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a b s t r a c t

This paper presents a Chirplet Wigner–Ville Distribution (CWVD) that is free for cross-
term that usually occurs in Wigner–Ville distribution (WVD). By transforming the signal
with frequency rotating operators, several mono-frequency signals without intermittent
are obtained, WVD is applied to the rotated signals that is cross-term free, then some
frequency shift operators corresponding to the rotating operator are utilized to relocate
the signal′s instantaneous frequencies (IFs). The operators′ parameters come from the
estimation of the IFs which are approached with a polynomial functions or spline
functions. What is more, by analysis of error, the main factors for the performance of
the novel method have been discovered and an effective signal extending method based
on the IFs estimation has been developed to improve the energy concentration of WVD.
The excellent performance of the novel method was manifested by applying it to estimate
the IFs of some numerical signals and the echolocation signal emitted by the Large
Brown Bat.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In signal processing, time–frequency representation (TFR)-based approaches have raised a variety of vital applications in
mechanical fault diagnosis [1], electronic system [2], geotechnical [3], biomedical engineering [4], etc., in which various TFR
methods have been applied to extract meaningful physical parameters or patterns from the original signals. The main work
of getting precise parameters or patterns is obtaining the precise instantaneous frequency (IF) whose concept was put
forward by Carson and Fry first [5] and improved by Van der Pol [6], Boashash provided a comprehensive overview for the
various IF estimation methods [7,8].
1.1. Brief introduction of TFR methods

To get the precise IF, the TFR methods′ energy concentrating ability at and around the IF must be taken into
consideration. During the last half century since the coming out of Cooley and Tukey′s fast Fourier transform [9], the TFR
methods have entered a rapid development period especially in conducting the nonlinearity, no-stationary signals. Recalling
the development trajectory of TFR methods, there are some approaches that have aroused considerable interest among
researchers. Those approaches, namely, the Short Time Fourier Transform (STFT) and the Wavelet Transform (WT) are
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widely used for TFR. However, as restricted by the Heisenberg uncertainty principle that the time resolution Δt and the
frequency resolution Δf satisfy the inequality ΔtΔf4¼1/4π, the STFT could not obtain a high resolution in time and
frequency simultaneously as the trade-off between them is an inevitable problem. In addition, the fixed window width of
STFT makes it impossible to meet the requirement that we need a high time resolution in high frequency band and a high
frequency resolution in low frequency band in many cases. This shortage leads to the development of WT. As WT is thrived
from STFT, it cannot achieve a high-precision estimation for time varying IFs as well.

Among the TFR methods, the Empirical Mode Decomposition (EMD) that works in temporal space directly instead of
corresponding frequency space [10] is a newway for TFR, so as to the atomic decompositions (AD) [11] that also decomposes
the original signal into atomic models and can estimate and match the local structure of signal quite well. Unfortunately, due
to EMD′s adaptive and empirical nature as well as its sensitivity to the changing of parameters, for instance the stopping
criterion, choice of interpolation, and also to local signal variations caused by added noise [12], signals that share similar
statistics often emerge different decompositions both in terms of their properties and their number by EMD. What is more,
the model mixing phenomenon [13], the fast algorithm, the construction of atoms′ module base etc. are still unsolved
problems for atomic decomposition method.

Meanwhile, the WVD whose kernel is equal to 1 is a very popular TFR method that is a kind of bilinear transformation
and can achieve an excellent energy concentration for noise-free signals. However, when nonlinear frequency or
intermittent signal components are contained in the analytical signal, cross-term will occur to contaminate the original
signal and lead to misunderstanding. Attracted by WVD′s excellent performance in TFR, considerable attention has been
paid to the suppression of cross-term in the last three decades, such as the pseudo-WVD [14,15], beam-forming [16], EMD-
based [17] etc.. However, the pseudo-WVD which adds a window to the analysis signal makes the WVD degenerate into
“Window”method and the EMD-based method makes the WVD degenerate into “decomposition”method which introduces
more error sources. In general, these methods for cross-term suppression in some way have suppressed the good
performance of WVD when suppress the cross-term at the same time.
1.2. Chirplet transform

