
CORRECT-BY-CONSTRUCTION APPROACH FOR SELF-EVOLVABLE ROBOTS

Gang Chen
Department of Mechanical and Aerospace Engineering

University of California, Davis
One Shields Avenue,Davis, CA

ggchen@ucdavis.edu

Zhaodan Kong
Department of Mechanical and Aerospace Engineering

University of California, Davis
One Shields Avenue,Davis, CA

zdkong@ucdavis.edu

ABSTRACT
The paper presents a new formal way of modeling and de-

signing reconfigurable robots, in which case the robots are al-
lowed to reconfigure not only structurally but also functionally.
We call such kind of robots “self-evolvable”, which have the po-
tential to be more flexible to be used in a wider range of tasks, in
a wider range of environments, and with a wider range of users.
To accommodate such a concept, i.e., allowing a self-evovable
robot to be configured and reconfigured, we present a series of
formal constructs, e.g., structural reconfigurable grammar and
functional reconfigurable grammar. Furthermore, we present a
correct-by-construction strategy, which, given the description of
a workspace, the formula specifying a task, and a set of avail-
able modules, is capable of constructing during the design phase
a robot that is guaranteed to perform the task satisfactorily. We
use a planar multi-link manipulator as an example throughout
the paper to demonstrate the proposed modeling and designing
procedures.

1 Introduction
Reconfigurable robots are a family of robots that are capa-

ble of adjusting their shapes and functions to changing environ-
ments and tasks [1,2]. They are posed to meet the increasing de-
mands of providing personal robots to adjust to individual needs
and physical characteristics [3, 4] as well as industrial robots to
adapt to changes in the market [5]. Over the past three decades,
the field of reconfigurable robots has advanced from proofs-of-
concept to physical implementations. However, even with their

potential versatility and robustness over conventional robots, re-
configurable robots still suffers from inferior performance, one
of the main factors impeding them from practical adoption. Fur-
thermore, existing reconfigurable robots are rarely capable of
functional adaption. In this paper, we propose a formal model-
ing framework of reconfigurable robots that are capable of both
structural and functional reconfigurations. We will also explore a
design philosophy called “correct-by-construction” to guarantee
the performance of the robots during the design phase.

Formally the approaches of studying reconfigurable robots
can be roughly divided into three categories, those based on
graph theory, those based on optimization, and those based on
dynamic analysis. Graph-theory-based approaches are mostly
suitable to study how modules are put together structurally
[1, 6–8]. Modules are represented as vertices while connections
between the modules are represented as edges. Then tools from
graph theory can be used to solve problems related to reconfig-
urable robots, such as configuration recognition [9] and motion
planning [8]. Optimization-based approaches cast the design of
a reconfigurable robot as an optimization problem with a objec-
tive function over the vector of design variables [10, 11]. The
design variables, either discrete or continuous, are subjected to
equality and/or inequality constraints. The optimization-based
approaches are suitable to address trade-offs among multiple
competing objectives. The detailed kinematics/dynamics of the
designed robots are generally either ignored or simplified in the
first two types of approaches, while the last type of approaches,
dynamic-analysis-based, puts kinematics/dynamics as the main
focus [12, 13]. Currently papers employing dynamic-analysis-

Proceedings of the ASME 2017 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE 2017
August 6-9, 2017, Cleveland, Ohio, USA

DETC2017-68049

1 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

based approaches mostly deal with arm robots [12,14] with some
exceptions dealing with mobile robots [13]. One issue with the
aforementioned approaches is their inability to allow for simul-
taneously structural and functional reconfigurations, thus greatly
restrict the potential of their robots. In this paper, we will develop
a formal framework incorporating both types of reconfigurations.
We will call such type of robots as self-evolvable robots. No-
tice that in existing literature, reconfiguration generally refers to
structural changes, i.e., units/modules change the way they con-
nect to each other mechanically. In this paper, we will adopt a
rather broader definition of reconfiguration to include functional
changes within each unit (we will focus on using changes in dy-
namics due to some physical parameters, e.g., the length of a
link, as an example of functional changes in this paper). This is
inspired by natural evolution, i.e., a biological mechanism (anal-
ogous to a robot) gradually changes its shapes and functions to
adapt to changes in the environment (analogous to changes in
missions). For the rest of the paper, we will use self-evolvable
robots and reconfigurable robots interchangeably.

This paper is organized along the line of modeling and
design as follows. Section 2 discusses the modeling of self-
evolvable robots. Section 3 formally defines the design problem.
Section 4 presents the method to solve the design problem. Sec-
tion 5 provides a case study to demonstrate our method. Section
6 concludes the paper.

