to learn features with multiple layers of abstraction and thus are capable of modeling complex patterns
[22,23]. DNN based fault diagnosis methodologies for bearings have received increased attention in recent years
[24,25]. However, these methods come across the same problem; they cannot provide good interpretation for the deci-
sion process.

Data-driven approaches are a powerful tool for fault diagnosis, but industry experts face some difficulties when trying to
interpret the results. This raises the problem of increasing data-driven models’ interpretability and interest in developing
fault diagnosis able to generate ‘domain-level’ knowledge that is close to experts’ knowledge. In other words, data-driven
algorithms that are able to give explanations about why the time series signals contain fault characteristic and can build
a relationship between physical phenomena and causality of faults, thus end users can take further actions to avoid or fix
the faults. Therefore, one of the most important questions that remain now is, how do we provide transparency and inter-
pretability for data-driven methods, such that human can take actions based on the interpretation of the fault diagnosis pro-
cess, thus to guarantee the performance of machines.

To the best of our knowledge, the problem of finding a formal interpretable model for fault diagnosis among the time-
frequency domain with data-driven algorithms largely remains untouched, which is the topic of this paper. To tackle the
problem, we need to answer several essential questions. First, what kinds of formal language can be used to characterize
the properties of the fault signal better? Second, how to infer the structure of the formal description with a data-driven
method? Last, how can we deal with the noises among the time series data that affect the interpretation of the fault diag-
nosis results? In this paper, we make concrete progress in answering the above questions. Specifically, the contributions of
this paper are:

1. A novel frequency temporal logic (FTL) is proposed to describe the frequency properties of fault signals, which can
reveal the relationship between physical mechanisms and decision process, and whose quantitative semantic has noise
resistance property.
2. Bayesian Neural Networks (BNN) has been combined with Bayesian optimization to infer the structure and parameters
of the FTL description, solving the fault diagnosis problem with limited computation cost.
3. A data-driven method, i.e., the BNN based method, has been combined with a logic based method, i.e., FTL-based
method, to improve the interpretability of the fault diagnosis results.
4. Two experiments are conducted to investigate the properties of the proposed method, and the performance of the
method shows FTL based descriptions gives reasonable explanations while producing competitive fault diagnosis
performance.

The layout of this paper is as follows: Section 2 introduces the related works of signal temporal logic and Bayesian neural
network. Section 3 formulates the fault diagnosis and interpretation process as an optimization problem. Section 4 solves the
optimization problem using BNN with Bayesian optimization technique. Section 5 analyzes the properties of the proposed
method in condition monitoring. Section 6 demonstrates the proposed method with real experiments and Section 7 draws
the conclusions of this paper.
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2. Related works

In this section, we summarize related work on fault diagnosis and interpretation approach presented in this paper. We
categorize related work into two groups: classification with temporal-logic-based formal language and optimization with
BNN.

2.1. Time series classification with signal temporal logic

A continuous-time, continuous-value signal is a function s 2 FðRþ;RnÞ. Denote the value of signal s at time t as sðtÞ, then
signal temporal logic (STL)[26] is a temporal logic defined over signals. STL is a predicate logic (e.g. sðtÞ > 4) with interval-
based temporal semantic. STL defines a formal language described with STL formulas (can be seen as sentences in natural
language). The set of all STL formulas is denoted by U, which is recursively defined as

� l 2 U, where l is a predicate in the form l :¼ ðf ðsðtÞÞ � dÞ; f 2 FðRn ! RÞ;�2 f<;>;6;Pg.
� If u1;u2 2 U, then u1 ^u2;u1 _u2 2 U, where ^ and _ are conjunction and disjunction connectives, respectively.
� If u 2 U, then G½a;bÞu; F½a;bÞu 2 U, where G and F are the temporal operators denote ”globally” and ”finally”, and ½a; bÞ is the
time bound for the formulas. Some examples to denote the properties of G and F will be given later.

The above syntaxes define how to use basic words, e.g., l;u1;u2, to construct a sentence (or formula). With these syn-
taxes, STL is a powerful language to express the pattern of signals and has been widely used in safety-critical systems to
specify the specifications or properties of the systems. The exist of temporal operators G (globally) and F (finally) make
STL be suitable for depicting the periodical properties of rolling element bearing fault signals. For instance, the fault signal
of a rolling element bearing contains a cyclic impulse energy at frequency x, and the periodical impulse energy, has the pat-
tern written in English whenever the frequency component x has a energy density smaller than 0.5 for 0.325 s, the energy
density at frequency x will be bigger than 0.8 in the next 0.15 s. If we denote fxðtÞ to be the time-frequency representation
of the signal at frequency x and time t, the pattern (see Fig. 1(a)) can be easily described by an STL formula
u :¼ GF½0;0:475�ðG½0;0:325�ðfxðtÞ < 0:5Þ ! F½0;0:15�ðfxðtÞ > 0:8ÞÞ, where G without any time bound means a time bound ½0;1�. In
the formula, GF½0;0:475�, read as globally finally within 0.475 s, denotes that after the pattern occurs, then within 0.475 s,
the pattern will occur again. G½0;0:325�ðfxðtÞ < 0:5Þ denotes the amplitude of the signal will be globally smaller than 0.5 for
0.325 s, ! denotes implication relationship. F½0;0:15�ðfxðtÞ > 0:8Þ denotes the energy density of frequency component x
can be over 0.8 at least once within next 0.15 s. As shown in Fig. 1(a), at time t2, the signal is smaller than 0.5 until time
t3, and t3 � t2 ¼ 0:325 s. After keeping the value being smaller than 0.5 for 0.325 s, the signal is bigger than 0.8 between time
t3 to t4, and t4 � t3 ¼ 0:15 s.

Given a signal sðtÞ and an STL formula u, in order to check whether the formula is satisfied by the signal, denoted as
sðtÞ � /, STL is equipped with quantitative semantic, which is called robustness degree [27,28] (also called ‘‘degree of satis-
faction”) that quantifies how well a given signal s satisfies a given formula u. The robustness degree is calculated recursively
as
qðs; ðf ðsÞ < dÞ; tÞ ¼ d� f ðsðtÞÞ
qðs; ðf ðsÞP dÞ; tÞ ¼ f ðsðtÞÞ � d

qðs;u1 ^u2; tÞ ¼min qðs;u1; tÞ;qðs;u2; tÞð Þ
qðs;u1 _u2; tÞ ¼max qðs;u1; tÞ;qðs;u2; tÞð Þ
qðs;G½a;bÞu; tÞ ¼ min

t02½tþa;tþbÞ
qðs;u; t0Þ

qðs; F ½a;bÞu; tÞ ¼ max
t02½tþa;tþbÞ

qðs;u; t0Þ:
We use qðs;uÞ to denote qðs;u;0Þ, which indicates the signals started with sð0Þ. If qðs;uÞ is large and positive, then s
would have to deviate substantially in order to violate u. Fig. 1 (b) shows the robustness degrees for 4 signals, where the
formula is GðsðtÞ > 0Þ, read as ‘‘the signal sðtÞ should be globally greater than 0” (a temporal operator without time bound
means all the time). The directed lines show the robustness degrees, which depicted with the signed distance to the time
axis, the downward arrows indicate positive robustness degrees and the upward arrow indicates negative robustness degree.

