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Abstract 
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theory in this paper by allowing poles at the origin and infinity. Two new relationships between lossless 
positive real and lossless negative imaginary systems are consequently established. According to these 
new established relationships, a generalized continuous-time lossless negative imaginary lemma and a 
different version of discrete-time lossless negative imaginary lemma are developed in terms of a minimal 
state-space realization. Several examples are provided to illustrate the main results. 
© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
� This work is partly supported by a General Research Fund project of HK RGC ( 15206717 ), and also the strategic 
focus area fund of Research Institute of Sustainable Urban Development, the Hong Kong Polytechnic University. An 
early preliminary version of this work was presented in the 2018 IEEE Conference on Decision and Control. 

∗ Corresponding author. 
E-mail addresses: liumeimei@tju.edu.cn (M. Liu), xingjian.jing@polyu.edu.hk (X. Jing), ggchen@ucdavis.edu 

(G. Chen). 

https://doi.org/10.1016/j.jfranklin.2019.11.071 
0016-0032/© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfranklin.2019.11.071&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jfranklin.2019.11.071
http://www.elsevier.com/locate/jfranklin
https://doi.org/10.13039/501100002920
mailto:liumeimei@tju.edu.cn
mailto:xingjian.jing@polyu.edu.hk
mailto:ggchen@ucdavis.edu
https://doi.org/10.1016/j.jfranklin.2019.11.071


M. Liu, X. Jing and G. Chen / Journal of the Franklin Institute 357 (2020) 2330–2353 2331 

1

 

e  

r  

p  

r  

r  

b  

[  

t  

r  

[  

n  

o  

s
 

a  

a  

k  

s  

F  

t  

[  

[  

o  

e  

o  

p  

p  

p  

c  

w
 

i  

c  

n  

s  

p  

a  

d  

n  

t  

a  

l
 

s  
. Introduction 

Positive realness, as known as passivity, is a notion used to describe a special class of
nergy-related systems with phase limited within [ −π

2 , + 

π
2 ] [1–3] . The study of positive

eal control systems has obtained enormous successes both in theory and in practice in the
ast three decades [1,4] . However, one major limitation of positive real systems is that their
elative degree must be zero or one [1] . The negative imaginary theory, which allows the
elative degree of transfer matrix to be two and requires its phase in the interval [ −π, 0] , has
een developed as a useful complement to the passivity theory and the positive real theory
5] . Since the notion of negative imaginariness was first established in [6] , many control
heorists carried out an extensive study on negative imaginary systems in the past decade,
anging from robust stability analysis [7,8] , generalization of negative imaginary concepts
9,10] , state-space conditions [4] , negative imaginary synthesis problem [3,11,12] , networked
egative imaginary systems [13] , strictly negative imaginary systems [14] and the application
n nanopositioning system [15] . More research results and applications on negative imaginary
ystems can be found in [16–21] . 

The concept of losslessness is also related to that of passivity [22] . An m-port network,
ssumed to be storing no energy at time t , is called lossless if it is passive and if, when a finite
mount of energy is put into the network, all the energy can be extracted again [22] . It is well-
nown that systems which dissipate energy often result in positive real properties [1,22] . The
o-called lossless positive real systems are those systems whose positive real transfer matrix
 ( s ) satisfies the condition: F ( jω) + F 

∗( jω) = 0 for all real ω. That is, F ( jω) = −F 

∗( jω) ,

he negative of a lossless positive real transfer matrix is its own complex conjugate transpose
23] . More physical descriptions about the lossless positive real systems can be found in
22–24] . Since the concept of lossless positive real systems first appeared in [23] , the study
f lossless positive real systems attracted much attention among control theorists [24–31] . For
xample, a matrix fraction description of lossless positive real property was gave in terms
f a Hankel matrix [24] . The invariance of characteristic values and L ∞ 

norm under lossless
ositive real transformations were studied in [27,29] . The authors in [28] developed a lossless
ositive real lemma for descriptor systems. The continuous-time and discrete-time lossless
ositive real lemma were, respectively, developed in [22] and [30,31] in terms of state-space
ondition. Also, it is noted that lossless positive real transfer functions form a convex set,
hich admitted an important role in the proof of Kharitonov’s Theorem (see [26] ). 
Lossless negative imaginary system is emerged as a special and important class of negative

maginary system whose transfer function matrix G ( s ) satisfies lossless negative imaginary
ondition: j [ G ( j ω) − G 

∗( jω)] = 0 for all ω > 0 with j ω not a pole of G ( s ). Such lossless
egative imaginary properties have numerous applications in control of undamped flexible
tructures and lossless electrical circuits, see [22,23,32] . The definition of continuous-time
roper lossless negative imaginary systems was first proposed in [32] by restricting no poles
t the origin and infinity, and a minimal state-space characterization of such systems was also
eveloped in [32] . Then, an algebraic approach to the realization of continuous-time lossless
egative imaginary systems was studied in [33] . Subsequently, the work in [9] extended
he definition of continuous-time lossless negative imaginary systems to non-proper case by
llowing poles at the origin and infinity, and [34] first proposed the definition of discrete-time
ossless negative imaginary systems. 

However, article [34] did not systematic study the properties of the frequency-domain and
tate-space conditions on such lossless negative imaginary systems. Motivated by this and
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the numerous applications on such systems, we will further study some useful and impor-
tant properties of lossless negative imaginary transfer matrices for both continuous-time and 

discrete-time systems in this paper. Via partial-fraction expansion, our results show that any 

continuous-time lossless negative imaginary transfer matrices can be decomposed as a sum 

of several lossless negative imaginary transfer matrices. Based on this minor decomposition 

property, two new relationships between lossless positive real and lossless negative imaginary 

transfer matrices are established for proper and non-proper cases. Then, a generalized lossless 
negative imaginary lemma in terms of minimal state-space condition is derived by allow- 
ing poles at the origin. Also, we extend all the results in continuous-time lossless negative
imaginary systems to discrete-time systems. Moreover, a different version of the discrete-time 
lossless negative imaginary lemma is developed. The extended results of the paper show a nice
parallel to the better understood results on non-proper lossless positive real systems [22,23] . 

The rest of the paper is organized as follows: Section 2 presents the definitions of lossless
positive real and lossless negative imaginary transfer matrices for both continuous-time and 

discrete-time systems, and then we establish necessary and sufficient conditions in frequency 

domain for continuous-time lossless negative imaginary systems. Section 3 presents the mi- 
nor decomposition theory of lossless negative imaginary transfer matrices in terms of the 
partial-fraction expansion. Section 4 establishes the new relationships between lossless pos- 
itive real and lossless negative imaginary transfer matrices. A generalized lossless negative 
imaginary lemma in terms of state-space condition for continuous-time systems is developed in 

Section 5 , and a different discrete-time lossless negative imaginary lemma in terms of state-
space condition is also introduced in this section. Section 6 presents two examples to illustrate
the lossless negative imaginary lemmas. Section 7 concludes the paper. 

Notation: R 

m×n and R 

m×n denote the sets of m ×n real matrices and real-rational proper
transfer function matrices, respectively. Re[.] denotes the real part of complex numbers. A 

T ,
Ā and A 

∗ denote the transpose, the complex conjugate and the complex conjugate transpose 
of a complex matrix A , respectively. A > 0 or A ≥0 denotes a symmetric positive definite or
symmetric positive semidefinite matrix. G ( s ) ∼ ( A , B , C , D ) or G ( z ) ∼ ( A , B , C , D ) denotes
that ( A , B , C , D ) is a state-space realization of G ( s ) or G ( z ), where G ( s ) and G ( z ) are the
transfer function matrix of a continuous-time system and a discrete-time system, respectively. 
I denotes any identity matrix with compatible dimensions. 

2. Preliminaries and frequency domain conditions 

In this section, we present the concepts and frequency domain conditions for lossless pos-
itive real, negative imaginary and lossless negative imaginary transfer matrices of continuous- 
time and discrete-time systems, and introduce some useful preliminary results. 

2.1. Continuous-time systems 

This subsection first recalls several important definitions of continuous-time lossless pos- 
itive real, negative imaginary and lossless negative imaginary transfer matrices introduced in 

[9,22] , and then presents the frequency domain conditions of continuous-time lossless nega- 
tive imaginary systems. The definition of continuous-time positive real transfer matrices also 

can be found in [22] 

Definition 1 [22] . A square real-rational transfer function matrix F ( s ) is said to be lossless
positive real if 
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1. F ( s ) is positive real; 
2. F ( jω) + F 

∗( jω) = 0 for all ω > 0 except values of ω where j ω is a pole of G ( s ). 

efinition 2 [9] . A square real-rational transfer function matrix G ( s ) is said to be negative
maginary if 

1. G ( s ) has no poles in Re[ s ] > 0; 
2. j [ G ( j ω) − G 

∗( jω)] ≥ 0 for all ω > 0 except values of ω where j ω is a pole of G ( s ); 
3. if s = 0 is a pole of G ( s ), then it is at most a double pole, lim s → 0 s 2 G ( s ) is positive

semidefinite Hermitian, and lim s→ 0 s m G (s) = 0 for all m ≥3; 
4. if s = jω 0 with ω 0 > 0 is a pole of G ( s ), ω 0 is finite, it is at most a simple pole and

the residue matrix K = lim s→ jω 0 (s − j ω 0 ) j G (s) is positive semidefinite Hermitian; 
5. if s = j∞ is a pole of G ( s ), then it is at most a double pole, lim ω→∞ 

G ( jω) 

( jω) 2 
is negative

semidefinite Hermitian, and lim ω→∞ 

G ( jω) 

( jω) m 
= 0 for all m ≥3. 

efinition 3 [9] . A square real-rational transfer function matrix G ( s ) is said to be lossless
egative imaginary if 

1. G ( s ) is negative imaginary; 
2. j [ G ( j ω) − G 

∗( jω)] = 0 for all ω > 0 except values of ω where j ω is a pole of G ( s ). 