2 Modeling of Self-Evolvable Reconfigurable Robots
In this section, we will first describe a list of modules that

will be used in this paper to construct self-evolvable robots. The
list is not meant to be exhaustive but mainly serves as a running
example for the rest of the paper. Next, we will introduce two
definitions, structural reconfiguration grammar (SRG) and struc-
tural reconfiguration automaton (SRA), which formally charac-
terize the way the modules are mechanically/structurally con-
nected to each other to form a robot. Then we will introduce
dynamic models of modules. Finally, we will introduce two ad-
ditional definitions, functional reconfiguration grammar (FRG)
and functional reconfiguration automaton (FRA), which formally
characterize the way to (re)configure a robot not only structurally
but also functionally.

2.1 Modules
Reconfigurable robots have the capacity to deliberately

change their own structures by adaptively rearranging the con-
nectivity of their components according to the environments
and/or task scenarios [1]. The repeatable building components
of a reconfigurable robot are called modules or mechanical units.
They usually have uniform docking interfaces allowing different
modules to connect to each other mechanically and electroni-
cally.

(a)

(b)

(c)

FIGURE 1. (a) The modules that will be used in this paper to con-
struct reconfigurable robots. They are (starting from the upper left
corner in the clockwise direction) end-effector module, joint mod-
ule, cylindrical link module, base module, and L-shaped link mod-
ule. (b) An illustrative example of a robot built from the mod-
ules. (c) The (Σ,Γ) labeled graph representation of the robot shown
in (b). The sequence of symbols representing the configuration is
BεJOεJOεJOεLεJOεLεJOεEN.

In the following text, we will describe four types of modules
as shown in Fig. 1(a). Each module has an input end denoted by
subscript 1 and an output end denoted by subscript 2. Informa-
tion comes into the module via the input end and gets out of the
module via the output end. Two coordinate frames are attached
to the two ends of the module for the purpose of characterizing
the dynamics of various parts of the robot. To illustrate the func-
tional reconfigurability, some module is associated with a design
parameter, which can be adjusted thus changing the functionality
of the module.

Joint Module: As shown by the upper middle sub-figure of
Fig. 1(a), the joint module F is modeled as a cylinder with an
axis of rotation O1O2. An input frame JO1 is attached to the
input connector/end at point O1 and an output frame JO2 is at-

2 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

tached to the output connector/end at point O2. The z-axes of the
two frames both coincide with the line O1O2 while their x and y
axes define the two end planes.

Link Module: In this paper, we define two different types of
link modules, the cylindrical link module as shown at the upper
right corner of Fig. 1(a) and the L-shaped link module at the
lower left corner of Fig. 1(a). The cylindrical link module is
modeled similar to the link module. It is a cylinder with an axis
of rotation O1O2. An input frame L1 and an output frame L2 are
attached to the two ends at point O1 and point O2, respectively,
with their Z-axes having the same direction as O1O2 and their
X- and Y-axes defining the two end planes. The L-shaped link,
on the other hand, has its input end and out end perpendicular to
each other. An input frame L1 is attached to the input end of the
module with its z-axis perpendicular to the input end plane and
its X- and Y-axes defining the input end plane. An output frame
L2 is defined similarly with respect to the output end. Each link
module has a designing parameter pL, which is the length of the
module.

End-Effector Module: The end-effector module is the func-
tional component of the robot. It has a variety of forms, i.e., a
mechanical gripper and a machine tool base. In this paper, as
shown at the upper left corner of Fig. 1(a), we will use a grip-
per as an example of the end-effector module. An input frame
EN1 is attached to its input end with its Z-axis perpendicular to
the end plane and its X- and Y-axes defining the end plane. An
output frame EN2 is defined in such a way that its origin is at the
grasping center of the fingers.

Base Module: The base module serves as the base for other
modules. As shown at the lower right corner of Fig. 1(a), an
input frame B1 is attached to the input end of the module, which
is attached to the ground, while an output frame B2 is attached
to the output end of the module in such a way that the origin
of the frame B2 is located at the center of the base, its Z-axis
is perpendicular to the output end plane, and its X- and Y-axes
define the output end plane.

A module can be connected to another one as long as the
input framework of one module coincide with the output frame-
work of the other. Of course, in order to build a functional robot,
some further requirements need to be taken into consideration,
e.g., the base module must be attached to the ground and there
must be at least one end-effector module. An example of such a
robot built from the modules is illustrated in Fig. 1(b).

2.2 Structural (Re)Configuration

In this subsection, we will present two definitions, struc-
tural reconfiguration grammar (SRG) and structural reconfigu-
ration automaton (SRA). Both of them can characterize the way
to reconfigure a robot structurally/mechanically.

2.2.1 Structural Reconfiguration Grammar (SRG)
Let’s first define (Σ,Γ) labeled graph, modified from a definition
called Σ-labeled Γ-graph in [15].