With the definition of STL and its semantics, time series classification can be conducted by learning an STL formula u,
such that all the time series belonging to positive examples, denoted as x 2 Xþ, will satisfy the formula u and has non-
negative robustness (qðx;u; tÞP 0, here we define zero robustness as satisfaction). While all the time series belonging to
negative examples, denoted as x 2 X�, will violate the formula u and has negative robustness (qðx;u; tÞ < 0). Existing tech-
niques for learning STL formulas try to describe the behaviors of trajectories of differential equations or hybrid models under
the name ‘‘requirement mining” [29,30]. Requirement mining has emerged as an effective approach to generate abstractions
of the time series to better understand complex systems, e.g., autonomous systems. These approaches fall into two cate-
gories. The approaches in the first category assume that the output of the requirement mining problem is a formula uh with
a fixed structure but unknown parameter h. Under this assumption, the learning of STL formula can be transformed into an



Cyclic Impulse Signal

[185,1.04]
[686,0.98]

[1187,0.91] [1686,0.91]

[569,0.46]

[1354,0.33]

[t1] [t2] [t3] [t4]

0 500 1000 1500

Time(ms)

0

0.2

0.4

0.6

0.8

1

1.2
A

m
p

(a)

1 2 3 4

Time (s)

-1

-0.5

0.5

1

1.5

2

2.5

Amplitude

s1

s2

s3
s4

(b)

Fig. 1. (a) A cyclic impulse signal with pattern described with STL formula u :¼ GF½0;0:475�ðG½0;0:325�ðfxðtÞ < 0:5Þ ! F½0;0:15�ðfxðtÞ > 0:8ÞÞ; (b) Robustness
degrees for different signals with formula / ¼ GðsðtÞ > 0Þ indicated by directed line.
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optimization problem with the goal of finding a parameter h�, such that uh will distinguish the time series, optimizing cer-
tain cost function, which is usually defined with the concept of robustness [31].

Obviously, the fixed structure assumption is not realistic, since we need a domain expert, who knows formal methods and
the structure of the requirements, to prescribe the requirements. To release this assumption, the approaches in the second
category infer the STL formula with proper structure and the associated parameters simultaneously. Algorithms in [32,33]
solved the problem using a mixture of discrete and continuous optimization using decisions trees and simulated annealing
in a supervise learning way. Typically, the problem is addressed in two steps, learning the structure followed by the synthe-
sis of parameters. The structure of the formula in [33] comes from exploring a directed acyclic graph and in [32], a decision
tree approach is used to learn both the structure and the parameters. Similar to the decision tree approach, [34] proposed
grammar-based decision trees (GBDTs) to derive for the logical expression with Monte Carlo, grammatical evolution and
genetic programming separately. These methods have solved the structure inference problem in some way, but they do
not adequately address the issue for two reasons: 1) They inferred the formulas in two steps iteratively, which was a
time-consuming process; 2) The formulas obtained by these methods were combination of a set of predefined atom formulas
with logic operators _ and ^, thus the number of formulas can be obtained by these methods are limited. Moreover, the
robustness degree of STL is originally defined to check the satisfaction of specifications for safety-critical systems, which
is very sensitive to noise. Thus the present definition for robustness degree is not suitable for vibration signal analysis, which
is contaminated by a variety of noises.

2.2. Bayesian neural network optimization

Bayesian optimization is an effective methodology for the global optimization of expensive-to-evaluate black-box func-
tions. It relies on querying a distribution over functions defined by a relatively cheap surrogate model. To overcome the
drawback of Gaussian processes (GPs) based Bayesian optimization, whose inference time grows cubically in the number
of observations, the neural networks have been combined with Bayesian optimization to learn an adaptive set of basis func-
tions for Bayesian linear regression [35]. The goal of BNN is to uncover the full posterior distribution over the network
weights in order to capture uncertainty, to act as a regularizer, and to provide a framework for model comparison [35].
BNN has been widely used in many fields, such as language process [36], hyperparameter optimization [37] and variational
inference [38]. In this paper, the BNN is used to find the optimal formula description for the fault signals, whose objective
function is high-dimensional, nonlinear and not differentiate.

3. Problem formulation

In this section, we first motivate this paper with a numerical example, then formally define the problem of FTL-based fault
diagnosis and interpretation.

3.1. Motivation example

Rolling element bearing fault diagnosis based on time series signals is a hard task due to the noise and the complex oper-
ation conditions of bearings. As a result, many scholars have utilized time-frequency information to diagnose the conditions
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Fig. 2. (top-left) A rolling element bearing; (bottom-left) Simulated vibration signal from inner race fault; (top-right) Second temporal moment of the
simulated signal for inner race fault; (bottom-right) Envelope spectrum for the inner race fault signal.
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of bearings, and have achieved great success in rolling element bearing fault diagnosis. Vibration signals of fault bearings
have specific patterns in the time-frequency domain and envelope spectrum (as shown in Fig. 2). Assume there exists a for-
mal description u, for the fault signal, written with STL as
u ¼ GFðF½0;0:2�ðM2 > 0:7Þ ! G½0;0:4�ðM2 < 0:5ÞÞ; ð1Þ
whereM2 indicates the second temporal moment of the signal (shown in top-right of Fig. 2), which calculated with the time-
frequency pattern [39]. Then the formal description can be interpreted with plain English as ‘‘whenever the value of second
temporal moment is larger than 0.7, then it will be smaller than 0.5 within 0.2 half-cycles/sample (normalized) for 0.4 half-
cycles/sample, and this pattern will occur periodically”. When the domain experts are given with this formal description,
they will know how the monitoring system makes decisions, and this description is consistent with existing knowledge,
which comes from the analysis of fault mechanism. The faulting mechanism shows that for constant speed operation, the
inner race defect has characteristic frequencies, which are ball pass frequencies derived from the bearing geometry and kine-
matics under the no-slip assumption, described by equations as [40]
BPFI ¼ n
2
ð1þ d

D
cosaÞRs; ð2Þ
where the geometric parameters d;D;a;Rs;nfor the rolling element bearing are the diameter of ball/rolling element, pitch
diameter, contact angle, the inner race rotation speed, and the number of balls. Therefore, the interpretation of the formal
description will help the domain experts trust the decision made by the monitoring system.

3.2. Frequency-temporal Logic

Many fault pattern can only be characterized in the frequency domain. This is especially true for non-stationary signals
whose frequency components vary over time. This class of signals motivate the need for FTL, which is an extension of STL
that can be used to specify both time and frequency properties of a signal. In FTL, a signal predicate is defined over the signal
presenting the evolution of the Wavelet package transform (WPT) coefficient at a particular level over frequency domain.
WPT is an expansion of discrete wavelet transform whereby both the approximation and detail coefficients are decomposed.
The coefficients resulting klnðkÞ from the decomposition of a signal sðtÞ is as [39]
klnðkÞ ¼ hsðtÞ;2
�l=2Wnð2�lt � ki; ð3Þ
where n is the node number, l is the decomposition level, k is the position parameter, and Wn is the orthogonal wavelet
decomposition coefficients. Here we omit the notation for signal sðtÞ in klnðkÞ, since in this paper we only deal with one
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Fig. 3. (a) Level 2 decomposition using wavelet packet transform; (b) Wavelet packet transform coefficients at level 2.
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dimensional signals. As shown in Fig. 3, which shows the WPT for signal in Fig. 2. Then the coefficients for AA2;DA2;AD2 and
DD2 can be denoted as k23ðkÞ; k

2
4ðkÞ; k

2
5ðkÞ, and k26ðkÞ, respectively.