The following theorem, which can be considered as a generalization of Lemma 2 in [32] by
llowing poles at the origin and infinity, provides a necessary and sufficient condition in
requency domain for a system to be non-proper lossless negative imaginary. 

heorem 1. A square real-rational transfer function matrix G ( s ) is lossless negative imaginary
f and only if 

1. all poles of elements of G ( s ) are purely imaginary; 
2. if s = 0 is a pole of G ( s ), it is at most a double pole, lim s → 0 s 2 G ( s ) is positive semidef-

inite Hermitian, and lim s→ 0 s m G (s) = 0 for all m ≥3 ; 
3. if s = jω 0 with ω 0 > 0 is a pole of G ( s ), ω 0 is finite, it is at most a simple pole and

the residue matrix K = lim s→ jω 0 (s − j ω 0 ) j G (s) is positive semidefinite Hermitian; 
4. if s = j∞ is a pole of G ( s ), it is at most a double pole, lim ω→∞ 

G ( jω) 

( jω) 2 
is negative

semidefinite Hermitian, and lim ω→∞ 

G ( jω) 

( jω) m 
= 0 for all m ≥3 ; 

5. G (s) = G 

T (−s) for all s such that s is not a pole of any element of G ( s ) . 

roof. (Necessity) Suppose G ( s ) is lossless negative imaginary. Condition 2 of Definition 3
mplies that j [ G ( j ω) − G 

∗( jω)] = 0 for all ω > 0 except values of ω where j ω is a pole of
 ( s ). Then, we have j [ G ( j ω) − G 

∗( jω)] = 0 for all ω > 0 with j ω not a pole of G ( s ), that is,
j [ G ( j ω) − G 

∗( jω)] = 0 for all ω < 0 with j ω not a pole of G ( s ). According to the continuity
f G ( s ), it follows that j[ G (0) − G 

∗(0)] = 0. Hence, we have j[ G (s) − G 

T (−s)] = 0 for all
 = jω, where j ω is not a pole of G ( s ). Because j[ G (s) − G 

T (−s)] is an analytic function of s ,
t follows from maximum modulus theorem ([ 23 , Theorem A4-3]) that j[ G (s) − G 

T (−s)] = 0
olds for all s such that s is not a pole of G ( s ), and hence G (s) = G 

T (−s) . Condition 5
olds. 
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Suppose s 0 is a pole of G ( s ). It follows from Condition 5 that −s 0 is also a pole of G ( s ).
According to Definition 2 , we know that G ( s ) has no poles in Re[ s ] > 0. If Re[ s 0 ] < 0, then
Re [ −s 0 ] > 0, there exists contradiction. So, the only case is that all poles of elements of G ( s )
lie on the imaginary axis. Condition 1 holds. Moreover, conditions 3–5 of Definition 2 imply
that conditions 2–4 hold. 

(Sufficiency) Suppose conditions 1–5 hold. Conditions 1–4 imply Condition 1 and con- 
ditions 3–5 of Definition 2 hold. Then, Condition 5 implies j [ G ( j ω) − G 

∗( jω)] = 0 for all
ω > 0 such that j ω is not a pole of any element of G ( s ). It follows from Definitions 2 and
3 that G ( s ) is lossless negative imaginary. �

The following lemma extends the lossless positive real lemma in [22, page 229] by relaxing
the observability requirement of ( A , C ) and the non-singularity requirement of P . Lemma 1 is
useful in the proof of lossless negative imaginary lemma in Section 5 . The detailed proof of
Lemma 1 can be found in [35] . 

Lemma 1 [35 , 36] . Let ( A , B , C , D ) be a state-space realization of a square real-rational
proper transfer function matrix F (s) ∈ R 

m×m , where ( A , B ) is completely controllable, ( A , C )
is not necessarily completely observable, A ∈ R 

n×n , B ∈ R 

n×m , C ∈ R 

m×n , D ∈ R 

m×m , and
m ≤n. Then, F ( s ) is lossless positive real if and only if there exists a real matrix P = P 

T ≥ 0,

P ∈ R 

n×n , such that 

PA + A 

T P = 0, 

P B − C 

T = 0, (1) 

D + D 

T = 0. 

The following lemma characterizes the properties of sum of any non-proper lossless neg- 
ative imaginary transfer matrices. 

Lemma 2. 

1. If G i ( s ), i = 1 , 2, . . . , n, is lossless negative imaginary, then 

∑ n 
i=1 G i (s) is lossless neg-

ative imaginary. 
2. If G i ( s ), i = 1 , 2, . . . , n, is lossless negative imaginary, and G j ( s ), j = 1 , 2, . . . , m, is

negative imaginary, then 

∑ n 
i=1 G i (s) + 

∑ m 

j=1 G j (s) is negative imaginary. 

Proof. The proof is straightforward according to the definitions of negative imaginary and 

lossless negative imaginary transfer function matrices. �

2.2. Discrete-time systems 

This subsection introduces the definitions and frequency domain conditions for discrete- 
time lossless positive real and lossless negative imaginary transfer matrices. The definition of 
discrete-time positive real and negative imaginary transfer matrices can be found in [37,38] 

Definition 4 [26,39] . A square real-rational proper transfer function matrix F ( z ) is said to
be lossless positive real if 

1. F ( z ) is positive real; 
2. F (e jθ ) + F 

∗(e jθ ) = 0 for all θ ∈ (0, π ) except values of θ where e j θ is a pole of F ( z ). 
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efinition 5 [34] . A square real-rational proper transfer function matrix G ( z ) is said to be
ossless negative imaginary if 

1. G ( z ) is negative imaginary; 
2. j[ G (e jθ ) − G 

∗(e jθ )] = 0 for all θ ∈ (0, π ) except values of θ where e j θ is a pole of
G ( z ). 

The following lemma provides a necessary and sufficient condition for a system to be
iscrete-time lossless negative imaginary in terms of frequency domain conditions. The detail
roof of Lemma 3 can be found in [34] . 

emma 3 [34] . A square real-rational proper transfer function matrix G ( z ) is lossless neg-
tive imaginary if and only if 

1. all poles of elements of G ( z ) lie on | z| = 1 ; 
2. if z 0 = e jθ0 , θ0 ∈ (0, π ), is a pole of G ( z ), then it is a simple pole and the corresponding

residue matrix ˜ K = lim z→ z 0 (z − z 0 ) jG (z) at any pole z 0 = e jθ0 , θ0 ∈ (0, π ), satisfies that
e − jθ0 ˜ K is positive semidefinite Hermitian; 

3. if z = 1 is a pole of G ( z ), then lim z→ 1 (z − 1) 2 G (z) is positive semidefinite Hermitian,
and lim z→ 1 (z − 1) m G (z)= 0 for all m ≥3 ; 

4. if z = −1 is a pole of G ( z ), then lim z→−1 (z + 1) 2 G (z) is negative semidefinite Hermi-
tian, and lim z→−1 (z + 1) m G (z) = 0 for all m ≥3 ; 

5. G (z) = G 

T (z −1 ) for all z such that z is not a pole of G ( z ) . 

The following lemma is the discrete-time KYP lemma for lossless system derived in [31] ,
hich can be considered as the discrete-time lossless positive real lemma. 

emma 4 [31] . Let ( A , B , C , D ) be a minimal state-space realization of F (z) ∈ R 

m×m ,

here A ∈ R 

n×n , B ∈ R 

n×m , C ∈ R 

m×n , D ∈ R 

m×m , and m ≤n. Then, necessary and sufficient
onditions for F ( z ) to be lossless positive real are that there exists a real matrix P = P 

T > 0,

 ∈ R 

n×n , such that 

A 

T PA − P = 0, 

B 

T PA − C = 0, 

 + D 

T − B 

T P B = 0. 

The following lemma characterizes the sum properties of any discrete-time lossless negative
maginary transfer matrices, which can be considered as the discrete-time counterpart of
emma 2 . The proof is trivial. 

emma 5. 

1. If G i ( z ), i = 1 , 2, . . . , n, is lossless negative imaginary, then 

∑ n 
i=1 G i (z) is lossless neg-

ative imaginary. 
2. If G i ( z ), i = 1 , 2, . . . , n, is lossless negative imaginary, and G j ( z ), j = 1 , 2, . . . , m, is

negative imaginary, then 

∑ n G (z) + 

∑ m G (z) is negative imaginary. 
i=1 i j=1 j 
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3. Partial-fraction expansion of lossless negative imaginary transfer matrices 

In this section, we consider the minor decomposition theory of lossless negative imaginary 

properties in terms of a partial-fraction expansion for both continuous-time and discrete-time 
systems, which provide the core to develop the lossless negative imaginary theory in this
paper. 