The Chirplet transform is the generalization form of fast Fourier Transform, short-time Fourier transform, and wavelet
transform [18]. As having the most flexible time frequency window, it has been successfully used in practices. For instance,
Guo-Sheng and Feng-Feng used the Chirplet transform for harmonics detection [18], Millioz and Davies applied it to FMCW
radar signals [19], Kerber et al. used Chirplet Transform for attenuation analysis of lamb waves [20] etc.

The Chirplet transform is an expansion of an arbitrary function onto a basis of multi-scale chirps [21]. For a frequency-
modulated signal xðtÞAL2ðRÞ; its CT at τ is defined as

CTðτ;ω;α;sÞ ¼
Z þ1

�1
zðtÞe�jðα=2Þðt�τÞ2ωsðt�τÞe�jωtdt ð1Þ

where z(t) is the analytical signal of x(t), coming from the Hilbert transform H, i.e., zðtÞ ¼ xðtÞþ jH½xðtÞ�, and the definition of
Hilbert transform can be rewritten as follow

xhðtÞ ¼ xðtÞ � hðtÞ ¼
Z þ1

�1
xðτÞhðt�τÞdτ¼ 1

π

Z þ1

�1

xðτÞ
t�τ

dτ ð2Þ

Eq. (2) showed that the signal after Hilbert transform xh(t) is equal to the output signal from a filter with transfer function
H(f) which is the Fourier transform of h(t). H(f) can be defined as

Hðf Þ ¼�jsgnðf Þ ¼
�j if f Z0
j if f r0

(
ð3Þ

This Hilbert transform exists for all functions of class Lp (see, for example, Titchmarsh 1948). With this definition, the
analytical signal, z(t), can be rewritten as

zðtÞ ¼ xðtÞþ jH½xðtÞ� ¼ aðtÞejθðtÞ ð4Þ

in which

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2þH½xðtÞ�2

q
θðtÞ ¼ arctan

H½xðtÞ�
xðtÞ

� �

In Eq. (1), τ and α are the local time and frequency respectively, and ωs(t) is a symmetric, nonnegative, and normalized
real window which is often taken as the Gaussian window defined as

ωsðtÞ ¼
1ffiffiffiffiffiffi
2π

p
s
e�ð1=2Þðt=sÞ2 ð5Þ
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The Chirplet transform defined by (1) can be interpreted as the STFT of the analytical signal multiplied by a complex
window function, from which the Chirplet transform can be rewritten as [22]

CTðτ;ω; α; sÞ ¼
Z þ1

�1
zðtÞϕRðt; τ; αÞϕSðt; τ; αÞωsðt�τÞe�jωtdt ð6Þ

where

ϕRðt; αÞ ¼ expð�jαt2=2Þ
ϕSðt; τÞ ¼ expðjατtÞ

(
ð7Þ

Obviously, the ϕRðt; αÞ is a frequency rotating operator which rotates the analytical signal z(t) by an angle of arctanð�αÞ in
the time–frequency plane and the ϕSðt; τÞ is the frequency shift operator that relocates the frequency component at ω to
ωþατ. What is more, from (7), the Chirplet transform is a kind of parameterized time–frequency transform.