Definition 1. ((Σ,Γ) labeled graph) [15]: Let Σ and Γ be two
finite nonempty sets of node labels and edge labels, respectively.
Let G = (V,E) be a directed graph, where V is the set of nodes
and E is the set of directed edges. The graph G can be labeled
by a function l : E → (Σ,Γ) with the node labeling lV : V → Σ

and the edge labeling lE : E → Γ. The tuple 〈G,Σ,Γ〉 is called
a (Σ,Γ) labeled graph (or simply labeled graph) and denoted by
G(Σ,Γ).

Next, we will define the structural reconfiguration grammar
(SRG).

Definition 2. (Structural Reconfiguration Grammar, SRG):
A reconfiguration graph grammar SRG is a tuple SRG =
(Σ,Γ,N,P, I), where Σ is a finite alphabet of node symbols or
tokens, Γ is a finite alphabet of edge symbols or tokens, N is a
finite set of symbols called non-terminals, P is a finite set of map-
pings N→ (Σ∪Γ∪N)∗ called production rules with superscript
(·)∗ as a notation for the set of all strings over an alphabet (·),
and I ∈ Σ is the initial node symbol.

The production rules can be conveniently written in Backus-
Naur form [16], N → X1X2...Xn, where N is some non-terminal
and X1X2...Xn is a sequence of node/edge symbols and non-
terminals. A production rule indicates that N may expand to all
strings represented by the right hand side of the rule. The collec-
tion of all sequences of terminal symbols/tokens, i.e., those in Σ

or Γ, generated by the SRG is called the language of the SRG,
denoted by L(SRG)⊂ (Σ∪Γ)∗.

Example 1. (SRG for a reconfigurable, planar, multi-link ma-
nipulator robot) Given the four types of modules described in
Sec. 2.1, JO, the joint module, L, the link module, EN, the end-
effector module, and B, the base module, a SRG for a recon-
figurable, planar, multi-link robot is SRG = (Σ,Γ,N,P, I) with
(1) Σ = {JO,L,EN,B}, the collection of modules; (2) Γ = {ε}
meaning that there is no restriction on the way one module is
connected to another one; (3) N is the collection of (Σ,Γ) labeled
graphs with each element corresponding to a structural configu-
ration of the robot; (4) P : N → B|NεJO|NεL|NεEN character-
izing how the robot is configured; and (5) I = B. An illustration
is shown in Fig. 1(c).

The structural reconfiguration grammar (SRG) can be de-
fined alternatively as follows:

Definition 3. (Structural Reconfiguration Grammar, SRG, Al-
ternative Definition): A reconfiguration graph grammar SRG is
a tuple SRG = (Z,N,P, I), where Z = {Σ,Γ} is a finite alphabet
of symbols or tokens, P is a finite set of mappings N→ (Z∪N)∗

3 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

called production rules, and the others have the same meanings
as in Definition 2.

2.2.2 Structural Reconfiguration Automaton
(SRA) Context-free grammars (CFGs), such as those in
Definition 2 and Definition 3, have equivalent representations
as pushdown automata (PDA) which recognize the language of
the grammar [16]. A pushdown automaton is a automaton with
a stack, which provides the automaton with memory. The au-
tomaton corresponding to SRG, called structural reconfiguration
automata (SRA), can be defined as follows:

Definition 4. (Structural Reconfiguration Automaton, SRA):
A reconfiguration graph automaton SRA is a tuple SRA =
(Q,Z,δ ,Q0,A), where Q is a finite set of states, Z is a finite al-
phabet of symbols/tokens, δ : Q×Z→ Q is the transition func-
tion, Q0 is the initial state, A ∈ Q is the set of accept states.

Let SRA = (Q,Z,δ ,Q0,A) be a SRA and ω = z1...zn ∈ Z∗

a finite word. A run for ω in SRA is a finite sequence of states
q0q1...qn such that: (i) q0 ∈Q0; (ii) qi→zi+1 qi+1 for all 0≤ i < n
where→. is defined by the transition δ as q→z q′ if and only if
q′ ∈ δ (q,z). Runs q0q1...qn is called accepting if qn ∈ A. A
finite word ω ∈ Z∗ is called accepted by SRA is there exists an
accepting run for ω . The accepted language of SRA, denoted by
L(SRA), is the set of finite words in Z∗ accepted by SRA, i.e.,
L(SRA) = {ω ∈ Z∗| there exists an accepting run forω in SRA}.