Definition 1. The set of FTL formulas is denoted as ! and the segment of FTL syntax is defined recursively as
u ¼ lf ju1 ^u2jus _uejF½ss ;se �ujG½ss ;se �u; ð4Þ
where ss and se are non-negative finite real numbers, indicating the frequency range, lf is a predicate over the WPT coef-
ficients, which can be defined as,
lf :¼ Xðkln; kÞ � a;�2 fP; <g; ð5Þ
where a 2 R is a constant. The Boolean operators ^;_ and temporal operators F;G are the same with STL. Xðkln; kÞ is a signal
process function applied to the WPT coefficient to suppress the noise. Here we set Xð�; �Þ as a function, mapping the coeffi-
cient to its second temporal moment and can be defined as [41]
Xðk;xÞ ¼ 1
PkðxÞ

Z
t2Pkðt;xÞdt; ð6Þ
where Pkðt;xÞ is the spectrogram power spectrum of the coefficient k and uses it as a time-frequency distribution and PkðxÞ
is the marginal distribution. In Eq. (6), the second temporal moment includes the temporal information of the time-
frequency distribution, which is why we call the above logic as frequency temporal logic. In the rest of this paper, we use
kln to denote Xðkln; kÞ for short.
Definition 2. The robustness metric qmaps an FTL formulau 2 !, a WPT coefficient trace kln 2 K and position k 2 P to a real
value, that is, q : !	K	 P ! R [ f1;�1g, such that
qðlf P 0; kln; kÞ ¼ kln � a
qðlf < 0; kln; kÞ ¼ a� kln

qðu1 ^u2; k
l
n; kÞ ¼min qðu1; k

l
n; kÞ;qðu2; k

l
n; kÞ

� �

qðu1 _u2; k
l
n; kÞ ¼max qðu1; k

l
n; kÞ;qðu2; k

l
n; kÞ

� �

qðG½a;bÞu; kln; kÞ ¼ inf
k02½kþa;kþbÞ

qðu; kln; k
0Þ

qðF½a;bÞu; kln; kÞ ¼ sup
k02½tþa;tþbÞ

qðu; kln; k
0Þ:
We use qðu; klnÞ to denote qðu; kln;0Þ, which indicates the signals started with klnð0Þ. If qðu; klnÞ is large and positive, then

kln would have to deviate substantially in order to violate u.
Before we formulate the fault diagnosis task, we present some definitions essential to formulate the problem. To infer the

formal descriptions for the time series data, we first introduce the concept of attribute grammar for the formal language,
which is defined by a 4-tuple [42] defined as
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G ¼< VN;VT ; P; g >; ð7Þ
where VN is the set of non-terminal nodes, VT is the set of terminal nodes, P denotes the set of production rules, and g is a
relation mapping each node to its attributes. We use capital letters to denote non-terminal nodes, e.g., A 2 VN , and use low-
ercase letters, including Greek ones, to denote terminal nodes, e.g. a 2 VT . The attributes of a node are specified by the rela-
tion g. For instance, the ordered list of attributes of a non-terminal node A is gðAÞ. In this paper, we will use those attributes
that are synthesized [42], meaning that if A0 ! A1A2 is a production rule in P (in the parsing tree, A1 and A2 are the children of
A0), then gðA0Þ is the collection of gðA1Þ; gðA2Þ, namely gðA0Þ ¼ gðA1Þ [ gðA2Þ. Then the grammar for the formal language used
in this paper is defined as

Definition 3. The FTL attribute grammar GFTL is an attribute grammar < VN;VT ; P; g > with the following specific
components:

� VN ¼ fA;Bg, where each element of VN corresponds to an STL fragment (partial formula);
� VT ¼ flf ; F;G;_;^g, where the meanings of the symbols are the same as those in Eq. (4);
� P ¼ fP1; � � � ; P7g, where the specific production rules are shown in Table 1 (there are five categories of rules, namely
Instance, Finally, Globally, Or, and And);
� g maps each node to two types of attributes: (a) frequency attributes that specify the frequency bounds of the spectrum
operators used in the node and (b) predicate attributes that specify the predicates used in the node. Specifically, the pred-
icate attributes includes WPT level l, and node number n, comparison operator, and constant. To give an example, for a ter-
minal node lf : k

2
4 > 1, its ordered list of frequency attributes is lf :freq ¼ fg, which is empty, and its set of predicate

attributes is lf :pre ¼ f2;4; >;1g (we will use the notations :pre and :freq throughout the paper). Both types of attributes
are synthesized. For instance, production rule P5 : A! A _ B indicates that:
A:freq ¼ A:freq [ B:freq; A:pre ¼ A:pre [ B:pre:

With the definition of attributed grammar GFTL, we can conclude following proposition without proof (the proposition is
obvious).

Proposition 1. Any FTL formula u can be derived with the FTL attribute grammar GFTL.
Example 1. This proposition can be best illustrated with an example as shown in Fig. 4. It can be easily seen that an FTL
formula u ¼ G½0;3�ðF½0;2�ðk23 > 1Þ ^ G½0;1�ðk24 < 2ÞÞ can be derived by following a sequence of production rules P3P7P2P5P1P1

applied to a set of properly attributed terminal nodes VT ¼ fG½0;3�; F½0;2�;lf1 :¼ ðk23 > 1Þ;G½0;1�;lf2 :¼ ðk24 < 2Þg.
Definition 4. A formula u is an FTL formula, which is derived by a sequence of production rules e ¼ r1 � � � ; rn as illustrated by
Proposition 1 and Example 1.
3.3. Problem statement

We now formally define the problem of fault diagnosis and interpretation with an FTL formula, which infers an FTL for-
mula with BNN and applied the learned formula to fault diagnosis and interpretation.

Problem 1. (Fault Diagnosis) Given a set of labeled WPT coefficients, X ¼ Xþ [ X�, which includes a set of coefficients with
positive (Xþ) and negative (X�) examples, and a attributed grammar GFTL as described in Definition 3, find an FTL formula u,
derived with a sequence of production rules e ¼ r1 � � � ; rn, such that the robustness degree
qðX;uÞ ¼minðmin
x2Xþ
ðqðx;uÞÞ;min

x2X�
ðqðx; – guÞÞÞ; ð8Þ
Table 1
Production rules of GSTL .

Rule Category Notation Attributes

P1 Instance AjB! lf gðAjBÞ ¼ gðlÞ
P2 Finally A! FA gðAÞ ¼ gðFÞ [ gðAÞ
P3 Globally A! GA gðAÞ ¼ gðGÞ [ gðAÞ
P4 Finally B! FB gðBÞ ¼ gðFÞ [ gðBÞ
P5 Globally B! GB gðBÞ ¼ gðGÞ [ gðBÞ
P6 Or AjB! A _ B gðAjBÞ ¼ gðAÞ [ gðBÞ
P7 And AjB! A ^ B gðAjBÞ ¼ gðAÞ [ gðBÞ
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for coefficient set X against u is maximized, where qðx;uÞ denotes the robustness degree for coefficient sequence x against
u. Here the time series signals are first transformed with WPT, then formula u is applied to the WPT coefficients for robust-
ness degrees.
Remark 1. The above formula,u, can be seen as an interpretable classifier, therefore, it has two roles: one is a diagnoser and
the other is a decision explanator. It diagnoses the conditions of the bearing and gives explanations for the decision process.
Since we use labeled data to train the model, the above problem is a supervised learning problem. All the signals that come
from the positively labeled bearings will satisfy the formula if the robustness calculated in Definition 1 is positive and vice
versa for the negatively labeled bearings. As FTL can be understood by a human, the fault patterns can be discovered with a
human-friendly approach. It is helpful to understand Eq. (8) by visualizing it in terms of Support Vector Machine (SVM): the
FTL formulau defines the boundary between desirable and undesirable behaviors; minx2Xþ ðqðx;uÞÞ and minx2X� ðqðx; – guÞÞ
are the distances between the boundary and the desirable and undesirable behaviors, respectively; and finally maximizing
qðX;uÞ results in a boundary that maximally separates the desirable and undesirable behaviors. But compared with the
boundaries in SVM, which are hyper-planes in some high dimensional feature spaces, which might be hard to interpret,
our boundary is defined by an FTL formula u, which is easily understandable and obtained without any human intervention.
4. Specification inference with Bayesian neural networks