In order to get the accurate time–frequency representation for nonlinear, non-stationary signal, the TFR methods
mentioned above cannot meet the requirement clearly. Conventionally, the parameterized time–frequency transform is
used to analyze the linear-frequency-modulated (LFM) signals [23] or nonlinear-frequency-modulated (NLFM) signal [24],
while to the LFMs and NLFM mixed signals, the previous methods show the lack of efficiency and accuracy. Faced with these
problems, the authors of this paper take advantage of the WVD′s excellent resolution in time and frequency, and a
parameterized time–frequency transform that can also be called polynomial or Spline Chirplet transform has been
developed to suppress the cross-term. This paper′s layout is as follows. Section 2 is an introduction of the novel method and
some comparative study has been discussed. Section 3 shows the algorithms of time–frequency image contour recognition
and parameter identification of frequency-rotating and frequency-shift operators. In Section 4, the good performance of the
novel method is demonstrated by a numerical experiment test and a set of vibration signal came from a rotor test rig, the
conclusions are seen in Section 5.

2. The novel method

2.1. WVD

WVD is a typical representative of Cohen′s class of Bilinear TFRs with kernel ϕðt;ωÞ ¼ 1 that has been wildly used. It can
be defined as

WVDðt;ωÞ ¼
Z þ1

�1
x tþ τ

2

� �
� x t�τ

2

� �
e�jωtdτ ð8Þ

In Eq. (8),when x(t) is a mono-frequency signal, the result will be perfect, while when the analysis signal is the sum
of two or more signal components, i.e. x(t)þy(t), then we have

WVDxþyðt;ωÞ ¼WVDxðt;ωÞþ2Re½WVDx;yðt;ωÞ�þWVDyðt;ωÞ ð9Þ
Eq. (9) shows the cross-term 2Re½WVDx;yðt;ωÞ� will occur when the analysis signal is not a mono-frequency signal. While

for real system, the signal is usually a mixture of many signal components in which the cross-term will come up to reduce
the time–frequency resolution or produce false signals that make it difficult to extract the useful information fromWVD and
cross-term suppression is of a great need.

2.2. Chirplet WVD

The Chirplet transform has many good characteristics, however, it only suit for liner frequency modulate signal. While
when combine the Chirplet transform and WVD, the drawbacks of the two methods can be suppressed and the advantages
can be highlighted.

The best way to suppress the cross-term in WVD is transforming the non-linear, non-stationary analytical signal into
some mono-linear-frequency signals. This paper applies some frequency rotating and frequency shift operators to realize the
transformation process whose schematic diagram is showed in Fig. 1. The signal in Fig. 1(a) is the original signal that mixed
with a non-linear chirp signal and an intermittent chirp signal as marked by real IF1 and real IF2. The dotted lines in Fig. 1(b)
are processed signal IF by the frequency-rotating operator of IF1, and then the IF1 was transformed into a mono-frequency
signal. To separate those signals, a band-pass filter was used for this situation and the result was shown in Fig. 1(c) and (d)
was the reconstructed signal for IF1 by frequency shift operator and IF2 can be accurately estimated through the same
process as IF1. From the process shown above, the definition of the process can also be written as

CWVDðt;ωÞ ¼ ∑
N

i ¼ 1

Z þ1

�1
zi tþ υ

2

� �
� zi t�υ

2

� �
ϕS
i ðt; τ; αÞe�jωυdυ ð10Þ

With ziðtÞ ¼ zðtÞϕR
i ðt; τ; αÞψðt;ωiÞ; ϕR

i ðt; τ; αÞ and ϕS
i ðt; τ; αÞ are the frequency rotating operator and frequency shift operator,

and ψðt;ω0Þ is a band-pass filter with pass-band frequency of ω0.



Fig. 1. The novel method′s processing procedure schismatic. (a) IFs of the original signal, (b) IFs after frequency rotating process, (c) the band-pass filter′s
output and (d) IFs after frequency shift process.
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For an illustrative purpose of the process, a LFM signal was taken as an example, and the signal can be rewritten as
xðtÞ ¼ sin ½2πðf 0þð1=2ÞαtÞt�. Obviously, the IF of the signal is ðf 0þαtÞ, where α is the slope of the analysis signal. In this case,
the ϕR

i ðt; τ; αÞ rotates the analytical signal z(t) by an angle of arctan (�α) to make the signal be a mono-frequency signal that
is free for cross-term in WVD, and then ϕS

i ðt; τ; αÞ relocates the rotated signal by applying a frequency shift of ατ to
reconstruct the signal after WVD is applied. As there is only one signal in the analysis signal, the band-pass filter is not
needed in this case. From above, we can see that after frequency rotating and frequency shift, the cross-term suppressed
WVD can be obtained.