The idea behind the construction of a PDA from a CFG is
to have the PDA simulate the sequence of left- or right-sentential
forms that the grammar uses to generate a given terminal string
ω [16–18]. For a reconfiguration graph grammar SRG, there is
a unique equivalent reconfiguration graph automaton SRA such
that L(SRG) = L(SRA). For a given SRG SRG = (Z,N,P, I), its
equivalent SRA SRA = (Q,Z,δ ,Q0,A) is constructed as follows:
(1) Q = (N ∪ Z)∗; (2) they share the same Z; (3) q′ ∈ δ (q,z)
if q → q′ = qz is a production rule with q ∈ N, z ∈ Z, and
q′ ∈ (N ∪ Z)∗; (4) Q0 = I; and (5) A = Z∗. Even though SRA
and SRG are equivalent, they can be used for different purposes.
For instance, SRG, given its constructive form, is more intuitive,
while SRA, given its automaton format, is easier to be integrated
with other formal verification and synthesis techniques, such as
model checking [17].

Example 2. (SRA of the reconfigurable robot in Example 1)
Part of the SRA of the reconfigurable robot illustrated in Exam-
ple 1 and Fig. 1(a) is shown in Fig. 2. A state of the SRA
corresponds to a labeled graph representation of a structural con-
figuration with only one initial state q0 = B, i.e., the the base
module. A transition between two states represents the addition
or removal of a module. For instance, the transition from q0
to q1 represents to connection of a joint module JO to the base
module B. To specify the requirement that a functional robot

FIGURE 2. Part of the reconfiguration graph automaton (SRA) of the
reconfigurable robot illustrated in Example 1 and Fig. 1(c). The initial
state q0 is indicated by having an incoming arrow without source. The
accept states are indicated by double circles. The red nodes and edges
indicate the accepted run to construct the robot in Fig. 1(c).

must have an end-effector, we restrict the set of accept states
to A = {ω ∈ Z∗|∃i, such that ωi = EN}, i.e., at least one of the
modules need to be an end-effector module. An example of such
accept states is q f in Fig. 2. The steps to construct a robot struc-
turally can then be represented as an accepted run of the corre-
sponding SRA as shown in the figure.

2.3 Models of Modules
Each module of a reconfigurable robot has a unique func-

tion, which depends on some continuous or discrete design pa-
rameters, e.g., the dimension of the module. For instance, the
length of a link module of a robot determines the configuration
space of the robot, i.e., whether a certain position and orienta-
tion can be achieved. Here we introduce a definition of modules
as one of the modeling bases to allow a robot to reconfigure not
only its structure but only its functions, i.e., the set of design
parameters.

Definition 5. (Model of Modules): The function of a modules
σ ∈ Σ is defined as a parametric controlled dynamical system

4 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Fσ = (Xσ ,Ξσ ,Uσ , fσ), where Xσ ⊂ Rn is the state space, Ξσ ⊂
R

p is the parameter space, Uσ ⊂ R
m is the control space, fσ :

Xσ ×Ξσ ×Uσ → Xσ is an analytic vector field, assumed to be
sufficiently smooth, and n, p, m are the dimensions of Xσ , Ξσ

and Uσ , respectively.

Notice that the modules are controlled not autonomous,
meaning that a designer or the robot itself has the freedom to
specify a control policy uσ ∈Uσ for a module σ .

2.4 Functional (Re)Configuration
The models of modules, combined with the concept of SRG,

lead naturally to the following concept called Functional Recon-
figuration Grammar (FRG):

Definition 6. (Functional Reconfiguration Grammar, FRG):
A functional reconfiguration grammar FRG is a tuple FRG =
(N,Z,P,F, I), where N, Z, P and I are defined the same as in Def-
inition 3 and F := {Fσ ,σ ∈ Σ} with each Fσ defined the same as
in Definition 5.

Given a set of modules with their dynamics described by
parametric dynamical systems (Definition 5) and as a grammar,
structural reconfiguration grammar (SRG) in our case, describ-
ing how these modules can be structurally connected, the above
definition gives rise to a range of dynamics that can emerge from
the whole robots. Such dynamics can be considered as the results
of the semantic interpretation of the syntax of the functional re-
configuration grammar (FRG), i.e., given a production rule in
the corresponding SRG, a semantic rule can be generated by a
parser; applying a sequence of production rules in SRG gives the
structural configuration of the robot, while applying the corre-
sponding sequence of semantic rules of the corresponding FRG
gives the functional configuration (the dynamics in our case) of
the robot. The aforementioned points can be best understood
with an example.