In Section 3.3, fault diagnosis and interpretation requires learning an FTL formula from scratch. In this section, we will
learn the structure of the formula and its parameters (attributes) using Bayesian optimization with BNN.

4.1. Frequency-temporal logic encoder

BNN can only take numerical values, therefore we need an encoder, which maps an FTL formula u to a vector m 2 Rm. In
this paper, the encoder function p : !! Rm, wherem is the dimension of the vector. Based on some random tests among the
bearing vibration data, when m is set to 40, the encoded formula can obtain good performance in fault diagnosis. Moreover,
whenm is larger than 40, the computational time for the learning algorithmwill be increased. As shown in Fig. 5, the vector m
can be divided into three parts. The first part denotes the production rules used to generate the formula sequentially, the
second part denotes the frequency intervals for the spectrum operators sequentially, and the last prat denotes the predicates
used in the formula sequentially. Here we only take the coefficients at Level 3 into consideration, and the encoder table is
shown in Table 2. When the length of the formula is smaller than 40, 0 is auto-filled to vector m. Based on the encoder map,
FTL formula u ¼ G½0;3�ðF½0;2�ðk23 > 1Þ ^ G½0;1�ðk24 < 2ÞÞ can be encoder to a numerical vector. Since the formula is derived with
production rules P3P7P2P5P1P1, the first part of vector m is ½3;5;2;3;1;1;0; � � ��. Note that the production rules P2 and P4,
and P3 and P5 use the same syntax rule, thus they are encoded as the same number to reduce the search space. When we
map a vector to a formula, we can choose one of the production rules accordingly and the structure of the formula is uniquely
defined. Then, three frequency bound ½0;3�; ½0;2�, and ½0;1� are used sequentially, then the second part of vector m is
½0;3;0;2;0;1;0; � � ��. Finally, two predicates are used with node number 3 and 4, constant values are 2 and 1, then the third
part of m is ½3;6;1;4;7;2;0; � � ��. Then the vector is
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Fig. 5. FTL formula encoder and Bayesian neural network with one hidden layer.

Table 2
Encoder table for FTL formulas.

Category Encoder Category Encoder

P1 1 ss ss
P2=P4 2 se se
P3=P5 3 a a
P6 4 P 6
P7 5 < 7
Node number n
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m ¼
3 5 2 3 1 1 � � � 0 � � �
� � � 0 3 0 2 0 1 � � � 0
� � � 3 6 1 4 7 2 � � � 0

2
64

3
75 2 R1	40: ð9Þ
4.2. Bayesian optimization with Bayesian neural networks

The goal of Bayesian optimization in this paper is to find an FTL formulau, such that the robustness degree in Problem 1 is
optimal, namely m� ¼ argmaxmt2Vqðp�1ðmÞ;XÞ, where p�1ðmÞ is the decoder function that maps a vector to an FTL formula.
With the help of the encoder proposed in Section 4.1, this FTL-based fault diagnosis problem can be transformed into an opti-
mization problem. Before we solve this optimization problem, three important properties of this problem should be
addressed as follows: 1) The domain of formula V is a high-dimensional mixed integer space; 2) The objective function
qðp�1ðmÞ;XÞ is highly non-linear and not differentiable; 3) Query the objective function is a time-consuming process if the
data set X is large.

To address the first and second properties, here we take advantage of nice properties of neural network and formulate the
problem using Bayesian neural networks (see Fig. 6 for architecture) and the problem we solved is as follows: We aim to
model the robustness qðm; tÞ ¼ qðp�1ðmÞ;X; tÞ of a vector m 2 V 
 R40 at time step t based on noisy observation
yðm; tÞ � N ðqðp�1ðmÞ;X; tÞ;r2Þ, where r is the variance for the noise. Assume we obtain Tn data points for the model; denot-
ing the combined data by D ¼ fðm1; t1; y1Þ; ðm2; t2; y2Þ; ðmTn ; Tn; yTn Þg, we can then have the joint probability of the data D and
the network weights W as
PðD;WÞ ¼ PðWÞPðr2ÞPjDji¼1Nðyi; q̂ðp
�1ðmiÞ;X; tijWÞ;r2Þ; ð10Þ
where q̂ðp�1ðmiÞ;X; tijWÞ is the prediction of a neural network. Even though computing the posterior weight distribution
PðD;WÞ is an intractable task, we can use Markov chain Monte Carlo (MCMC) to sample it, in particular stochastic gradient
MCMC methods, such as Stochastic Gradient Langevin Dynamics (SGLD) [43] or Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC) [44]. Given M samples W1;W2; � � � ;WM , we can then obtain the mean and variance of the predictive distri-
bution pðqjm; t;DÞ as
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Fig. 6. Gaussian process batch upper confidence bound based transfer learning framework for FTL formula inference.
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ĵðm; tjDÞ ¼ 1
M

XM
i¼1

q̂ðp�1ðmiÞ;X; tijWiÞ; and

r̂2ðm; tjDÞ ¼ 1
M

XM
i¼1
ðq̂ðp�1ðmiÞ;X; tijWiÞ � ĵðm; tjDÞ2;

ð11Þ
respectively. We will write their shorthand as ĵðm; tÞ and r̂2ðm; tÞ for the rest of this paper.
To address the third property of the problem, we need to find the optimal formula with limited samples. Therefore, we

combine the Gaussian process batch upper confidence bound (GP-BUCB) [45] and transfer learning method to find the opti-
mal formula. With the estimation for the mean and variance, we can find the optimal formula by sampling the formula space
V sequentially. To simplify the sampling process, assuming the batch size is M, we just run the Gaussian process upper con-
fidence bound (GP-UCB) one time and choose the M largest values for each sampling round. The GP-UCB algorithm samples
the next sample mtþ1 with the following rule,
mtþ1 ¼ argmaxmt2V ĵðm; tÞ þ b1=2r̂2ðm; tÞ; ð12Þ
then the optimal FTL formula u ¼ p�1ðmtþ1Þ is used to calculate the robustness, ytþ1, for training the BNN. Moreover, in
order to speed up the training process, we use the transfer learning framework to make use of the historical neural network
parameters, which is shown in Fig. 6. In this framework, the BNN is first randomly initialized and trained with an initial set of
data, then the pre-trained BNN is saved for fine-tuning. During each batch sampling and training process, the pre-trained
BNN will be loaded and trained with the new data set (a combination of the newly sampled data set and old data set), then
the new trained BNN will be saved for next run of batch sampling. The learning algorithm can now be summarized in Algo-
rithm 1.