2.3. Polynomial Chirplet WVD

It is obvious that the frequency rotating and frequency shift operators′ parameters depend on the IF estimation of the
signal. When the order of polynomial is not very high, the polynomial is a better choice to provide smooth and efficient
approximation to continuous function. Here we use some polynomials which can approximation the IFs with low order and
the estimation algorithm will be shown in Section 3. The polynomial for one of the signal component can be rewritten as

f iðτÞ ¼ α0þ ∑
N

k ¼ 1
αkτ

k t0rτrt1 ð11Þ

where fi(t) is the IF estimation of the ith signal component and t0, t1 are the time boundary of the polynomial.
Obviously, the polynomial function will have the ability to approach the IF′s trajectory precisely when the polynomial

kernel parameters ðα0; α1; α2;…; αNÞ are estimated properly. To transform the original signal into some mono-continuous-
frequency and rehabilitate to original signal, the frequency rotating and frequency shift operator can be rewritten as follows

ϕR
i ðt; τ; αÞ ¼ exp �j ∑

n

k ¼ 0

1
kþ1

αkτ
kþ1þ jλt

 !
ð12Þ

ϕS
i ðt; τ; αÞ ¼ exp �2 j ∑

nþ1

k ¼ 1
αk�1τ

k�1t�jλt

 ! !
ð13Þ

In Eqs. (12) and (13), the parameter λ is an additional frequency shift that used to match the band-pass filter′s pass-band
frequency. As the band-pass filter′s pass-band is fixed that reduces the computation and improves computational efficiency
greatly, the λ is needed to match the constant band-pass filter that also is a constant. To illustrate the frequency rotating and



Fig. 2. Contour map for the output. (a) Only frequency rotating operator is applied and (b) frequency rotating and shift operators are applied.
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shift clearly and intuitively, a simple signal with one signal component is used to be a demonstration that shown as follows

sðtÞ ¼ sin 2π
1
2
t4�4t3þ12t2þ10t

� �� �
tA 0;5½ � ð14Þ

The signal is sampled with a sampling frequency of 200 Hz, and the IF trajectory of this signal is f(t)¼2t3�12t2þ24tþ10 (Hz).
Then the frequency rotating and frequency shift operator can be given as follows

ϕR
i ðt; τ;αÞ ¼ exp �j

1
2
τ4�4τ3þ12τ2þ10τ�50t

� �� �
τA 0;5½ � ð15Þ

ϕS
i ðt; τ; αÞ ¼ expð�2jðð2τ3�12τ2þ24τ�10Þt�50tÞÞ τA ½0;5� ð16Þ

The frequency rotated and shifted WVD is shown in Fig. 2
In Fig. 2(a), the signal defined by Eq. (14) was transformed by the frequency-rotating operator defined by Eq. (15), and the

result is a mono-frequency signal. Fig. 2(b) is the outcome of the transformation defined by Eq. (16) that showed the cross-
term of WVD has suppressed totally and the exhibited good energy concentration.

2.4. Spline Chirplet WVD

The polynomial Chirplet transform will go into shadow when the order of the polynomial increase as the Gram matrix
would be ill-conditioned in solving the least square approximation. What is more, as the increasing of the polynomial order,
the computation will increase a lot and Runge phenomenon will occur as showed in Fig. 3(b). To deal with this situation, the
spline-kernelled Chirplet transform is utilized as the spline is effective in approximating high dynamic trajectory on a larger
interval as showed in Fig. 3(c).