3.1. Continuous-time systems 

This subsection studies the partial-fraction expansion of continuous-time lossless negative 
imaginary systems. Suppose that G ( s ) is a square real-rational lossless negative imaginary
transfer matrix. Then, define the following four matrices: 

A 2 = lim 

ω→∞ 

G ( jω) 

( jω) 2 
, A 1 = lim 

ω→∞ 

(G ( jω) − ( jω) 2 A 2 ) 

jω 

, 

(2) 

 2 = lim 

s→ 0 
s 2 G (s) , C 1 = lim 

s→ 0 
s 

(
G (s) − C 2 

s 2 

)
. 

According to Theorem 1 , it follows that A 2 = A 

∗
2 ≤ 0 and C 2 = C 

∗
2 ≥ 0. Note that j ω is a pole

of G ( s ), the − jω must also be a pole of G ( s ), that is, j ω and − jω occur in pairs. Because
all the poles of lossless negative imaginary transfer matrices lie on the imaginary axis, G ( s )
can be decomposed by using the residue matrix properties about poles on the imaginary axis
as the following form: 

G (s) = 

∑ 

i 

− jK i 

s − jω i 
+ 

∑ 

i 

jK 

∗

s + jω i 
+ 

1 

s 
C 1 + 

1 

s 2 
C 2 + sA 1 + s 2 A 2 + G (∞ ) 

= 

∑ 

i 

sQ i + T i 
s 2 + ω 

2 
i 

+ 

1 

s 
C 1 + 

1 

s 2 
C 2 + sA 1 + s 2 A 2 + G (∞ ) , 

where K i is the residue matrix of jG ( s ) at j ω i , A 2 = A 

∗
2 ≤ 0, C 2 = C 

∗
2 ≥ 0, Q i = j(K 

∗
i − K i ) ,

and T i = ω i (K i + K 

∗
i ) . According to Condition 3 of Theorem 1 , we know K i = K 

∗
i ≥ 0, it

follows that Q i = 0 and T i = T ∗i . Then, we have 

G (s) = 

∑ 

i 

T i 
s 2 + ω 

2 
i 

+ 

1 

s 
C 1 + 

1 

s 2 
C 2 + sA 1 + s 2 A 2 + G (∞ ) . (3)

We can find that 
∑ 

i 
T i 

s 2 + ω 2 i 
, 1 

s 2 C 2 and s 2 A 2 are lossless negative imaginary. The fact that they
are negative imaginary is immediate from the definition of negative imaginary systems, and 

the lossless property follows by observing that 

j 

[
1 

( jω) 2 
C 2 − 1 

(− jω) 2 
C 

∗
2 

]
= 0;

j [( j ω) 2 A 2 − (− j ω) 2 A 

∗
2 ] = 0;

j 

[∑ 

i 

T i 
( jω ) 2 + ω 

2 
i 

−
∑ 

i 

T ∗i 
(− jω ) 2 + ω 

2 
i 

]
= 0. 

Next, we study the properties of matrices A 1 and C 1 in the following lemma, where A 1 

and C 1 are defined in Eq. (2) . 
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emma 6. Given a square real-rational lossless negative imaginary transfer function matrix
 ( s ) . Then A 1 + A 

∗
1 = 0 and C 1 + C 

∗
1 = 0 hold. 

roof. Suppose G ( s ) is lossless negative imaginary. It follows that G ( s ) has at most a double
ole at infinity and the origin. First, we will prove A 1 + A 

∗
1 = 0. When G ( s ) has no poles at

nfinity, one has that A 2 = 0, A 1 = 0, and hence A 1 + A 

∗
1 = 0. When G ( s ) has a simple pole

t infinity, A 2 = 0, let 

 (s) = G 0 (s) + sA 1 + G (∞ ) , 

here G 0 ( s ) is strictly proper, and G (∞ ) = G 

T (∞ ) . G ( s ) and G 0 ( s ) have the same poles
xcept at infinity. Condition 2 of Definition 3 implies that 

j 
[
G ( jω) − G 

∗( jω) 
] = j 

[
j ωA 1 + G 0 ( j ω) + G (∞ ) + jωA 

∗
1 − G 

∗
0 ( jω) − G 

∗(∞ ) 
]

= −ω 

(
A 1 + A 

∗
1 

) + j 
[
G 0 ( jω) − G 

∗
0 ( jω) 

] = 0, (4)

or all ω > 0, where j ω is not a pole of G ( s ) and G 0 ( s ). Suppose A 1 + A 

∗
1 	 = 0. Then, since

 0 ( s ) is strictly proper, there exists a sufficiently large ω 1 such that j [ G 0 ( j ω 1 ) − G 

∗
0 ( jω 1 )] =

, which contradicts with Eq. (4) . So, A 1 + A 

∗
1 = 0. 

When G ( s ) has a double pole at infinity, let 

 (s) = G 0 (s) + sA 1 + s 2 A 2 + G (∞ ) , 

here A 2 = A 

∗
2 ≤ 0, G (∞ ) = G 

T (∞ ) and G 0 ( s ) is strictly proper. Similarly, Condition 2 of
efinition 3 implies that j [ G ( j ω) − G 

∗( jω)] = −ω(A 1 + A 

∗
1 ) + j [ G 0 ( j ω) − G 

∗
0 ( jω)] = 0.

sing the similar analysis as the case where G ( s ) has a simple pole at infinity, we have
 1 + A 

∗
1 = 0. 

Next, we will prove C 1 + C 

∗
1 = 0. When G ( s ) has no poles at the origin, one has that

 2 = 0, C 1 = 0, and hence C 1 + C 

∗
1 = 0. When G ( s ) has a simple pole at the origin, C 2 = 0,

et 

 (s) = 

∑ 

i 

T i 
s 2 + ω 

2 
i 

+ 

1 

s 
C 1 + sA 1 + s 2 A 2 + G (∞ ) , 

here T i = T ∗i , G (∞ ) = G 

T (∞ ) , A 1 + A 

∗
1 = 0 and A 2 = A 

∗
2 ≤ 0. Condition 2 of Definition 3

mplies that 

j [ G ( j ω) − G 

∗( jω)] = j 

[∑ 

i 

T i 
( jω ) 2 + ω 

2 
i 

+ 

1 

jω 

C 1 + ( jω) A 1 + ( jω) 2 A 2 + G (∞ ) 

−
∑ 

i 

T ∗i 
(− jω 

2 ) + ω 

2 
i 

− 1 

(− jω) 
C 1 − (− jω) A 1 − (− jω) 2 A 2 − G 

∗(∞ ) 

]

= − ω(A 1 + A 

∗
1 ) + 

1 

ω 

(C 1 + C 

∗
1 )] = 0, 

or all ω > 0, where j ω is not a pole of G ( s ). Because −ω(A 1 + A 

∗
1 ) = 0, it follows that

 1 + C 

∗
1 = 0. 

When G ( s ) has a double pole at the origin, let 

 (s) = 

∑ 

i 

T i 
s 2 + ω 

2 
i 

+ 

1 

s 
C 1 + 

1 

s 2 
C 2 + sA 1 + s 2 A 2 + G (∞ ) , 
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where T i = T ∗i , G (∞ ) = G 

T (∞ ) , A 1 + A 

∗
1 = 0, A 2 = A 

∗
2 ≤ 0 and C 2 = C 

∗
2 ≥ 0. Then, Con-

dition 2 of Definition 3 with A 1 + A 

∗
1 = 0 implies that 

j 
[
G ( jω) − G 

∗( jω) 
] = 

1 

ω 

(C 1 + C 

∗
1 )] = 0. 

This completes the proof. �

Remark 1. Let any lossless negative imaginary transfer matrix be the form of Eq. (3) . It can

be found that j [ G ( j ω) − G 

∗( jω)] = 

−ω 2 (A 1 + A ∗1 )+(C 1 + C ∗1 ) 
ω 

= 0 for all ω > 0 except values of ω 

where j ω is a pole of G ( s ). It follows from Lemma 2 in [9] and Lemma 3 in [40] , we know
that A 1 + A 

∗
1 ≤ 0 and C 1 + C 

∗
1 ≥ 0. So, the only case is that A 1 + A 

∗
1 = 0 and C 1 + C 

∗
1 = 0 for

lossless negative imaginary systems. More details are given in the proof of Lemma 6 to show
the different cases which could appear in lossless negative imaginary transfer matrices. If G ( s )
is a symmetric lossless negative imaginary transfer matrix, it follows that A 1 = A 

∗
1 ≤ 0 and

 1 = C 

∗
1 ≥ 0, and hence, A 1 = 0 and C 1 = 0. In other words, it is impossible for symmetric

lossless negative imaginary transfer matrix having simple pole at the origin and infinity. 

The following theorem gives a decomposed property about lossless negative imaginary 

transfer matrices. 