Example 3. (FRG of the reconfigurable robot in Example 2)
The linearized dynamic model of a reconfigurable robot con-
structed in Example 2 can be described as follows:

[M]{ẍ}+[C]{ẋ}+[K]{x}= {T}−{F} (1)

where

{x}= {4q}T ; [M] = [E2]
T [E2]

[C] = [E2]
T [E1]+ [Ė2]

T [E2]+ [E2]
T [Ė2]− [E1]

T [E2]
[K] = [Ė2]

T [E1]+ [E2]
T [Ė1]− [E1]

T [E1]
{T}= {4τ}T

{F}= [Ė2]
T [E0]+ [E2]

T [Ė0]− [E1]
T [E0]

with 4q as the vector of perturbed link poses and 4τ as the
vector of perturbed torques [19].

Here a set of semantic rules can be introduced to construct
the matrix E for the set of production rules in structural recon-
figuration grammar (SRG). Specifically, if the production rule is
N → NεJO, i.e., the newly added module is a joint, then E will
be kept the same; if the production rule is N → NεL, i.e., the
newly added module is a link; let’s call the new link as the n-th
link and index existing ones as 1-st link, 2-nd link and so on,
according to the order they are added, then E will be updated as
follows:

[Ei0] =

{
∑

i
l=1−Ll q̇0l sinq0l

∑
i
l=1 Ll q̇0l cosq0l

}
[Ei1] =

[
−L1q̇01 cosq01 −L2q̇02 cosq02 · · · −Liq̇0i cosq0i
−L1q̇01 sinq01 −L2q̇02 sinq02 · · · −Liq̇0i sinq0i

]
[Ei2] =

[
−L1 sinq01 L2 cosq02 · · · −Li sinq0i
L1 cosq01 L2 cosq02 · · · Li cosq0i

]
(
[Ek]

T [El]
)

n
=
(
[Ek]

T [El]
)

n−1
+Ln[Enk]

T [Enl]

where Li is the length of the i-th link with i = 1, ...,n and k, l =
0,1,2, k ≥ l.

An automaton, called functional reconfiguration automaton
(FRA), that is equivalent to a functional reconfiguration grammar
(FRG), can be constructed similar to the way that a structural re-
configuration automaton (SRA) is constructed from a structural
reconfiguration grammar (SRG). We are going to omit the defi-
nition here to save space.

3 Design Problem Statement
The robot’s workspace can be represented by a set of poly-

topes P = {Pi, i = 1, ..., p}. Each polytope Pi is assigned with an
atomic proposition πi ∈ Π = {πt ,πo,π f }, where πt , πo and π f
stand for “target region”, “obstacle region” and “free region”, re-
spectively. The adjacency relationship among the polytopes can
be encoded by an adjacency matrix N = [Ni, j, i, j = 1, ..., p] with
Ni, j as one if polytope i and polytope j are neighboring regions,
zero otherwise. Finally, there is a projection function H : X→Π

which maps a robot’s state to its corresponding atomic proposi-
tion.

Problem 1. Given a functional reconfiguration grammar
FRG = (N,Z,P,F, I) and a workspace description W =
(P,H ,N), find a finite sequence of symbols ω = z1...zn ∈ Z∗

and a finite sequence of parameters θω = θz1 ...θzn with θzi ∈Θzi

such that: (i) ω is accepted by the corresponding SRG; (ii) there
exists a trajectory x0, ...,xk of the robot built in accordance with
ω and θω , satisfying the following formula φ :

H (xk) = πt ∧k−1
i=0 H (xi) = π f ∧k−1

i=0 N(H (xi),H (xi+1)) = 1.
(2)

5 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Remark 1. The above formula essentially specifies a motion
planning (pick-and-place) problem, i.e., the constructed robot
should be able to move from a starting region to the target re-
gion while in the meantime avoiding all obstacles. Such a way
of specifying the problem may seem awkward. There are two
reasons for such a choice: one is to enable us to use off-the-shelf
solvers to find a feasible path, and the other one is to keep the
option open for future extensions. For instance, we are inter-
ested in using richer logic specifications, such as linear temporal
logic [17] and signal temporal logic [20, 21], in the future.

Remark 2. Solving the problem requires solving the following
two sub-problems. The first one is a structural synthesis problem.
We need find an ω such that it is accepted by the corresponding
SRG, meaning that we need to build a robot that is structurally
feasible, e.g., it must start from a base and end up with an effec-
tor. The solution of this sub-problem is a robot with its structural
configuration fixed, i.e., the set of selected modules and the way
they are connected to each other are determined. The second sub-
problem is a functional synthesis problems, involving selecting
a parameter θzi for each module Fzi in such a way that a feasible
trajectory can be generated by the constructed robot. Notice that
since each module is modeled as a parametric controlled dynam-
ical system, even after the parameters have been chosen for all
the modules, we still need to to check whether there exists a con-
trol policy to solve the problem. The first sub-problem is an easy
one, given the formulation of the definition of SRG or SRA. So
next we are going to focus on solving the second sub-problem.