Compared with the polynomial Chirplet WVD (PCWVD), the spline Chirplet WVD (SCWVD) has a little change in the
definition of the frequency rotating and frequency shift operator that can be defined as follows

ϕR
i ðt;Q Þ ¼ exp �j∑n

k ¼ 1
qhk
k
ðt�thÞkþ jλtþηh

 !
tA th; thþ1
� � ð17Þ

ϕS
i ðt; τ;Q Þ ¼ exp �2 j∑n

k ¼ 1q
h
kðτ�thÞk�1t�jλt

� �� �
tA ½th; thþ1� ð18Þ

where ϕR
i ðt;Q Þ and ϕS

i ðt; τ;Q Þ are frequency rotating and frequency shift operator for time interval tA ½th; thþ1� for signal
component i respectively. Q ðh; kÞ ¼ qhk denotes the local polynomial coefficient matrix of the spline; λ is an added frequency
shift as PCWVD showed above. ηh is a boundary constraint for the spline interpolation that satisfies the equation showed
below

ηh�ηhþ1 ¼ ∑
n

k ¼ 1

qhþ1
k

k
ðth�thþ1Þk ð19Þ

where η1¼0.
From the definition of the CWVD showed above, the CWVD is a kind of parameterized time–frequency transform that

operate the analytical signal in the time–frequency plane. Compared to other time–frequency operation methods, namely,
the generalized synchrosqueezing transform (GST) in [25] that the original signal is first mapped in time domain to an
analytical signal with a constant frequency to eliminate the time dimensional blur of the TFR then the mapped signal is
produced by CWT, so as to the Polynomial Chirplet Transform (PCT) in [22] that also used the frequency rotating and shift
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Fig. 3. IFs detection and curve fitting with spline. (a) data classification, (b) curve fitting with a 14 order polynomial and (c) curve fitting with spline.
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operator first to transform the original signal and then CWT is applied to the transform signal, the CWVD has its own
concerns and strengths. First, Both the GST and PCT transform the operated signal with CWT that limited the frequency
resolution as the existence of Heisenberg uncertainty principle. Second, the CWVD is good at improving the energy
concentration of the interesting IFs while the GST may have superiority in the mechanical fault diagnosis. Third, the PCT is a
time consuming algorithm as the needed of iterative optimization process.

3. Parameter estimation method

The parameters estimation for the polynomial or spline kernel functions that approximate the IFs whose significance is
of self-evident and directly determines the efficiency of the novel method′s performance. The proposed method in this
paper used least squares method to appropriate the IFs of the original signal when the polynomial function′s order is less
than 15 and the process of the approaching can be divided into two steps that are IFs estimation and polynomial
approaching.

IFs estimation algorithm aims at using some polynomial functions to approach the trajectory of the instantaneous
frequency of the original signal. In other words, we use some polynomial functions to approach the IFs trajectory that ignore
the amplitude of the peaks, consequently, the first job of IFs estimation is peaks detection. In this paper, the STFT is utilized
to achieve the roughly IFs before performing the peak detection algorithm as the STFT is simple and perspicuity. After the
rough IFs are obtained by STFT, peaks detection will be performed by searching for downward zero-crossings in the
smoothed first derivative of each time slice that shown detailed in [26]. In order to prevent interference signal or noise
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producing false peaks, an amplitude threshold was used to discriminate the false and true signal that shown as follow

Ath ¼ 0:1�Amax ð20Þ
where Amax is the maximum amplitude of all the IFs peaks and Ath is the threshold of the frequency amplitude.