Theorem 2. Let G ( s ) be a square real-rational transfer function matrix of the form 

G (s) = G 0 (s) + 

1 

s 
C 1 + 

1 

s 2 
C 2 + sA 1 + s 2 A 2 + G (∞ ) , 

where G 0 ( s ) is strictly proper, and G 0 ( s ) has no poles at the origin and infinity. Then, G ( s ) is
lossless negative imaginary if and only if G 0 ( s ) is lossless negative imaginary, A 2 = A 

∗
2 ≤ 0,

 2 = C 

∗
2 ≥ 0, A 1 + A 

∗
1 = 0, C 1 + C 

∗
1 = 0 and G (∞ ) = G 

T (∞ ) . 

Proof. (Necessity) Suppose that G ( s ) is lossless negative imaginary. According to
Lemmas 1 and 6 , it follows that A 2 = A 

∗
2 ≤ 0, C 2 = C 

∗
2 ≥ 0, A 1 + A 

∗
1 = 0, C 1 + C 

∗
1 = 0

and G (∞ ) = G 

T (∞ ) . G ( s ) and G 0 ( s ) have the same poles except at the origin and infinity.
For ω > 0, j ω is not a pole of G ( s ) and G 0 ( s ), we have j [ G ( j ω) − G 

∗( jω)] = j[ G 0 ( jω) −
G 

∗
0 ( jω)] = 0. If j ω 0 , ω 0 > 0 is a pole of G ( s ), then the residue matrix lim s→ jω 0 (s −

j ω 0 ) j G (s) = lim s→ jω 0 (s − j ω 0 ) j G 0 (s) , is positive semidefinite. Hence, G 0 ( s ) is lossless neg-
ative imaginary. 

(Sufficiency) Suppose that G 0 ( s ) is lossless negative imaginary, A 2 = A 

∗
2 ≤ 0, C 2 = C 

∗
2 ≥

0, A 1 + A 

∗
1 = 0, C 1 + C 

∗
1 = 0 and G (∞ ) = G 

T (∞ ) . It follows that 1 
s C 1 , 

1 
s 2 C 2 , sA 1 , s 2 A 2 

are lossless negative imaginary. Then, according to the sum properties of lossless negative 
imaginary systems in Lemma 2 , G ( s ) is lossless negative imaginary. �

Remark 2. According to the analysis in this subsection, we can notice that any lossless
negative imaginary transfer matrices can be regarded as a sum of several lossless negative 
imaginary transfer matrices. For example, consider the transfer function G (s) = 

1 −2s 4 

s 2 (s 2 +1) 
in 

[9, Example 8] . G ( s ) can be decomposed as G (s) = 

1 
s 2 + 

1 
s 2 +1 − 2, where C 2 = 1 , G (∞ ) =

−2, the residue matrix of jG ( s ) at s = j is K = 

1 
2 , and hence T 1 = K + K 

∗ = 1 . Both 

1 
s 2 

and 

1 
s 2 +1 are lossless negative imaginary. Moreover, the negative imaginary transfer matrices 

also have similar properties as Theorem 2 . We are able to decompose any negative imaginary
transfer matrix G ( s ) into the sum of a lossless negative imaginary transfer matrix and a
negative imaginary transfer matrix. If G ( s ) is symmetric, we have G ( s ) is negative imaginary
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f and only if A 2 = A 

∗
2 ≤ 0, C 2 = C 

∗
2 ≥ 0, A 1 = A 

∗
1 ≤ 0, C 1 = C 

∗
1 ≥ 0, G (∞ ) = G 

T (∞ ) and
 0 ( s ) is negative imaginary. 

Decompose the lossless negative imaginary transfer matrices into a proper part and a non-
roper part. We can directly have the following result. 

orollary 1. Let G ( s ) be a square real-rational transfer function matrix of the form 

 (s) = G 0 (s) + sA 1 + s 2 A 2 + 

m ∑ 

i=3 

s i A i , 

here G 0 ( s ) has no poles at infinity. Then, G ( s ) is lossless negative imaginary if and only if
 0 ( s ) is lossless negative imaginary, A 2 = A 

∗
2 ≤ 0, A 1 + A 

∗
1 = 0 and A i = 0 for i ≥3 . 

emark 3. Corollary 1 is useful in deriving the non-proper descriptor lossless negative imag-
nary lemma. Also, for the non-proper negative imaginary transfer matrices, we have a similar
esult, that is, G ( s ) is negative imaginary if and only if A 2 = A 

∗
2 ≤ 0 and G 0 (s) + sA 1 is neg-

tive imaginary, which is also useful in the study of non-proper descriptor negative imaginary
ystems. If G ( s ) is symmetric, we have G ( s ) is negative imaginary if and only if A 2 = A 

∗
2 ≤ 0,

 1 = A 

∗
1 ≤ 0, A i = 0 for i ≥3 and G 0 ( s ) is negative imaginary. 

.2. Discrete-time systems 

This subsection studies the partial-fraction expansion of discrete-time lossless negative
maginary transfer matrices. Suppose that G ( z ) is a lossless negative imaginary transfer matrix.
efine the following four matrices, 

 2 = lim 

z→ 1 
(z − 1) 2 G (z) , A 1 = lim 

z→ 1 
(z − 1) 

(
G (z) − A 2 

(z − 1) 2 

)
, 

 2 = lim 

z→−1 
(z + 1) 2 G (z) , C 1 = lim 

z→−1 
(z + 1) 

(
G (z) − C 2 

(z + 1) 2 

)
. 

e have following properties about poles at z = ±1 . 

emma 7. Given a square real-rational proper lossless negative imaginary transfer function
atrix G ( z ) . We have: 

1. If G ( z ) has a double pole at z = 1 , then A 1 + A 

∗
1 = A 2 + A 

∗
2 ≥ 0; 

2. If G ( z ) has a simple pole at z = 1 , then A 1 + A 

∗
1 = 0; 

3. If G ( z ) has a double pole at z = −1 , then C 1 + C 

∗
1 = −(C 2 + C 

∗
2 ) ≥ 0; 

4. If G ( z ) has a simple pole at z = −1 , then C 1 + C 

∗
1 = 0. 

roof. Because G ( z ) is discrete-time lossless negative imaginary system, G ( z ) has at most
 double pole at z = ±1 . When G ( z ) has no poles at z = ±1 , it follows that A 2 = A 1 = 0,

 2 = C 1 = 0. 

• Proof of Item 1: When G ( z ) has a double pole at z = 1 , similar to continuous-time case,
we can write G ( z ) in the form 

G (z) = G 1 (z) + 

A 1 

z − 1 

+ 

A 2 

(z − 1) 2 
, (5)
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where G 1 ( z ) has no poles at z = 1 and A 2 = A 

∗
2 ≥ 0. By means of the bilinear transfor-

mation 

s = 

z − 1 

z + 1 

, z = 

1 + s 

1 − s 
, (6) 

Eq. (5) is transformed into 

G (s) = G 1 

(
1 + s 

1 − s 

)
+ 

A 1 
1+ s 
1 −s − 1 

+ 

A 2 

( 1+ s 
1 −s − 1) 2 

= G 0 (s) + 

A 1 − A 2 

2s 
+ 

A 2 

4s 2 
, 

where G 0 (s) = G 1 ( 
1+ s 
1 −s ) − A 1 

2 + 

A 2 
4 has no poles at s = 0. According to Lemma 6 in [34] ,

it follows that G ( s ) is continuous-time lossless negative imaginary, and G ( s ) has a double
pole at s = 0. Then, according to Lemma 6 , it follows that A 1 −A 2 

2 + ( A 1 −A 2 
2 ) ∗ = 0. Hence,

we have 

A 1 + A 

∗
1 = A 2 + A 

∗
2 ≥ 0. 

• Proof of Item 2: When G ( z ) has a simple pole at z = 1 , let 

G (z) = G 1 (z) + 

A 1 

z − 1 

, (7) 

where G 1 ( z ) has no poles at z = 1 . Using the bilinear transformation in (6) , Eq. (7) is
transformed into 

G (s) = G 1 

(
1 + s 

1 − s 

)
− 1 

2 

A 1 + 

1 

2s 
A 1 . 

According to [ 34 , Lemma 6], it follows that G ( s ) is continuous-time lossless negative
imaginary, and G ( s ) has a simple pole at s = 0. Then, according to Lemma 6 , it follows
that 1 

2 A 1 + 

1 
2 A 

∗
1 = 0. Hence, we have A 1 + A 

∗
1 = 0. 

• Proof of Item 3: When G ( z ) has a double pole at z = −1 , let 

G (z) = G 1 (z) + 

C 1 

z + 1 

+ 

C 2 

(z + 1) 2 
, (8) 

where G 1 ( z ) has no poles at z = −1 and C 2 = C 

∗
2 ≤ 0. Using the bilinear transformation

in Eq. (6) , Eq. (8) is transformed into 

G (s) = G 1 

(
1 + s 

1 − s 

)
+ 

C 1 
1+ s 
1 −s + 1 

+ 

C 2 (
1+ s 
1 −s + 1 

)
2 

= G 0 (s) + 

−C 1 − C 2 

2 

s + 

C 2 

4 

s 2 , 

where G 0 (s) = G 1 ( 
1+ s 
1 −s ) + 

C 1 
2 + 

C 2 
4 has no poles at s = ∞ . According to Lemma 6 , it

follows that (
−C 1 + C 2 

2 

)
+ 

(
−C 1 + C 2 

2 

)
∗ = 0, 

that is, 

C + C 

∗ = −(C + C 

∗) ≥ 0. 
1 1 2 2 
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• Proof of Item 4: When G ( z ) has a simple pole at z = −1 , let 

G (z) = G 1 (z) + 

C 1 

z + 1 

, (9)

where G 1 ( z ) has no poles at z = −1 . Using the bilinear transformation in (6) , Eq. (9) is
transformed into 

G (s) = G 1 ( 
1 + s 

1 − s 
) + 

C 1 

2 

+ 

−C 1 

2 

s. 