4 Functional Synthesis
Before embarking upon presenting the solution to the func-

tional synthesis problem, let’s first introduce a concept called
configuration robustness.

4.1 Configuration Robustness
Once the structural (encoded by ω , see Problem 1) and func-

tional (encoded by θω , see Problem 1) configuration of a robot
has been determined, the dynamics of the robot will be deter-
mined as well, as demonstrated by the Example 3. The equation
describing such dynamics, e.g., Eqn. (1), can be written in its
state space form as follows:

xi+1 = A(xi)xi +B(xi)ui. (3)

Definition 7. (Configuration Robustness): Given a configura-
tion (ω,θω), a workspace description W = (P,H ,N), a finite
trajectory of the corresponding robot x̄ = x0, ...,xk, and a formula
φ , e.g., Eqn. (2), the configuration robustness ρ is defined as

follows:

ρ(ω,θω ,W , x̄,φ) = max u0, · · · ,uk−1 ∈ Rm

v0, · · · ,vk−1 ∈ Rm

(−max su
0, · · · ,su

k−1 ∈ R
sv

0, · · · ,sv
k−1 ∈ R

(su
0 + sv

0,s
u
1 + sv

1, · · · ,su
k−1 + sv

k−1))

subject to

(C.1) H (x̄) |= φ ;
(C.2) xi+1 = A(xi)xi +B(xi)ui +B

′
vi, i = 0, · · · ,k−1;

(C.3) ‖ ui ‖≤ u+ su
i , i = 0, · · · ,k;

(C.4) ‖ vi ‖≤ sv
i , i = 0, · · · ,k;

(C.5) 0≤ sv
i , i = 0, · · · ,k;

(C.6) ε

(
i−1
∑

l=0
su

l + sv
l

)
≤ su

i + sv
i , i = 1, · · · ,k.

C.1 says that the trajectory x̄ must satisfy the specification φ . C.2
says that x̄ is a feasible trajectory of the robot. B

′
is a matrix to

make [B(xi),B
′
] surjective. vi is an additional control input. C.3,

C.4, and C.5 constrain the input ui and the additional input vi by
slack variables su and sv. These slack variables are added to relax
the dynamics constraints. u is a bound on the magnitude of the
control input. Finally, CR.6 provides a user specified bound ε on
the slack variables.

Theorem 1. Given two structural configurations ω1 and ω2
with ω1 = ω2z, i.e., ω2 is a prefix of ω1, then the following rela-
tionship holds:

ρ(ω1,θ
∗
ω1
,W , x̄,φ)≥ ρ(ω2,θ

∗
ω2
,W , x̄,φ)

where θ ∗ω1
and θ ∗ω2

are the optimal parameters for the two struc-
tural configurations ω1 and ω2, respectively, in term of configu-
ration robustness.

Proof. The proof of this theorem can be found in the Arxiv ver-
sion of the paper [22].

Theorem 2. Given a functional reconfiguration grammar
FRG = (N,Z,P,F, I) and a workspace description W =
(P,H ,N), there is a solution to Problem (1) if and only if there
exists an ω , a θω , and a trajectory x̄ generated by the robot built
in accordance with ω and θω , such that

ρ(ω,θω ,W , x̄,φ)≥ 0

Proof. The proof of this theorem can be found in the Arxiv ver-
sion of the paper [22].

6 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Algorithm 1: Correct-by-Construction for Self-Evolvable
Reconfigurable Robots

Input:
Workspace description W = (P,H ,N), a functional
reconfiguration grammar FRG, an initial configuration q0
of the FRG

1: ω = q0
2: W ∗ =WS.Abstraction(W);
3: while No feasible trajectory has been found do
4: κ = SAT (P∗,H ∗,N∗) (P.Planning);
5: θ ∗ω = argmax[ρ(ω,θω ,W ∗, x̄,κ)] (P.Synthesis);
6: if ρ(ω,θ ∗ω ,W , x̄,κ)< 0 then
7: φc =CounterExample;
8: κ = κ ∧φc;
9: if κ := /0 then

10: ω = S.Synthesis(ω);
11: else
12: break;
13: return Configuration ω,θω .

Our proposed algorithm to solve Problem 1 is briefly out-
lined in Algorithm 1. It involves solving three main sub-
problems. The first problem is a path planning problem
(P.Planning): given certain abstraction of the workspace, it finds
a path κ = (κ0, ...,κk) satisfying

κ0 = κ̄ ∧κk = πt ∧k−1
i=1 κi = π f (4)

where κ̄ is the starting region, πt is the target region, and π f
is a free region. Essentially the problem entails finding a path
from the starting region to the target region while avoiding all
obstacles. The second problem is a parameter synthesis problem
(P.Synthesis): given a path κ and the current structural configura-
tion ω of the robot, it finds an optimal parameter θω to optimize
the configuration robustness (refer to Theorem 2 for the ratio-
nale). Finally, we need to solve a structural synthesis problem
(S.Synthesis), i.e., to find the next structural configuration to be
considered. The last problem is an easy one as mentioned. So
we are going to focus on solving the other two problems.