3.1. Data classification

After the peak detection work is finished and the peaks′ positions are saved in a matrix, the next step is using some
polynomial curves or spline functions to approach all the peaks′ trajectory. However, when the signal has many
components, only one polynomial curve cannot approach the IFs very well and the Runge phenomenon will arise. Likewise,
the data partitioning is needed to classify all the peaks in some groups. This paper uses the contour extraction technique
that usually is applied in reverse engineering that can find the trajectory of the IFs intelligently and classify the peaks in
some groups, then with each group a polynomial function or spline function can be obtained using least squares method.
In reverse engineering, many data partitioning methods can be available such as fuzzy clustering method, Support Vector
Machine (SVM) etc. Taking into account the computational efficiency, the classification process for this paper is shown as
follow:
(1)
 Search the peak matrix and search peaks along the time axis and the length of searching step is 20 points, every 20
sampling points choose one points which is a resampling process, then save the chosen peaks in a new matrix.
(2)
 Search the new matrix and find the first peak along the time axis, then classify the found peak into the first group, and
set the found peak as the local peak.
(3)
 Search the peaks forward the local peak as searching forward can guarantee a one-to-one mapping of the time and
frequency, if the found peaks are under the threshold that is a preset curve jerk under the assumption that the curve is
smooth to ensure the found point belonging to the same group.
(4)
 Step 2 has found many peaks may belong to the same group, and step 3 will determine which point is the best point. In
the algorithm, the last two peaks′ local slope are calculated and saved, then search for the most likely peaks that
coincides with the slope changing trend in the found peaks by step 2, then classify the found peak into the same group
and set the found peak as the local point.
(5)
 Return to step 3 until any peaks belong to the same group cannot be found.

(6)
 Return to step 2 and begin to find peaks belonging to the next group, then return to step 1 until all the peaks have been

classified and go to step 5.
The numerical experiment result showed that even though the noise suppression method described by Eq. (12), there are
still many noise components after peaks fitting by polynomial function or spline function. To resolve this problem, this
paper utilizes a simper and efficient way that removes the short time signals as short time signals usually generated by the
noise signals. This measure we take has reduced the signal components greatly that demonstrated by the simulation result.
What is more, the experiment result also demonstrated that the method of removal short time signal is efficient for
Gaussian noise. However, the method also showed powerless for many other noises that should be improved when applied
to other field.

3.2. Curve fitting

The data classification method showed above has classified the data into some classes, and then the next step is using
some polynomial or spline function to approach the frequency trajectory. Before the curve fitting is conducted, there is a
trade-off between the computational efficiency and goodness of the fit. Obviously, in many cases, the polynomial function
with least square method is more computational efficiency than the spline interpolation. The authors in this paper have set
a standard to decide which method should be chosen. The standard can be defined as follow:

δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1ðf ðxiÞ�yiÞ2
N�1

s
oξ0 ð21Þ

where ξ0 is the standard deviation threshold for polynomial for fitting and N is the total points in the group. If the standard
deviation exceeds the threshold, the spline approximation method is used.

4. Validations

4.1. Numerical experiment test

In order to verify the advantage of the proposed CWVD, this section provides several tests with some numerical signals.
For the purpose of comparison, some conventional TFR methods are considered, for instance the STFT, WVD and pseudo-
WVD.
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To verify the performance of the polynomial CWVD, the numerical signal used in this test is given as follow

s1ðtÞ ¼ sin 2π �4
3
t31þ10t21þ50t1

� �� �
þ sin ð80πt2Þþ sin ð80πt3Þ

0rt1r5;0rt2r2;3rt3r5 ð22Þ

Obviously, the signal s1(t) consists of three components and two of them are mono-frequency signal with the same frequency
but has been disconnected in time domain. The signal is sampled with a sampling frequency of 200 Hz, and the trajectory of the
signal is shown in Fig. 4(e), In Fig. 4(d), the IFs of the signal are extracted by the STFT with a window width of 256, and the
instantaneous frequency showed that the STFT method has a very low resolution both in frequency and time domain. In Fig. 4(e),
the peaks detection algorithm is applied and also showed the good performance of the algorithm. After the peaks detection
process, three curves are fitted with the least square method and the results are shown in Table 1. The parameter estimation
result in Table 1 also shows the poor estimation in time domain that affected by the STFT′s bad time resolution, especially when
the signal is short in time domain. Fig. 4(f) shows the good energy concentration of the proposed method and the novel method
has suppressed the cross-term totally, while in Fig. 4(f) the edge blur phenomenon still exists in the novel method that occurs in
all existing method including the WT, STFT, EMD etc. and there is not a perfect solution for this problem at present.
Fig. 4. Test result. (a) By STFT with window width512, (b) WVD, (c) PWVD with window width 512, (d) data classification result, (e) curve fitting with
polynomial function and (f) CWVD.