According to Lemma 6 , it follows that − 1 
2 C 1 − 1 

2 C 

∗
1 = 0. Hence, we have C 1 + C 

∗
1 = 0. 

�

emark 4. It can be seen that Condition 2 of Lemma 7 is a special case of Condition 1
f Lemma 7 with A 2 = 0. Also, Condition 4 of Lemma 7 is a special case of Condition
 of Lemma 7 with C 2 = 0. Suppose that G ( z ) is a symmetric transfer function matrix.
f G ( z ) has a simple pole at z = 1 , then A 1 = 0. If G ( z ) has a simple pole at z = −1 ,

hen C 1 = 0. In other words, it is impossible for a symmetric lossless negative imaginary
ransfer function matrix to have simple poles at z = ±1 . If G ( z ) has a double pole at z = 1 ,

hen A 1 = A 2 ≥ 0. If G ( z ) has a double pole at z = −1 , then C 1 = −C 2 ≥ 0. Those facts
ollow from Lemma 6 and Remark 1 . For example, consider two lossless negative imaginary
ransfer functions G 1 (z) = 

(z+1) 2 

(z−1) 2 
and G 2 (z) = 

−(z−1) 2 

(z+1) 2 
. G 1 ( z ) has a double pole at z = 1 ,

nd G 2 ( z ) has a double pole at z = −1 . We have A 2 = lim z→ 1 (z − 1) 2 G 1 (z) = 4, G 1 (∞ ) =
 , C 2 = lim z→−1 (z + 1) 2 G 2 (z) = −4, and G 2 (∞ ) = −1 . Then, A 1 = A 2 = 4, G 1 ( z ) can be
ecomposed as G 1 (z) = 

4 
(z−1) 2 

+ 

4 
z−1 + 1 , and C 1 = −C 2 = 4, G 2 ( z ) can be decomposed as

 2 (z) = 

−4 
(z+1) 2 

+ 

4 
z−1 − 1 . 

. Relationship between lossless positive real and lossless negative imaginary transfer 
atrices 

.1. Continuous-time systems 

In this subsection, two new relationships between continuous-time lossless negative imag-
nary and lossless positive real transfer matrices will be, respectively, established in the non-
roper and the proper cases. First, we present a new description of the relationship between the
on-proper lossless negative imaginary and non-proper lossless positive real transfer matrices.

emma 8. Let G ( s ) be a square real-rational transfer function matrix. Supposing G ( s ) has
o poles at the origin, then G ( s ) is lossless negative imaginary if and only if 

1. G (0) = G 

T (0) ; 
2. F (s) = − 1 

s [ G (s) − G (0)] is lossless positive real. 

roof. (Necessity) Suppose that G ( s ) is lossless negative imaginary. It follows from
 9 , Lemma 9] that G (0) = G 

T (0) . When G ( s ) has no pole at infinity, F ( s ) has no poles at infin-
ty. When G ( s ) has a simple pole at infinity, then F ( s ) has also no poles at infinity. Let G (s) =
A 1 + G 0 (s) , where G 0 ( s ) is proper and A 1 + A 

T 
1 = 0. Then, F (s) = −A 1 − 1 

s G 0 (s) + 

1 
s G (0) .

s ω → ∞ , it follows that F ( jω) + F 

∗( jω) = −(A 1 + A 

T 
1 ) = 0. When G ( s ) has a double
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pole at infinity, then F ( s ) has a simple pole at infinity. The rest of the proof is the same as
the necessity proof of [ 9 , Lemma 9]. 

(Sufficiency) The sufficient proof is the same as the sufficient proof of [ 9 , Lemma 9]. �
Example 1. To illustrate the usefulness of Lemma 8 , consider a non-proper transfer ma-

trix G (s) = 

( 

−s 2 

s 2 +1 −s 

s −s 2 

s 2 +1 

) 

. G ( s ) has no poles in Re[ s ] > 0. A calculation shows that

j [ G ( j ω) − G 

∗( jω)] = 0. G ( s ) has a simple pole at infinity and s = j. The residue ma-
trix of jG ( s ) at s = j is positive semidefinite Hermitian, being K = lim s→ j (s − j ) j G (s) =( 1 

2 0 

0 

1 
2 

)
. Moreover, lim ω→∞ 

G ( jω) 

( jω) 2 
= 0 and A 1 = lim ω→∞ 

G ( jω) 

jω = 

(
0 −1 

1 0 

)
, which satis- 

fies A 1 + A 

∗
1 = 0. According to Definitions 2 and 3 , it follows that G ( s ) is lossless nega-

tive imaginary. We can say that G ( s ) is lossless negative imaginary if and only if F (s) =
− 1 

s [ G (s) − G (0)] = 

( s 
s 2 +1 1 

−1 

s 
s 2 +1 

)
is lossless positive real and G (0) = G 

T (0) . A calculation

shows that G (0) = 

(
0 0 

0 0 

)
and F ( s ) satisfies all conditions in Definition 1 : F ( s ) is positive

real, and F ( jω) + F 

∗( jω) = 0 for all ω with j ω not a pole of F ( s ). 

When G ( s ) is a real-rational proper transfer matrix, we have the following result: 

Lemma 9. Let G ( s ) be a square real-rational proper transfer function matrix. Then G ( s ) is
lossless negative imaginary if and only if 

1. G (∞ ) = G 

T (∞ ) ; 
2. F (s) = s[ G (s) − G (∞ )] is lossless positive real. 

Proof. (Necessity) Suppose that G ( s ) is lossless negative imaginary. It follows from
[ 9 , Lemma 11] that G (∞ ) = G 

T (∞ ) . When G ( s ) has no pole at the origin, F ( s ) has
no poles at the origin, and F (0) + F 

∗(0) = 0. When G ( s ) has a simple pole at the ori-
gin, then F ( s ) has also no poles at the origin. Let G (s) = 

1 
s C 1 + G 0 (s) , where G 0 ( s ) has

no poles at the origin and C 1 + C 

∗
1 = 0. Then, F (s) = C 1 + sG 0 (s) − sG (∞ ) , and hence,

F (0) + F 

∗(0) = C 1 + C 

T 
1 = 0. When G ( s ) has a double pole at the origin, then F ( s ) has

a simple pole at the origin. The rest of the proof is the same as the necessity proof of
[ 9 , Lemma 11]. 

(Sufficiency) The sufficient proof is the same as the sufficient proof of [ 9 , Lemma 11]. �
Example 2. As an illustration of Lemma 9 , consider a proper transfer matrix G (s) =( 

1 
s 2 +1 

1 
s + 1 

−1 
s + 1 

1 
s 2 +1 

) 

. It can be found that G ( s ) is lossless negative imaginary if and only

if F (s) = s[ G (s) − G (∞ )] = 

( s 
s 2 +1 1 

−1 

s 
s 2 +1 

)
is lossless positive real and G (∞ ) = G 

T (∞ ) .

A calculation shows that G (∞ ) = G 

T (∞ ) = 

(
0 1 

1 0 

)
. Meanwhile, G ( s ) and F ( s ) satisfy all

conditions in Definition 3 and Definition 1 , respectively. Note that G ( s ) has a simple pole at

the origin, C 1 = lim s→ 0 sG (s) = 

(
0 1 

−1 0 

)
satisfies C 1 + C 

T 
1 = 0, and F ( s ) has no poles at

the origin. 
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emark 5. Lemma 8 can be considered as a generalization of Lemma 9 in [9] by allowing
imple pole at infinity. Lemma 9 can be considered as a generalization of Lemma 11 in [9] by
llowing simple pole at the origin. When G ( s ) is a symmetric transfer matrix, Condition 1
n Lemmas 8 and 9 are redundant. The reason is that Condition 1 in Lemmas 8 and 9 are
bvious for symmetric transfer matrices. 