Algorithm1 Bayesian Optimization with Bayesian Neural Networks.

Input: Formula width limit W; Limit for number of samples in sampling space V, L; Initial sample number T0;
Maximal sampling step T; Batch size M.

Output: A set of sample-observation pairs fðmi; yiÞg
TMþT0
i¼1 and the optimal sample m�.

1: Initialize the formula space V;
2: Initialize the training set D0 ¼ fmi; yig

T0
i¼1;

3: Initialize the BNN with random parameters;
4: Train the BNN with the initial training set D0 and save the training result.
5: repeat
6: Load the pre-trained BNN;
7: Update ĵðm; tÞ and r̂2ðm; tÞ with Eq. (11);

8: Sample the formula space V to get M sample pairs Bt ¼ fmi; yig
M
i¼1 using GP-UCB strategy shown in Eq. (12);

9: Update training set Dt  Dt�1 [ Bt;
10: Fine tune the BNN with the new training set Dt and save the training result;
11: t  t þ 1;
12: until t > T .
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During the learning process, to generate a valid set V in Line 1 in Algorithm 1, a random tree generate algorithm is used to
generate random parsing trees for FTL formulas. Then terminal nodes’ attributes of the trees are assigned with random num-
ber accordingly. Last, the set V can be obtained bymapping the generated trees to vectors. In Line 2, we cut each state’s signal
into 600 pieces and applied the WPT with a depth of level 3 to the signals to obtain their wavelet packet transform. Then we
calculate the second temporal moment for each coefficient. With these signals, we construct the training data sets for each
bearing condition (data set construction detail will be discussed in Section 6). Finally, for each training set, given a formula
vector mi, we calculate a robustness degree yi. Line 3 initializes BNN’s parameters with random matrices (random weight
matrices). In Line 4, the training step number is much larger than the step number in Line 10, as the parameters in Line
10 are pre-trained. The performance of the algorithm can be described with the following theorem.

Theorem 1. If the optimal robustness degree from solving problem in Definition 1 is ĵ, and the robustness degree without noise is
j, pick d 2 ð0;1Þ and set bt ¼ 2 logðjVjpt=dÞ, where

P
tP1p�1t ¼ 1. If we sample the new training points with the strategy proposed

in Eq. (12) [46], then after T steps of training, we have
Pðjĵ� jj < b1=2
T rðm; T � 1ÞÞ ð13Þ
holds with probability P 1� d.
Proof. For m 2 V and t P 1. It is known that conditioned on D ¼ fðm1; t1; y1Þ; ðm2; t2; y2Þ; ðmn; Tn; yTn Þg is deterministic. Further,
we assume that ĵ � Nðĵðm; tÞ; r̂ðm; tÞÞ as defined in Eq. (11). Now if r � Nð0;1Þ, then
Pðr > cÞ ¼ e�c
2=2ð2pÞ�1=2

R
e�ðr�cÞ

2=2�cðr�cÞdr

6 e�c
2=2Pðr > 0Þ ¼ ð1=2Þe�c2=2;
for c > 0, as e�cðr�cÞ � 1 for r P c. Set r ¼ ðj� ĵÞ=r̂ðm; tÞÞ and c ¼ b1=2
t . Then
Pðjj� ĵj=r̂ðm; t � 1Þ > b1=2
t Þ 6 e�bt=2:
Then
jj� ĵj 6 b1=2
t r̂ðm; tÞ 8m 2 V
holds with probability P 1� e�bt=2. Since bt ¼ 2 logðjVjpt=dÞ and jVj, the infinity norm, is less than or equal to 1 with
pt ¼ p2t2=6. Thus, the statement holds.
Remark 2. Before conducting Algorithm, the vectors in search space V are first normalized by its infinity norm jmj to guar-
antee that the scaled search space V0 satisfies jV0j 6 1. The above theorem indicates that when the sampling step T increases,
the bias of the estimation will decrease, since with more and more samples, the variance rðm; T � 1Þ will decrease.
5. Properties of interpretation with frequency temporal logic

Real-time monitoring with FTL formulas not only focuses on the Boolean satisfaction of time-frequency properties of the
vibration signals, but also gives quantitative semantics to the conditions of the bearings, i.e., with semantic of FTL, we can
investigate the distance from a faulty system to a health system with robustness degree. Learning the parameters of FTL for-
mulas with BNN assumes there exists Gaussian noise in the observations, which induces a noise resistance property of the
proposed method. In this section, we will investigate how the variable speed operations of bearings and noise affect the per-
formance of the proposed fault diagnosis method.

5.1. Interpretation with variable speed operations

For constant speed operation, the inner race defect, outer race defect and ball (roller) spin defect have characteristic fre-
quencies, which can be found in [40], showing that the periodic impulses induced by the defect have fixed but different peri-
ods for the three type of defects. Therefore, the time parameters in Eq. (6) can distinguish three types of faults uniquely. In
other words, the fixed periodic properties can be easily described with FTL formulas. Unfortunately, many industrial appli-
cations are characterized by harsh and variable operating conditions, with multiple heterogeneous vibration sources [47].
Therefore, the signals often present different components, among which the damage related ones are not always dominant
and the time intervals of the impulses are not constant, thus whether the signals from three type of fault are distinguishable
is undetermined with temporal information. For the fault diagnosis of bearings with variable speed operation, the mapping
function Xð�Þ in the definition of robustness should be modified to deal with the variable speed operations. Many signal pro-
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cess functions can be used as the mapping function. For instance, the cepstrum pre-whitening operator for the signal in [47],
in which a signal x, is reconstructed by the following equation,
x0 ¼ IFT
FTðxÞ
jFTðxÞj

� �
; ð14Þ
where x0 is the reconstructed signal, FT denotes the Fourier transform and IFT denotes its inverse operation. The transforma-
tion in Eq. (14) is equivalent to pre-whitening the signal in cepstral domain. In the cepstral domain [48], the periodicity of
the spectrum results in a peak at a quefrency equal to the period of the base frequency of the multi-harmonic vibration. The
pre-whitening operation sets a zero value for the whole real cepstrum (except possible at zero quefrency), and transforms
back to frequency domain. This is equivalent to a series of liftering operations around the quefrencies of the deterministic
excitation, resulting in the almost complete deletion of their effect on signals and a removal of resonance effects. Therefore,
the variation of the base frequency caused by the time-varying speed conditions will be suppressed.The quality of the signals
has been demonstrated to have good performance with examples in [47]. After this operation, with x0, the second temporal
moment can be computed for FTL. Other signal processing techniques, such as tacholess order tracking [49] and the concen-
tration of frequency and time [50], can also be used to define the mapping function. Therefore, the proposed logic based fault
diagnosis method is compatible with other signal analysis techniques.

5.2. Interpretation with noise

How to deal with noise is an essential problem to guarantee highly reliable condition monitoring in industrial environ-
ments. Every FTL formula defines a hyperplane in the high dimensional time-frequency space. The existing of noise will
affect the estimation of the hyperplane and the fault diagnosis results. For instance, the energy of a frequency component
in the faulty signal can be affected by the noise, thus the distance of the signal to the hyperplane defined by an FTL formula
will be changed, which may lead to miss-diagnosis. In this paper, the FTL formulas are learned with BNN, in which the esti-
mation of robustness degree is based on the estimation of the mean robustness degree. In other words, if the noise has zero
mean Gaussian distribution, we can get an unbiased estimation of the optimal hyperplane. Given a robustness degree of a
vibration signal associated with an FTL formula, properties about the confident bound can be described with the following
theorem.