4.2 Path Planning
Before solving the path planning problem, we first abstract

the description of the workspace W = (P,H ,N) further by using
the technique described in [23]. The corresponding function in
Algorithm (1) is WS.Abstraction. The end result is a coarse ab-
straction of the workspace. Each region Wi is a polytope, math-
ematically specified by a set of linear constraints CWix ≤ bWi .
Notice that such an abstraction is a refinement of the original de-
scription of the workspace. Thus the original proposition of a

region should be inherited, i.e., if W j is a refinement of Pi, then
πW j = πPi .

Notice that propositions attached to the regions are atomic.
Furthermore, the path planning specification, Eqn. (4), is writ-
ten in propositional logic. Thus given the abstraction of the
workspace, W ∗, off-the-shelf SAT solvers can be used to effi-
ciently solve the path planning problem [24]. The corresponding
function in Algorithm 1 is SAT . In the future, we are planning
to replace the specification with richer ones, such as those writ-
ten in linear temporal logic [17]. In that case, SMT solvers are
needed [25].

4.3 Parameter Synthesis
According to Theorem 2, the parameter synthesis problem

(P.Synthesis in Algorithm 1) entails to an optimization problem,
i.e., given the current structural configuration ω of the robot, a
workspace description W = (P,H ,N) (after the abstraction),
and a path κ = (κ0, ...,κk) computed by the path planning al-
gorithm (P.Planning), find a parameter θω as well as its corre-
sponding control policy uk−1

0 (subjected to the constraint that
|ui| ≤ ū, i = 0, ...,k− 1) such that the configuration robustness
ρ(ω,θω ,W ∗, x̄,κ) is maximized.

Notice that once a parameter has been selected, the config-
uration and subsequently the dynamics of the robot will be de-
termined. Provided with different parameters, the corresponding
control policies, if they exist, will be different. Thus the parame-
ter synthesis requires solving two problems iteratively:

(i) Given a parameter θ , a workspace description W =
(P,H ,N), and a path κ = (κ0, ...,κk), find whether there
exists a control policy uk−1

0 for the robot to track the path
without colliding with the obstacles.
(ii) Find the next parameter to optimize ρ(ω,θω ,W ∗, x̄,κ).

For the first problem, since, in this case, the structural con-
figuration ω is fixed and the functional configuration (described
by the parameter θω) is fixed as well. According to the semantics
of functional reconfiguration grammar (FRG), the two configura-
tions together will give rise to the dynamics of the robot, which
can be linearized (see Eqn. (3) for a simple example). More-
over, the workspace is described by a set of linear inequalities,
CWix ≤ bWi . In summary, the first problem is linear and can be
efficiently solved by linear programming algorithms.

The second problem is more challenging and interesting.
There is no closed form solution for ρ(ω,θω ,W ∗, x̄,κ) even for
simple configurations. The only way any information can be ob-
tained regarding a particular parameter θω is to first of all solve
the control synthesis problem (the aforementioned problem (i))
and then find out its corresponding robustness. Essentially we are
trying to solve a global optimization problem with an unknown
objective function ρ . Such kind of problems can be solved by
using particle swarm optimization [26], Nelder-Mead [27], sim-

7 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

ulated annealing [28], and stochastic gradient descent algorithm
[20], etc. But it is worth pointing out that many of these tech-
niques may suffer from slow convergence.

To facilitate the convergence rate of the optimization, we use
an active learning algorithm called Gaussian Process Adaptive
Confidence Bound (GP-ACB) developed by our group in [29]:

θt = argmaxθ∈Θmt−1(θ)+ηm(θ)
1
2 β

1
2

t σt−1(θ), (5)

where t is the current step; Θ is the search space; βt is a function
of t and independent of θ ; mt−1(.) and σt−1(.) are the mean and
covariance functions of a Gaussian process, which is unknown
and characterize the underlying configuration robustness func-
tion ρ , respectively; θt is the instance that will be inquired at step
t, meaning the label of θt will be obtained from the oracle (in our
case, the first problem, i.e., the control synthesis problem, will be
solved and the corresponding configuration robustness will be re-
turned); ηm(θ) normalizes the mean mt−1(θ) and can be written
explicitly as

ηm(θ) =
mt−1(θ)−min(mt−1(θ))

max(mt−1(θ))−min(mt−1(θ))
.