.2. Discrete-time systems 

In this subsection, two relationships between the discrete-time lossless negative imaginary
nd lossless positive real transfer matrices will be established under different assumptions.
irst, we present the relationship under the assumption that G ( z ) has no poles at z = −1 . 

emma 10. Let G ( z ) be a square real-rational proper transfer function matrix, and supposing
hat G ( z ) has no poles at z = −1 . Then G ( z ) is lossless negative imaginary if and only if 

1. G (−1) = G (−1) T ; 
2. F (z) = 

z−1 
z+1 (G (z) − G (−1)) is lossless positive real. 

roof. (Necessity) Suppose G ( z ) is lossless negative imaginary. Then, G ( z ) is negative imag-
nary. It follows from Lemma 9 in [38] that F (z) = 

z−1 
z+1 (G (z) − G (−1)) is positive real and

 (−1) = G (−1) T . G ( z ) and F ( z ) have the same poles except at z = 1 . For any e j θ , θ ∈ (0,
), is not a pole of G ( z ) and F ( z ), Condition 2 of Definition 5 implies that 

 (e jθ ) + F 

∗(e jθ ) = j 
sin θ

1 + cos θ

[
G (e jθ ) − G 

∗(e jθ ) 
] = 0. 

f G ( z ) has no poles at z = 1 ( θ = 0), then F ( z ) has no poles at z = 1 and F (1) = 0. As a
esult, F (1) + F 

T (1) = 0. If G ( z ) has a simple pole at z = 1 , then F ( z ) has no poles at z = 1 .
et G (z) = 

A 1 
z−1 + G 1 (z) , where A 1 + A 

T 
1 = 0 and G 1 ( z ) is analytic in | z | > 1 and at z = ±1 .

hen, 

 (z) = 

A 1 

z + 1 

+ 

z − 1 

z + 1 

G 1 (z) − z − 1 

z + 1 

G (−1) . 

t follows that 

 (1) + F 

T (1) = 

A 1 + A 

T 
1 

2 

= 0. 

herefore, F (e jθ ) + F 

∗(e jθ ) = 0 for all θ ∈ [0, π ) with e j θ not a pole of F ( z ). A complex
onjugate implies that F (e jθ ) + F 

∗(e jθ ) = 0 for all θ ∈ [0, π ). That is, F (e jθ ) + F 

∗(e jθ ) = 0
or all θ ∈ (−π, 0] with e j θ not a pole of F ( z ). Note that G (z) − G (−1) has a blocking zero
t z = −1 . So F ( z ) has no poles at z = −1 ( θ = ±π ), and F (−1) + F 

∗(−1) = 0 in view
f the continuity of F ( z ). Furthermore, θ ∈ [0, π ] ∪ [ −π, 0] is equal to θ ∈ [0, 2 π ]. Hence, it
ollows that 

 (e jθ ) + F 

∗(e jθ ) = 0, 

or all θ ∈ [0, 2 π ] with e j θ not a pole of F ( z ). If G ( z ) has a double pole at z = 1 , then F ( z )
as a simple pole at z = 1 . According to Definition 4 , F (z) = 

z−1 
z+1 (G (z) − G (−1)) is lossless

ositive real. 
(Sufficiency) Suppose F (z) = 

z−1 
z+1 (G (z) − G (−1)) is lossless positive real and G (−1) =

 

T (−1) . F ( z ) is also positive real. Then, it follows from [ 38 , Lemma 9] that G (z) =
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z+1 
z−1 F (z) + G (−1) is negative imaginary, and j[ G (−1) − G 

∗(−1)] = 0. Condition 2 of
Definition 4 implies that 

j 
[
G (e jθ ) − G 

∗(e jθ ) 
] = 

sin θ

1 − cos θ

[
F (e jθ ) + F 

∗(e jθ ) 
] = 0, 

for all θ ∈ (0, π ) with e j θ not a pole of G ( z ). If F ( z ) has no poles at z = 1 and F (1) = 0,

then G ( z ) has no poles at z = 1 and j[ G (1) − G 

∗(1)] = 0. If F (1) 	 = 0 or F ( z ) has a simple
pole at z = 1 , then G ( z ) has a simple pole or a double pole at z = 1 . Hence, according to
Definition 5 , G ( z ) is lossless negative imaginary. �

Example 3. As an illustration of Lemma 10 , consider the following transfer matrix G (z) =( 

(z+1) 2 

2(z 2 +1) 
1+ z 

2(1 −z) 
z+1 

2(z−1) 

(z+1) 2 

2(z 2 +1) 

) 

. j[ G (e jθ − G 

∗(e jθ )] = 0 for all θ ∈ (0, π ) with e j θ not a pole of G ( z ).

G ( z ) has simple pole at z = e j 
π
2 = j and z = 1 . The residue matrix of jG ( z ) at z = j is

given by K = 

( 1 
2 j 0 

0 

1 
2 j 

)
, and the matrix e − j π2 K = − jK = 

( 1 
2 0 

0 

1 
2 

)
, is positive definite

Hermitian. C 1 = lim z→ 1 (z − 1) G (z) = 

(
0 −1 

1 0 

)
satisfies that C 1 + C 

T 
1 = 0. Hence, G ( z ) is

lossless negative imaginary. We can say that G ( z ) is lossless negative imaginary if and only

if F (z) = 

z−1 
1+ z [ G (z) − G (−1)] = 

( 

z 2 −1 
2(z 2 +1) 

− 1 
2 

1 
2 

z 2 −1 
2(z 2 +1) 

) 

is lossless positive real and G (−1) =

G 

T (−1) . A calculation shows that G (−1) = 

(
0 0 

0 0 

)
, and F ( z ) satisfies all conditions in

Definition 5 . 

Under the assumption that G ( z ) has no poles at z = 1 , we have the following result. 

Lemma 11. Let G ( z ) be a square real-rational proper transfer function matrix and supposing
that G ( z ) has no poles at z = 1 . Then G ( z ) is lossless negative imaginary if and only if 

1. G (1) = G (1) T ; 
2. F (z) = 

1+ z 
1 −z (G (z) − G (1)) is lossless positive real. 

Proof. (Necessity) Suppose G ( z ) is lossless negative imaginary. Then, G ( z ) is negative imag-
inary. It follows from [ 38 , Lemma 10] that F (z) = 

1+ z 
1 −z (G (z) − G (1)) is positive real and

G (1) = G (1) T . G ( z ) and F ( z ) have the same poles except at z = −1 . For any e j θ , θ ∈ (0, π ),
is not a pole of G ( z ) and F ( z ), Condition 2 of Definition 5 implies that 

F (e jθ ) + F 

∗(e jθ ) = j 
sin θ

1 − cos θ
[ G (e jθ ) − G 

∗(e jθ )] = 0. 

If G ( z ) has no poles at z = −1 ( θ = π ), then F ( z ) has no poles at z = −1 and F (−1) +
F 

T (−1) = 0. If G ( z ) has a simple pole at z = −1 , then F ( z ) has also no poles at z = −1 .
Let G (z) = 

C 1 
z+1 + G 1 (z) , where C 1 + C 

T 
1 = 0 and G 1 ( z ) is analytic in | z | > 1 and at z = ±1 .

Then, 

F (z) = 

C 1 

1 − z 
+ 

1 + z 

1 − z 
G 1 ( z) − 1 + z 

1 − z 
G (1) . 
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t follows that F (−1) + F 

T (−1) = 

C 1 + C T 1 
2 = 0. If G ( z ) has a double pole at z = −1 , then F ( z )

as a simple pole at z = −1 . Therefore, F (e jθ ) + F 

∗(e jθ ) = 0 for all θ ∈ (0, π ] with e j θ not a
ole of F ( z ). A complex conjugate implies that F (e jθ ) + F 

∗(e jθ ) = 0 for all θ ∈ [ −π, 0) with
 

j θ not a pole of F ( z ). Note that G (z) − G (1) has a blocking zero at z = 1 . So F ( z ) has no
oles at z = 1 ( θ = 0), and F (1) + F 

∗(1) = 0 in view of the continuity of F ( z ). Furthermore,
∈ [0, π ] ∪ [ −π, 0] is equal to θ ∈ [0, 2 π ]. Hence, we have that F (e jθ ) + F 

∗(e jθ ) = 0 for
ll θ ∈ [0, 2 π ] with e j θ not a pole of F ( z ). According to Definition 4 , F ( z ) is lossless positive
eal. 

(Sufficiency) Suppose F ( z ) is lossless positive real and G (1) = G 

T (1) . F ( z ) is also positive
eal. It follows from [ 38 , Lemma 10] that G (z) = 

1 −z 
1+ z F (z) + G (1) is negative imaginary.

ondition 2 of Definition 4 implies that j[ G (e jθ ) − G 

∗(e jθ )] = 

sin θ
1+ cos θ [ F (e jθ ) + F 

∗(e jθ )] = 0,

or all θ ∈ (0, π ) with e j θ not a pole of G ( z ). According to Definition 5 , G ( z ) is lossless negative
maginary. �
emark 6. Similar to Remark 5 , if G ( z ) is symmetric, then Condition 1 in Lemmas 10 and
1 can be removed as Condition 1 in Lemmas 10 and 11 are obvious for symmetric transfer
atrices. 

xample 4. As an illustration of Lemma 11 , consider the following transfer matrix G (z) =
 −(z−1) 2 

(z+1) 2 
1 −z 
z+1 

z−1 
z+1 

−(z−1) 2 

(z+1) 2 

) 

. j[ G (e jθ − G 

∗(e jθ )] = 0 for all θ ∈ (0, π ) with e j θ not a pole of

 ( z ). G ( z ) has double pole at z = −1 , and C 2 = lim z→−1 (z + 1) 2 G (z) = 

(−4 0 

0 −4 

)
, C 1 =

im z→−1 (z + 1)[ G (z) − C 2 
(z+1) 2 

] = 

(
4 2 

−2 4 

)
, which satisfy that C 1 + C 

∗
1 = −(C 2 + C 

∗
2 ) =

8 0 

0 8 

)
. It can be found that G ( z ) is lossless negative imaginary if and only if F (z) =

1 −z 
1+ z [ G (z) − G (1)] = 

( 

z−1 
z (z +1) 

1 

−1 

z−1 
z (z +1) 

) 

is lossless positive real and G (1) = G 

T (1) . A calcu-

ation shows that G (1) = 

(
0 0 

0 0 

)
, and F ( z ) satisfies all conditions in Definition 4 . 