Table 1
The parameter estimating result.

Curve
numbers

α0 (estimated/
real)

α1 (estimated/
real)

α2 (estimated/
real)

α3 (estimated/
real)

Start time (estimated/
real)

End time (estimated/
real)

1 40.2/40 0/0 0/0 0/0 0/0 2.25/2
2 51.0/50 19.2/20 �3.8/�4 0/0 0/0 5/5
3 0/0 0.49/0 �2.1/0 43/40 3.75/3 5/5
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To verify the performance of the spline CWVD, a more complicated numerical signal was generated that is given as
follow

s2ðtÞ ¼ sin ð�200 cos ð0:4πtÞþ100πtÞþ sin ð20πtþ16πt2Þ 0rtr5 ð23Þ
In this case, the signal s2(t) consists of two components. One is a chirping component with the chirp rate of 16 Hz/s and

the other with IF law of sin ð0:4πtÞþ50. What is more, a cross of the two components in the time–frequency plane added a
challenge to the proposed method. The sampling frequency is 200 Hz and the window length is 512, respectively. The TFR
obtained by the STFT, WVD, PWVD, CWVD are shown in Fig. 5.

Thought the comparison of the STFT, WVD, PWVD, CWVD showed in Fig. 5, the energy of STFT′s TFR is distributed
horizontally all over the time–frequency plane as STFT approximates the IF with a horizontal line. What′ worse, compared
Fig. 5(a) with Fig. 4(a), when the chirp rate is high, a bad energy concentration will be got. In Fig. 5(b) and Fig. 4(b), the
interference component is serious especially in Fig. 5(b), that has led to misunderstandings. The PWVD′s TFR in Fig. 5(c) and
Fig. 4(c) shows the PWVD has been interfered by the cross-term. Compared Fig. 5(f) and Fig. 4(f) to the others, the good
energy concentration ability of the CWVD is self-evident and the CWVD is free for cross-term, respectively.

4.2. Application to echolocation signal

The definition of the CWVD shows that it is essentially kinds of Chirplet transforms which allows for a unified framework
for comparison of various time–frequency methods [23]. The numerical test shows that the CWVD is good for IFs, no matter
linear or non-linear, estimation with high energy concentration. In this part, the CWVD is applied to the echolocation signal.
The digitized 2.5 μs echolocation pulse emitted by the Large Brown Bat, Eptesicus Fuscus. There are 400 samples; the
sampling period was 7 μs (the data is available in [27]). The waveform of the signal is showed in Fig. 6(a). As showed by [28],
there are three NLFM components in the echolocation signal. The TFDs obtained by the STFT (with window size 256), PWVD
(with window size 256) and the proposed CWVD are shown in Fig. 6(b)–(d). Fig. 6 shows that the STFT has a poor energy
concentration along the Ifs that makes it be not able to achieve the accurate IF estimation for all components, the PWVD has
better IFs estimation accurate while the inevitable cross-term between the three components will lead to misinterpretation
of the signal and the CWVD has obtain a higher energy concentration along the IFs trajectory without any cross-terms.