Theorem 2. Given a WPT coefficient x, and an FTL formula u, if the noise Sn of the vibration signal in time-frequency domain is
Gaussian with distribution Sn � Nð0;rnÞ, where rn is the variance of the noise, then the probability of miss-diagnosis (MD) is given
by
PðMDÞ ¼
Pð�j > 0Þ; when j < 0
Pð�j < 0Þ; when j > 0

�

6
d

2
ffiffiffiffiffiffiffiffi
2prn

p R jþg
�1 expð�t2=ð2rnÞÞdt;

d

2
ffiffiffiffiffiffiffiffi
2prn

p Rþ1
j�g expð�t2=ð2rnÞÞdt;

8><
>:

ð15Þ
where j is the measured robustness degree for the coefficient x associated with formula u, and �j is the real robustness.

g ¼ b1=2
T rðm; TÞ and d are defined in Theorem 1.
Proof. When j < 0, set j ¼ Sn þ �jþ e, where e is the estimation error of robustness degree, then we have
Pð�j > 0Þ ¼ Pðj� Sn � e > 0Þ ¼ PðSn < j� eÞ 6 PðSn < jþ gÞPð�e < gÞ. Assume the estimation error of robustness degree
is zero mean, and according to Theorem 1, we have Pð�e < gÞ 6 d=2, then PðSn < jþ gÞ
Pð�e < gÞ 6 d

2
ffiffiffiffiffiffiffiffi
2prn

p R jþg
�1 expð�t2=ð2rnÞÞdt. When j > 0, the proof process is similar to j < 0.

Theorem 2 indicates that the miss-diagnosis probability is bounded, and the larger the variance, the larger the miss-
diagnosis probability.

6. Case study

In this section, we will use a real experiment to demonstrate the validation of the proposed method. In the experiment,
we will use the proposed method to diagnose the fault for a set of rolling element bearings. To get the training and testing
data, the single pitting faults were introduced to the surface of the race or the rolling body of the bearings by electrical-
discharge machining method. The signals are processed with Matlab and Python environments, and the codes for the pro-
posed method can be found at.https://github.com/Gangchen01.

https://github.com/Gangchen01
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Fig. 8. (a) The rolling element bearing test rig and (b) the location of the accelerometer.
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6.1. Interpretation with time-invariant rotational speed conditions

6.1.1. Experiment setup
The data generation test rig is similar to [14] as shown in Fig. 8. In the test rig, an a.c. motor drove the shaft of the rota-

tional machine through a rub belt and a shaft coupling. The tested bearing is assembled on the shaft, whose outer race is
fixed by a fixture and inner race rotated with the shaft. The data acquisition (DAQ) system for the test rig is based on NI
PXI system (a NI PXI-1042 chassis with NI PXI-4472modules). The sensor used in the experiment is an accelerometer (Kistler
8791A250), which is located on a bracket by an adhesive mounting. During the test, a series of GB203 rolling element bear-
ings are used to collect the data and the faults are introduced to the surface of the race or the rolling element by electrical-
discharge machining method. The speed of the shaft is 1800 r/min and the sampling rate is 12 kHz.

There are four kinds of states for the bearings, namely normal, rolling element fault, inner race fault, and outer race fault.
We have collected three signals for each condition, and each of them has a length of 68 s, then cut each condition’s signal into
600 pieces (0.34 s and length of 4096 for each) and applied the WPT with a depth of level 3 to the signals to obtain their
wavelet packet transform coefficients. There are 8 components at level 3 and each of them has a length of 512. Finally,
we calculate the second temporal moment for each coefficient. Therefore, we get 600 signal pieces for each bearing state,
and each of the signal has 8 dimensions (some of the signals’ trajectories can be found in Fig. 9). Then we construct the
labeled set X for robustness calculation in Eq. (8). To construct the positive set for inner fault, 450 pieces of inner fault signals
are used, and the negative set from the other three conditions’ signal (150 signals for each). Therefore, the size of X is 900.
Moreover, the labeled sets for normal, outer race fault and rolling element fault are constructed with the same method as for
inner fault. To test the performance of the FTL formula in fault diagnosis, we also construct a test set for each bearing con-
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dition. For inner fault condition, the positive test examples are the rest 150 pieces, and the negative test examples come from
the other three bearing conditions (50 pieces for each condition that un-used for training).

To initialize the learning algorithm in Algorithm 1, we initialize the sampling space V with 5000 vectors, each of which is
associated with a valid FTL formula and has a width of 40. Also, we randomly sample space V and calculate the robustness to
get the training setD0, whose size is set to 200. In this example, the BNN has 2 hidden layers with 100 nodes for each, and the
initial BNN is trained by 1000 training step, and the fine-tuning step limit is set to 100. Moreover, the batch size is 20 and
sampling step limit is set to 100.
6.1.2. Interpretation results
Fig. 7 shows the robustness obtained by Algorithm 1 for each sampling step. These results indicate that the proposed

algorithm can reach positive robustness within limited sampling steps for four scenarios, indicating the obtained FTL for-
mula can diagnosis the fault correctly among the training set. Also, the results show that the sampling strategy may not
improve the performance of the obtained formula in fault diagnosis every sampling step, which due to the uncertainty of
the algorithm.

Table 3 shows the learning results for faults diagnosis with FTL formulas. We can see the formulas are compact. Three
reasons can explain this compact: 1) Frequency-temporal-logic is expressive in specifying the pattern of fault signals. The
eventually (F) and always (G) operators offer much freedom for the signals. e.g., F allows the fault pattern to occur at any
time within a frequency range. 2) The learning algorithm can choose the best dimension of the WPT results, which can dis-
tinguish the fault from the others. 3) These compact formulas are enough to diagnose the faults. Of course, if the fault pattern



Table 3
Interpretation formulas for the real experimental vibration signals for inner race, outer race
and rolling element faults.

Fault Type Interpretation

Inner Race F½0:060;0:15�ðF½0:13;0:43�ðk63 > 0:2ÞÞ
Outer Race F½0:36;0:45�ðG½0:040;0:090�ðk73 > 0:567ÞÞ
Rolling Element F½0;0:021�ðG½0:30;0:67�ðk63 P 0:945Þ _ F½0:030;0:060�ðk23 P 0:295ÞÞ
Normal G½0:53;0:57�ðk63 < 0:756Þ _ F½0:080;0:12�ðk23 < 0:015ÞÞ

G. Chen et al. /Mechanical Systems and Signal Processing 145 (2020) 106951 15
is more complex, the algorithm has the ability to increase the complexity of the formula by extending the width of the enco-
der in Section 4.1. These formulas can be explained in plain English as follows:

� Inner race fault. The sixth component of the WPT at level 3, denoted as k63 is used to distinguish the inner race fault from
the other conditions. The FTL formula indicated the pattern for the inner race fault, that the second temporal moment of
k63 should be finally larger than 0.2 between frequency 0.13 and 0.43 should occur at least once between frequency 0.06
and 0.15, where the frequency is normalized (as shown in Fig. 9(a)). The figure indicates that the inner race fault is dif-
ferent from the other conditions by having larger energy at a frequency around 0.3.
� Outer race fault. The seventh component of the WPT at level 3, denoted as k73 is used to distinguish the outer race fault
from the other conditions. The FTL formula indicates the pattern for the outer race fault, that the second temporal
moment of k73 should be globally larger than 0.567 between frequency 0.04 and 0.09 should occur at least once between
frequency 0.36 and 0.45 (as shown in Fig. 9(b)). The figure indicates that the outer race fault is different from the other
conditions by having larger energy at a frequency around 0.5.
� Rolling element fault. The second and sixth components of the WPT at level 3, denoted as k23 and k63 are used to distin-
guish the Rolling element fault from the other conditions. The FTL formula indicates the pattern for the rolling element
fault, that the second temporal moment of k63 should be globally larger than 0.945 between frequency 0.3 and 0.67 or the
second moment of k23 should be finally larger than 0.295 between frequency 0.03 and 0.06, should occur at least once
between frequency 0 and 0.021 (as shown in Fig. 9(c)). The figure indicates that the inner race fault is different from
the other conditions by having larger energy in the low-frequency region.
� Normal. The second and sixth component of the WPT at level 3, denoted as k23 and k63 are used to distinguish the normal
state from the other conditions. The FTL formula indicates the pattern for the normal state is that the second temporal
moment of k63 should be globally smaller than 0.756 between frequency 0.53 and 0.57 or the second moment of k23 should
be finally smaller than 0.015 between frequency 0.08 and 0.12 (as shown in Fig. 9(d)). The figure indicates that the normal
condtion is different from the other conditions by having a smaller energy at frequency around 0.1.

The formal interpretation results show that the fault conditions will lead to a larger energy concentration at some fre-
quency bands, and the different fault will have different energy concentration bands. The results are in line with the fault
mechanism that the fault signals come from the strikes of rollers on the fault surface and excite the resonant frequencies.
Moreover, for fixed rotational speed condition, the energy concentration for the healthy bearing is bounded to a small region.
Based on this interpretation, technicians can understand why fault occurs and actions that can avoid energy concentration
will reduce the risk of the fault occurring, and energy concentration usually is caused by strikes. Therefore, targeted main-
tenance actions, such as adding lubrication, will reduce the risk of energy concentration.

The faults diagnosis results for the experimental data are shown in Table 4. The results show that the proposed method
has good performance for rolling element bearing fault diagnosis, which the errors are less than 5% among the test data set.
When the found formula can obtain positive robustness, the formula can diagnose the fault correctly. If the found formula
can obtain negative robustness, the formula may lead to mis-diagnosis. Inner race and normal have negative robustness
among testing data sets in Table 4 due to the randomness of noise or the different distribution of the fault pattern between
training and testing data. There exists a high probability that the trained FTL formula can not obtain good performance for
Table 4
Performance of the interpretation formulas in fault diagnosis in terms of robustness and classification error for real bearing signals.

Fault Type Robustness Error Rate

- Training Testing Training Testing

Inner Race 0.053 �0.033 0.000 0.042
Outer Race 0.137 0.223 0.000 0.000
Rolling Element 0.170 0.013 0.000 0.000
Normal 0.046 �0.013 0.000 0.032
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some specifical cases. However, the overall performance is good among training and testing data sets. The intuitive repre-
sentations of the formulas against the vibration signals are shown in Fig. 9. In Fig. 9, the blue trajectories indicate the positive
examples, and the red trajectories indicate the negative examples. The yellow rectangles are defined by the FLT formulas. For
instance, in Fig. 9(a), the formula indicates that the blue trajectories should be in the rectangles at least once, while the red
trajectories should be never in the yellow region; in Fig. 9(b) indicates that the blue trajectories should be always in the yel-
low region, while the red trajectories should be not always in the yellow region. Moreover, the trajectories also show that the
second temporal moment of the coefficients is smooth. This property is caused by the integration operator over spectrogram
power spectrum. When the noise is white, the spectrogram is expected to have constant value after mapped by function
defined in Eq. (6). Therefore, white noise does not affect the shape of the second temporal moment, and the smoothness
of the second temporal moment can be an indicator for noise resistance property.

In order to demonstrate the effectiveness and efficiency of the method approach over state of the art methods, here we
compare the performances of the proposed method with the methods developed in [51,19,20,52]. The proposed method and
method in [51] are formal method based, and both methods can use formal formulas to diagnosis the faults. The comparison
result is shown in Table 5. An eight-core HP desktop was used. Moreover, during the comparison, we controlled the number
of sampling round in our method, and the number of learning cycles in the method developed in [51]. It can be seen that,
with the former method, a satisfactory STL formula can be derived in 815 s, while such a formula cannot be obtained with
the latter method within roughly the same number of seconds (the error is 11% and the robustness degree qðu;XÞ is still
negative after 819 s).

The comparison results between the proposed method with the feature-based methods are shown in Table 6, where the
formula based method is compared with Fisher, cosine similarity metric (CSM) and Genetic Algorithm (GA) based SVM
methods. The results show that the proposed method have better overall performance than the other methods, and only
the diagnosis for normal state has worse performance than the CSMSVM method (0.0167 vs 0.0067).
Table 5
Comparison results between our proposed method and the method in [51] for rolling element fault.

Our method Method in [51]

Time Error Robustness Time Error Robustness

ðsÞ % qðX;dÞ ðsÞ % qðX; dÞ
191 30 �0.357 188 50 �0.526
392 16 �0.243 396 24 �0.253
815 0 0.045 819 11 �0.168

Table 6
Fault diagnosis error rate with the methods in [19,20,52] and the method in this paper for rolling element bearing.

Fault Type Fisher + SVM[20] CSMSVM[19] GA + SVM[52] Proposed method

Inner Race 0.113 0.037 0.043 0.007
Outer Race 0.043 0.013 0.057 0.000
Rolling Element 0.013 0.000 0.007 0.000
Normal 0.063 0.007 0.063 0.017

The bold numbers come from the proposed method and have better performance.

Fig. 10. Diagram for experimental setup under variable speed condition in [53].
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6.2. Interpretation with variable speed conditions

In order to illustrate the properties of interpretation with FLT, i.e., interpretation with variable speed and noise conditions.
We apply the proposed method to a data set in [53], which is collected under time-varying rotational speed conditions.

6.2.1. Experiment setup
The experiment setup is introduced in [53] and the diagram is shown in Fig. 10. The shaft is driven by a motor and the

rotational speed is controlled by an AC drive. Two ER16K ball bearings are installed to support the shaft. The left one is a
healthy bearing and the right one is the experimental bearing. The accelerometer is placed on the housing of the experimen-
tal bearing to collect the vibration data, where the NI data acquisition boards are used. During the experiment, the original
data was sampled at 200,000 Hz and we re-sample the data to alleviate the computation load, which makes the data used in
this paper is sampled at 20,000 Hz. The rotation speed for the data used in this paper is about 10 Hz to 28 Hz. One piece of the
inner fault signal (left) and outer race fault signal (right) are shown in Fig. 11. Fig. 11 also shows the cepstrum pre-whitening
results and their second temporal moments. The second temporal moments of the two signals are significant different, thus
they are good signals for fault diagnosis.

The data sets used to train the model are from the inner race fault and outer race fault bearings 1. We first cut each state’s
signal into 600 pieces (0.25 s for each), then to construct the training set, 400 pieces of inner fault signals are used as positive
examples, and 400 pieces of outer race fault signals are used as negative examples. To construct the testing set, the other 200
pieces of inner race fault signals and outer race signals are used. Therefore, the size of X in this experiment is 800 for the training
set. Before the tests, we apply Eq. (14) to reconstruct the signals in training and testing sets.