. State-space conditions 

In this section, we present necessary and sufficient conditions for a system to be lossless
egative imaginary, in terms of minimal state-space realization conditions for both continuous-
ime and discrete-time systems. 

.1. Continuous-time systems 

The continuous-time lossless negative imaginary lemma proposed in this subsection, which
s one of the main result of the paper, extends the lossless negative imaginary lemma in [32] to
he case where the transfer matrices may have poles at the origin. Theorem 3 could also be
onsidered as a modification of in [10] applied to the lossless negative imaginary case. 

heorem 3. Let ( A , B , C , D ) be a minimal state-space realization of a square real-rational
roper transfer function matrix G (s) ∈ R 

m×m , where A ∈ R 

n×n , B ∈ R 

n×m , C ∈ R 

m×n , D ∈
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m×m , and m ≤n. Then, G ( s ) is lossless negative imaginary if and only if D = D 

T , and there
exists a real matrix P = P 

T ≥ 0, P ∈ R 

n×n , such that (
PA + A 

T P P B − A 

T C 

T 

B 

T P − AC C B + (C B) T 

)
= 0. (10) 

Proof. The equivalence follows along the following sequence of equivalent reformulations. 
G ( s ) ∼ ( A , B , C , D ) is lossless negative imaginary. 
⇔ G (∞ ) = G 

T (∞ ) , and F (s) = s[ G (s) − G (∞ )] is lossless positive real (according to
Lemma 9 ). 

⇔ D = D 

T , and F ( s ) ∼ ( A , B , CA , CB ) is lossless positive real. Note that ( A , B ) is com-
pletely controllable and ( A , CA ) may be not observable. The reason is that A may be singular
by allowing poles at the origin. 

⇔ D = D 

T , and there exists a real matrix P = P 

T ≥ 0, P ∈ R 

n×n , such that 

PA + A 

T P = 0, 

P B − A 

T C 

T = 0, 

 B + (C B) T = 0. 

This equivalence is according to Lemma 1 . 
⇔ D = D 

T , and there exists a real matrix P = P 

T ≥ 0, P ∈ R 

n×n , such that
Eq. (10) holds. �

Theorem 3 can be restated as the following corollary. 

Corollary 2. Consider the same assumptions in Theorem 3 . Then, G ( s ) is lossless negative
imaginary if and only if D = D 

T , C B + (C B) T = 0, and there exists a real matrix P = P 

T ≥
0, P ∈ R 

n×n , such that 

PA + A 

T P = 0, and P B − A 

T C 

T = 0. 

Remark 7. In Theorem 3 , the state-space realization ( A , B , C , D ) is assumed to be a minimal
realization. In fact, if we remove the observability requirement of ( A , C ), the results in
Theorem 3 also hold. Moreover, consider the generalized negative imaginary lemma in [ 10 ,
Lemma 2]. Assume that ( A , B ) is controllable and ( A , C ) is not necessarily observable. The
results in [ 10 , Lemma 2] also hold by using Lemma 10 in [9] and [ 41 , Lemma 3]. Compared
to Theorem 1 in [32] , Theorem 3 in this paper removes the non-singularity condition of state
matrix A , that is, det (A ) = 0 is allowed in this paper by allowing poles at the origin, and
P is allowed to be positive semidefinite. Compared to Lemma 2 in [10] , the inequality in
[10] is modified as equality in this paper by applying to the case where the negative imaginary
transfer matrix is lossless. 

5.2. Discrete-time systems 

In this subsection, two discrete-time lossless negative imaginary lemmas in state-space 
conditions are developed to give an algebraic characterization of linear discrete-time lossless 
negative imaginary transfer function matrices. 

Theorem 4. Let ( A , B , C , D ) be a minimal state-space realization of a square real-rational
proper transfer function matrix G (z) ∈ R 

m×m , where A ∈ R 

n×n , B ∈ R 

n×m , C ∈ R 

m×n , D ∈
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m×m , and m ≤n. Suppose det (I + A ) 	 = 0 and det (I − A ) 	 = 0. Then, G ( z ) is lossless negative
maginary if and only if 

1. C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T ; 
2. There exists a real matrix Y = Y 

T > 0, Y ∈ R 

n×n , such that 

Y − A 

T Y A = 0, and C = B 

T (I − A 

T ) −1 Y (I + A ) . (11)

roof. The proof follows along the following sequence of equivalences. 
G ( z ) ∼ ( A , B , C , D ) is lossless negative imaginary. 
⇔ G (−1) = G 

T (−1) , and F (z) = 

z−1 
z+1 (G (z) − G (−1)) is lossless positive real (according

o Lemma 10 ). 
⇔ C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T , and 

F (z) ∼
(

A B 

C(A − I )(A + I ) −1 C(A + I ) −1 B 

)
is lossless positive real (according to

 38 , Lemma 7]). 
⇔ C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T , and there exists a real matrix Y = Y 

T > 0
uch that 

 − A 

T Y A = 0, 

A 

T + I ) −1 (A 

T − I ) C 

T − A 

T Y B = 0, 

(A + I ) −1 B + B 

T (I + A 

T ) −1 C 

T − B 

T Y B = 0. 

his equivalence is according to the discrete-time lossless positive real lemma, see Lemma 4 .
⇔ C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T , and there exists a real matrix Y = Y 

T > 0
uch that 

 − A 

T Y A = 0, 

 

T Y A (A + I )(A − I ) −1 = C, 

 

T Y B − B 

T Y (A + I ) −1 B − B 

T (A 

T + I ) −1 Y B = 0. 

⇔ C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T , and there exists a real matrix Y = Y 

T > 0
uch that 

 − A 

T Y A = 0, 

 

T Y [ I + (A − I ) −1 ](A + I ) = C, 

 

T (A 

T + I ) −1 [(A 

T + I ) Y (A + I ) − (A 

T + I ) Y − Y (A + I )](A + I ) −1 B = 0. 

⇔ C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T , and there exists a real matrix Y = Y 

T > 0
uch that 

Y − A 

T Y A = 0, (12)

B 

T (I − A 

T ) −1 Y (A + I ) = C, (13)

B 

T (A 

T + I ) −1 (A 

T Y A − Y )(A + I ) −1 B = 0. (14)

⇔ C(I + A ) −1 B − D = B 

T (I + A 

T ) −1 C 

T − D 

T , and there exists a real matrix Y = Y 

T > 0
uch that 
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 − A 

T Y A = 0, and B 

T (I − A 

T ) −1 Y (A + I ) = C. 

( Eq. (14) always holds.) �

The following corollary characterizes the equivalent properties of discrete-time lossless 
negative imaginary lemma in state-space conditions. 

Corollary 3. Suppose det (I + A ) 	 = 0 and det (I − A ) 	 = 0. The following two statements are
equivalent: 

1. There exists a real matrix Y = Y 

T > 0, Y ∈ R 

n×n , such that Y − A 

T Y A = 0 and C =
B 

T (I − A 

T ) −1 Y (I + A ) . 

2. There exists a real matrix X = X 

T > 0, X ∈ R 

n×n , such that X − AX A 

T = 0 and B =
(I − A ) X (I + A 

T ) −1 C 

T . 

Proof. There exists a real matrix Y = Y 

T > 0, Y ∈ R 

n×n , such that Y − A 

T Y A = 0, which
implies that det (A ) 	 = 0. Then, the proof follows along the following sequence of equivalences.

There exists a real matrix Y = Y 

T > 0 such that Y − A 

T Y A = 0, and and C = B 

T (I −
A 

T ) −1 Y (I + A ) . 
⇔ There exists a real matrix Y = Y 

T > 0 such that Y A 

−1 − A 

T Y = 0, and B = (I −
A ) Y 

−1 (I + A 

T ) −1 C 

T . 
⇔ There exists a real matrix Y = Y 

T > 0 such that Y 

−1 (Y A 

−1 − A 

T Y ) Y 

−1 = 0, and B =
(I − A ) Y 

−1 (I + A 

T ) −1 C 

T . 
⇔ There exists a real matrix Y = Y 

T > 0 such that Y 

−1 − AY 

−1 A 

T = 0, and B = (I −
A ) Y 

−1 (I + A 

T ) −1 C 

T . 
⇔ There exists a real matrix X = X 

T > 0 such that X − AX A 

T = 0, and B = (I −
A ) X (I + A 

T ) −1 C 

T (Let X = Y 

−1 ). �

Remark 8. The proof of Theorem 4 is completed by using the relationship between discrete-
time lossless negative imaginary, lossless positive real systems, and the discrete-time loss- 
less positive real lemma. The proof of Lemma 9 in [34] is based on the connection be-
tween discrete-time and continuous-time lossless negative imaginary transfer matrices, and 

the continuous-time lossless negative imaginary lemma. According to Corollary 1 , it follows 
that Theorem 4 is equivalent to Lemma 9 in [34] . 