4.3. Error analysis and enhance thinking.

The vital idea of the proposed method is using some polynomials or splines to approach the IFs trajectory and rotate and
shift the original signal according to the approached polynomial or spline to transform the non-linear, non-stationary
signals into some mono-frequency signals that cross-term will be suppressed in WVD. Generally, the polynomials Chirplet
transform′s resolution mainly depends on the accuracy of the parameter estimation, therefore for this case, mainly depends
on the accuracy of parameters for polynomial. To evaluate the level of error, some criterions are used, and the criterions are
defined as follows

ξ1 ¼mean
Z jIFestimatedðtInÞ�IFrealðtInÞj

jðIFrealðtInÞÞj
dt

� �
ð24Þ

ξ2 ¼�∬ log jWVDestimatedðt;ωÞj3dtdω ð25Þ
Eq. (24) used the estimated IF as a criterion, in Eq. (24) the estimated IFs and real IFs have the same time domain that means
that it only focus on the approaching error and ignores the border distortions phenomenon. Eq. (25) used the concentration
of the TFD as a criterion and the Renyi entropy is used to evaluate the concentration. To simplify and make the analysis
result indicate the effect factor clearly, here just takes the non-linearity component in Eq. (23) into consideration. The three
criterion′s result for the proposed method is shown in Table 2.

Table 2 shows that the error of the IF estimated is small while the energy concentration of the WVD is not good that gives
us a method to improve the performance of the proposed method. In other words, attention should be paid on the
improvement of the energy concentration but not the parameter estimation in the proposed method. What is more, the
parameter estimation can be improved by using the latest WVD as peak detection′s data source to substitute the STFT and
then can be enhanced with an iterative process to refining the parameters. When it comes to energy concentration, majority



Fig. 5. Test result. (a) STFT with window width 512, (b) WVD, (c) PWVD with window width 512, (d) data classification result, (e) curve fitting with spline
and f) CWVD.
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error comes from the border distortions that can be improved by signal extending in some way. To demonstrate the
effectiveness of the extending method for error reduction, this paper extended the signal through the parameter obtain
above to the tested signal and here also just focused on the non-linearity component. Fig. 7 shown the novel method′s WVD
with a contour map after signal extending was applied and Table 3 showed the estimation error from which the
effectiveness of the signal extension in energy concentration can be shown obviously.

5. Conclusion

With the frequency rotating and shift operator, the proposed method has transformed the non-linearity, multi-
component, non-station signal into some mono-frequency signal, then the WVD was applied to the transformed signal and



Fig. 6. Frequency estimation with CWVD. (a) waveform, (b) STFT, (c) PWVD and (d) CWVD.

Table 2
Estimation error of the proposed method.

Criterion ξ1 ξ2

Value 2.17% 4.6e5
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the cross-term usually exists in WVD has suppressed totally. Compared to the conventional TFR methods, for instance the
STFT and WT, the CWVD has taken advantage the WVD′s high resolution characteristic and avoided the shortage caused by
the cross term of WVD. What is more, the CWVD has broken through the limit of Heisenberg ‘uncertainty principle.
However, as the CWVD is a kinds of TFR methods based on Chirplet transform, the large computation makes is difficult to
achieve real-time operation which restricts it application in many field such as motor control, real-time measurement etc.

In the proposed method, the data portioning technical will decide the adaptability of the new method and the accuracy
of the parameter estimation. Nevertheless, there is no doubt that there are many other techniques may have a better
performance in data classification and peaks detection, furthermore, various interpolation methods such as spline
interpolation, cubic interpolation etc. or curve fitting methods such as Gaussian approaching, Fourier approaching etc.
can be developed to expand the applicability of the proposed method in some certain cases. However, the application
experience shows the strong background noise will affect the validity of the method greatly, so the authors of this paper
think that more consideration should be paid to the noise separation and distinction, as noise will easily mislead the
polynomials approaching process that will restrict the novel method′s efficiency. At last, through the analysis of the novel
method′s error, the impact of the border distortions showed great power in introducing error that has led us to pay more
attention to the solution of border distortions.



Fig. 7. The novel method′s WVD after signal extending.

Table 3
Estimation error of the proposed method after signal extension.

Criterion ξ1 ξ2

Value 2.17% 4.63e3
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