To investigate the effect of WPT’s depth to interpretation results under time-varying rotational speed condition, we con-
duct three tests, which applies the WPT to the training and testing signals with a depth of level 2, 3 and 4, respectively. If
considering the vibration signals to be true signals without noise, the signals for training and testing will have an average
signal-to-noise (SNR) ratio 1.69, 0.422 and 0.105, respectively. Then we apply the proposed method to the decomposed sig-
nals for fault diagnosis. To investigate the effect of noise to interpretation results under time-varying rotational speed con-
dition, we conduct another three tests, in which a white noise signal is added to each training signal and testing signal with
zero mean and three different variances, namely 0.05, 0.1, and 0.2 respectively. During the noisy tests, the WPT is applied
with a depth of level 3. This experiment also compares the proposed method with the algorithm in [19] under different noise
conditions.

6.2.2. Interpretation results
Table 7 shows the results for variable speed conditions. The comparison of different decomposition depth for WPT indi-

cates that the depth of level 3 can obtain the best robustness and fault diagnosis performance. A higher level (level 4) of
decomposition cannot guarantee a better result, which leads to negative robustness among training and testing data. The
deeper of the WPT level, since the fault information will be distributed among all the sub-component signals, the fault infor-
mation among each sub-component will be less. It will be harder for the FTL formula to capture the fault properties with
limited formula complexity. The results for the noise resistance tests indicate that adding of white noise do not affect of
the performance for fault diagnosis greatly, which obtains high fault diagnosis rate among testing data for all noise level,
revealing the noise resistance property for the proposed method. Since the noise is zero mean, and the mapping function
used in FTL (denoted in Eq. (6) is the second temporal moment. Ideally, adding white noise will add a constant bias to
the second temporal moment but do not affect the shape of the second temporal moment. The bias will not affect the fault
diagnosis results since the learned formulas only need to add the bias to the predicates and all the fault modes share the
same bias. For example, if the fault properties can be captured by formula F ½0;0:15�ðx > 0:5Þ, and the noise introduces a bias
of d, then a new formula F ½0;0:15�ðx > 0:5þ dÞwill capture the fault properties. The comparison between the proposed method
and the method in [19] demonstrates this analysis since the proposed method outperforms the other method under noisy
conditions. Moreover, to deal with the noise, statistical hypothesis testing is conducted in the following, which further
demonstrates the noise-resistance property of the proposed method.

Fig. 12 shows the visualization for formula obtained when rn ¼ 0:05, where we select 80 of the trajectories in training set
randomly for intuitive visualization, and the formula is as follow,
u ¼ F½0:082;0:11�ððF½0;0:076�ðk23 > 0:11Þ ^ ðF½0;0:45�ðk53 > 0:44ÞÞ ð16Þ
Formula in Eq. (16) defines a cuboid as shown in Fig. 12. All the blue trajectories have points within the cuboid, while all
the red trajectories should not have points within the cuboid. The formula indicates that the inner race fault is different from
the outer race fault by having larger k23 and k53 in the low-frequency region.

6.2.3. Statistical hypothesis testing
Theorem 1 shows the proposed method can find a formula that can guarantee the error is bound with a given probability.

The given probability can be seen as a confidential bound, e.g., the found formula is the optimal one with a probability larger
than 0.95. Based on this theorem, when the signals are contaminated with white noises, the proposed method can find the
optimal formula with a high probability, even though the optimal formula may lead to negative robustness. In this case, we
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Fig. 11. Example of signal under variable speed conditions.

Table 7
Fault diagnosis error rate of the proposed method and its comparison under different experiment settings.

Experiment Setting Statistical Hypothesis Testing Proposed Method CSMSVM [19]

– False alarm Missing fault Training Testing Training Testing

WPT � 2 – – 0.024 0.025 – –
WPT � 3 – – 0.000 0.023 – –
WPT � 4 – – 0.041 0.045 – –
rn ¼ 0:05 ðSNR ¼ 1:69Þ 0.000 0.010 0.018 0.020 0.031 0.045
rn ¼ 0:1 ðSNR ¼ 0:422Þ 0.005 0.013 0.028 0.038 0.028 0.058
rn ¼ 0:2 ðSNR ¼ 0:105Þ 0.030 0.035 0.043 0.053 0.055 0.070

Testing results are important for the machine learning algorithm, thus they are in bold.

Fig. 12. Visualization of FTL formula u ¼ F½0:082;0:11�ððF½0;0:076�ðk23 > 0:11Þ ^ ðF½0;0:45�ðk53 > 0:44ÞÞ. a) the blue circles are positive points, and the red circles are
negative points; b) a partial enlargement of (a).
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Table 8
Scheme for the presentation of the results in Table 7.

Positive Examples (H0) Negative Example (H1)

Fail to reject H0 Correct decision Missing fault error
Reject H0 False alarm error Correct decision
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need further analysis to reveal this property. Here we use statistical hypothesis testing to investigate the properties of the
found formula.

Let us consider a t-test for the formulas obtained in above noisy conditions. We assume: (a) the robustness for a baseline
fault signal is a random variable having a normal distribution with unknown mean �q and unknown standard deviation �qr;
and (b) the robustness for a signal that must be diagnosed is also normally distributed with unknown mean q̂ and unknown
standard deviation q̂r. The problem that we will consider is to determine whether these means are equal. The t-test leads
immediately to a test of hypotheses
H0 : �q� q̂ ¼ 0 versus H1 : �q� q̂– 0; ð17Þ
where the null hypothesis is ‘‘ the signal to be diagnosed is distributed as the baseline signal ” and the alternative hypothesis
is ‘‘ the signal to be diagnosed is not distributed as the baseline signal”. In other words, if the result of the test is that the null
hypothesis is rejected, the current signal cannot be categorized as faults in the baseline samples. The scheme for the results
are shown in Table 8, which leads to two kinds of error, namely false alarm error and missing fault errors.

During the t-test, the significance level is set to 0:05. To obtain the estimation of q̂ and q̂r, we took a 3000 width window
of the signals that to be diagnosed from the rolling element bearings and calculated the robustness value. Next, we moved
this window forward 100 sampling points along the time axis and repeated the calculations. The resulting trace of robust-
ness values was used to determine q̂ and q̂r. The mean �q and standard deviation �qr are calculated based on the baseline
trajectories. To test the formula found in the noise test experiments, the positive examples in the training set are used as
baseline samples and the signals in the testing set are tested. The results in Table 7 indicate that fault diagnosis with statis-
tical hypothesis testing will lead to a lower error rate than diagnosing with only FTL formula, e.g., when the SNR is 0.105,
statistical hypothesis testing obtains a missing fault rate of 0.035, while FTL formula alone obtains an error rate of 0.053. This
result demonstrates that the proposed algorithm can find an FTL formula that is robustness to noise.
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7. Conclusions

This paper introduces a novel method for bearing fault diagnosis, which maps the vibration signals to some logic formu-
las. The logic formulas can be seen as interpretable classifiers, which can be used for fault diagnosis. Moreover, as the logic
formulas are written in a formal language, it can be understood by a human and are easy to be used for online condition
monitoring. To infer the structure of the logic description, BNN is combined with Bayesian optimization method, and the
transfer learning technique is used to speed up the training procedure. The performance of the proposed method is demon-
strated with two experiments.
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