The following theorem is a new form of discrete-time lossless negative imaginary lemma: 

Theorem 5. Let ( A , B , C , D ) be a minimal state-space realization of a square real-rational
proper transfer function matrix G (z) ∈ R 

m×m , where A ∈ R 

n×n , B ∈ R 

n×m , C ∈ R 

m×n , D ∈
R 

m×m , and m ≤n. Suppose det (I + A ) 	 = 0 and det (I − A ) 	 = 0. Then, G ( z ) is lossless negative
imaginary if and only if 

1. C(I − A ) −1 B + D = B 

T (I − A 

T ) −1 C 

T + D 

T ; 
2. There exists a real matrix Y = Y 

T > 0, Y ∈ R 

n×n , such that 

Y − A 

T Y A = 0 and C = B 

T (I + A 

T ) −1 Y (I − A ) . (15)

Proof. The proof is similar to the proof of Theorem 4 by using the relationship between
lossless positive real and lossless negative imaginary transfer matrices derived in Lemma 11 ,
and the lossless positive real lemma introduced in Lemma 4 . Details are omitted here. �
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Similar to Corollary 3 , we have the following results, which show that Condition 2 of
heorem 4 is equivalent to Condition 2 of Corollary 4 . 

orollary 4. Suppose det (I + A ) 	 = 0 and det (I − A ) 	 = 0. The following two statements are
quivalent. 

1. There exists a real matrix Y = Y 

T > 0, Y ∈ R 

n×n , such that Y − A 

T Y A = 0 and C =
B 

T (I + A 

T ) −1 Y (I − A ) . 
2. There exists a real matrix Y = Y 

T > 0, Y ∈ R 

n×n , such that X − AX A 

T = 0 and B =
(I + A ) X (I − A 

T ) −1 C 

T . 

roof. The proof is similar to that of Corollary 3 . Details are omitted here. �

. Illustrative examples 

Two examples are provided in this section. The first example provides an undamped vibra-
ion isolation system to illustrate the continuous-time lossless negative imaginary lemma. The
econd example illustrates the discrete-time lossless negative imaginary lemma from Single-
nput Single-Output (SISO) and Multi-Input Multi-Output (MIMO) cases. 

xample 5. To illustrate Theorem 3 , consider an undamped vibration isolation system [42] as
hown in Fig. 1 . This undamped vibration isolation system is composed of two masses, an
ctuator and a spring. The middle mass m 1 is connected to the base through a spring k . A
inear actuator is attached to the middle mass, and suspend the isolation table m 2 . The actuator
roduces a equal and opposite force F . 

Using the Newton’s second law of motion and the Laplace transformation, the transfer
unction from x 2 − x 1 to F can be described by: 

 (s) = 

(m 1 + m 2 ) s 2 + k 

m 2 s 2 ( m 1 s 2 + k) 
. 
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Let m 1 = 2kg, m 2 = 1 kg, k = 1 N/m. A simple choice of the transfer function could be 

G (s) = 

3 s 2 + 1 

s 2 (2s 2 + 1) 
. 

One minimal realization of G ( s ) is as follows: 

A = 

⎛ 

⎜ ⎜ ⎝ 

0 −0. 5 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

⎞ 

⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎝ 

1 

0 

0 

0 

⎞ 

⎟ ⎟ ⎠ 

, C = 

(
0 1 . 5 0 0. 5 

)
, D = 0. 

We can find that D = D 

T and C B + (C B) T = 0 hold. YALMIP [43] and SeDuMi were used
to find a solution of (10) as 

P = 

⎛ 

⎜ ⎜ ⎝ 

1 . 5 0 0. 5 0 

0 0. 25 0 0 

0. 5 0 0. 25 0 

0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

≥ 0, 

which implies that the conditions in Theorem 3 hold. This verifies that G ( s ) is lossless negative
imaginary from state-space condition. Also, the lossless negative imaginary property of G ( s )
can be confirmed by directly using the frequency domain conditions in Theorem 1 . It can
be found that all poles of G ( s ) are purely imaginary. G ( s ) has a double pole at s = 0, and
lim s→ 0 s 2 G (s) = 1 . The residue matrix at s = 

1 √ 

2 
j is positive, being 

√ 

2 
4 . A calculation shows

that j [ G ( j ω) − G 

∗( jω)] = 0 for all ω > 0 except values of ω where j ω is a pole of G ( s ). 

Example 6. 

Case 1 (SISO system) . To illustrate Theorems 4 and 5 , we first consider a SISO system G ( z )
with a minimal state-space realization as follows: 

A = 

⎛ 

⎜ ⎜ ⎝ 

−1 . 2 1 0 0 

−2 0 1 0 

−1 . 2 0 0 1 

−1 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎝ 

0. 92 

0. 4 

0. 92 

0 

⎞ 

⎟ ⎟ ⎠ 

, C = 

(
1 0 0 0 

)
, D = −0. 1 . 

Condition 1 in Theorems 4 and 5 are immediate. YALMIP [43] and SeDuMi were used to
find a solution of the equalities in (11) as 

 = 

⎛ 

⎜ ⎜ ⎝ 

5 . 0426 −1 . 7756 −2. 9119 2. 7699 

−1 . 7756 5 . 0426 −1 . 7756 −2. 9119 

−2. 9119 −1 . 7756 5 . 0426 −1 . 7756 

2. 7699 −2. 9119 −1 . 7756 5 . 0426 

⎞ 

⎟ ⎟ ⎠ 

> 0, 

and a solution of the equalities in Eq. (15) as 

 = 

⎛ 

⎜ ⎜ ⎝ 

2. 8232 −0. 4439 −2. 2905 0. 6295 

−0. 4439 2. 8232 −0. 4439 −2. 2905 

−2. 2905 −0. 4439 2. 8232 −0. 4439 

0. 6925 −2. 2905 −0. 4439 2. 2832 

⎞ 

⎟ ⎟ ⎠ 

> 0. 

A calculation shows that the associated transfer function is given by 

G (z ) = 

−z 4 + 8 z 3 + 2z 2 + 8 z − 1 

10z 4 + 12z 3 + 20z 2 + 12z + 10 

, 



M. Liu, X. Jing and G. Chen / Journal of the Franklin Institute 357 (2020) 2330–2353 2351 

w

C  

c  

p

G

A

A  

C  

s

Y  

M

7

 

m  

a  

t  

f  

m  

t  

n  

b  

s  

g  

w  

i  

o  

f

hich satisfies all conditions in Definition 4 . 

ase 2 (MIMO system) . We further present an MIMO example to illustrate the state-space
onditions in Theorems 4 and 5 . Consider a lossless negative imaginary transfer matrix without
oles at z = ±1 as follows: 

 (z) = 

( −(z−1) 2 

z 2 +1 
1 −z 2 

2(z 2 +1) 

z 2 −1 
2(z 2 +1) 

−(z−1) 2 

z 2 +1 

) 

. 

 minimal state-space realization of G ( z ) is as follows: 

A = 

⎛ 

⎜ ⎜ ⎝ 

0 0 −1 0 

0 0 0 −1 

1 0 0 0 

0 1 0 0 

⎞ 

⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎝ 

1 0 

0 1 

0 0 

0 0 

⎞ 

⎟ ⎟ ⎠ 

, 

C = 

(
2 0 0 1 

0 2 −1 0 

)
, D = 

( 

−1 − 1 
2 

1 
2 −1 

) 

. 

 calculation shows that C(I + A ) −1 B − D = 

(
2 0 

0 2 

)
and C(I − A ) −1 B + D = 

(
0 0 

0 0 

)
.

ondition 1 in Theorems 4 and 5 hold. YALMIP [43] and SeDuMi were used to find a
olution of the equalities in Eq. (11) as 

 = 

⎛ 

⎜ ⎜ ⎝ 

2 0 0 1 

0 2 −1 0 

0 −1 2 0 

1 0 0 2 

⎞ 

⎟ ⎟ ⎠ 

> 0, (16)

eanwhile, the matrix in Eq. (16) is also a solution of the equalities in Eq. (15) . 

. Conclusions 

In this paper, we present some important properties of lossless negative imaginary transfer
atrices for both continuous-time and discrete-time linear time-invariant systems. Necessary

nd sufficient conditions are established for lossless negative imaginary transfer matrices in
erms of frequency domain and state-space conditions. Although some of properties follow
rom known results, and are presented for the sake of completeness, new and interesting results
ainly focus on the minor decomposition theory for lossless negative imaginary systems in

erms of a partial-fraction expansion, and these results are important for generalising the
on-proper lossless negative imaginary theory in this paper. Moreover, two new relationships
etween the lossless positive real and lossless negative imaginary transfer matrices have been
ystematically established. According to these new relationships, we develop a continuous-time
eneralized lossless negative imaginary lemma in terms of a minimal state-space realization,
hich can allow poles to be the origin, and a different version of discrete-time lossless negative

maginary lemma is derived, simultaneously. These results would lay down an important basis
f the system analysis of lossless positive real and lossless negative imaginary systems with
ree body dynamics. 
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