In the algorithm, ηm(θ) acts as an adaptive factor to uncer-
tainty (covariance) and favors exploration directions associated
with increasing rewards. We have shown in [29] theoretically
that GP-ACB outperforms many state-of-the-art active learning
algorithms with similar settings, e.g., GP-UCB. We have also
shown empirically that GP-ACB outperforms many state-of-the-
art sampling based optimization algorithms, e.g. Nelder-Mead,
by an average of 30 to 40 percent faster.

If the optimal configuration robustness for the current struc-
tural configuration is negative, meaning that there is no feasible
solution regardless of the functional configuration and the con-
trol policy, we will relax the current configuration by adding an-
other module (remember that we have shown in Theorem 1 that
doing this will always improve the optimal configuration robust-
ness). Moreover, the found counter-example φc will be added to
the current path specification κ to prone the search space for the
path planning algorithm.

5 Case Study
The following case study is based on the functional reconfig-

uration grammar FRG constructed in the first three examples and
a workspace as shown in Fig. 3(a). In the workspace, there is an
obstacle region shown in red and a target region shown in green.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Workspace

0 10 20 30 40 50 60 70 80 90

Time

-1

-0.5

0

C
o
n
tr

o
l
in

p
u
t
τ

1

0 10 20 30 40 50 60 70 80 90

Time

-2

-1

0

1

C
o
n
tr

o
l
in

p
u
t
τ

2

(b) Control policy

FIGURE 3. (a) The workspace. The obstacle region is shown in red
while the target region is shown in green. The blue line is the path κ

obtained by using the SAT solver while the red line is the actual robot
trajectory x̄. (b) The associated control policy for two links, the first one
of length L1 2.23 and the second one of length L2 3.35.

The two regions can be mathematically described as follows:


−1 0
1 0
0 −1
0 1

[xo
yo

]
≤


−1.7

3
−2
3

 ;


−1 0
1 0
0 −1
0 1

[xt
yt

]
≤


−3.5
4.2
−3.8
4.5



8 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

We further set ū, the bound on the magnitude of the control input,
to 10.

Essentially, we are given a set of modules and a workspace;
we need to construct a robot by (i) selecting and connecting mod-
ules (structural configuration); and (ii) selecting appropriate pa-
rameters (in our case, the lengths of a link) for each module
(functional configuration), such that the constructed robot is able
to steer from the initial region to the target region while avoiding
the obstacle.

Once the workspace has been abstracted (WS.Abstraction
in Algorithm 1), the SAT-solver (P.Planning in Algorithm 1) is
applied to find a path κ as shown by the blue line in Fig. 3(a).
The path κ consists of a sequence 81 rectangular regions, i.e.,
k = 81. Associated with each region is a set of linear inequalities.

It is quite obvious that there is no way for a robot with only
one link to move from the starting region to the target region
without hitting the obstacle. We are able to confirm this observa-
tion by using our algorithm. Basically, the linear program algo-
rithm and the active learning algorithm, GP-ACB, are combined
to solve the parameter synthesis problem (C.Synthesis in Algo-
rithm 1) and we are unable to get a solution, i.e., a parameter
resulting positive configuration robustness.

Thus, the structural configuration of the robot is relaxed. Ac-
cording to the production rules, the structural reconfiguration au-
tomaton (SRA) will transit to the next state, which corresponds a
robot with two links. According the semantics of the correspond-
ing functional reconfiguration grammar (FRG), the dynamics of
the two-linked manipulator is as follows:

d
dt


M θ1
M θ2
M θ̇1
M θ̇2

=


0 0 1 0
0 0 0 1

-E/D 0 0
0 0



M θ1
M θ2
M θ̇1
M θ̇2

+


0 0
0 0

1/D

[M τ1
M τ2

]
(6)

with

D =

[
l3
1+l3

2+3l2
1 l2

3 + l2
2 l1cos(θ2)

l3
1
3 +

l2
2 l1
2 cos(θ2)

l3
1
3 +

l2
2 l1
2 cos(θ2)

l3
2
3

]

E =

[
0 0
0 0

]
.

Then a parameter synthesis problem (C.Synthesis in Algo-
rithm 1) is solved and we are able to find a solution as shown
by the red trajectory as shown in Fig. 3(b). The correspond-
ing control policy is shown in Fig. 3(b). The parameters are
found by using the GP-ACB algorithm to optimize the configu-
ration robustness over the two parameters, l1 and l2, the lengths
of the two links (their relationship is shown in Fig. 4.). They are
θ ∗1 = L∗1 = 2.23 and θ ∗2 = L∗2 = 3.35, respectively.

3.8744

4.7771

4.
77

71

5.6798

5.
67

98

6.5825

6.
58

25

7.4851

7.4851

8.3878

8.3878

2.5 3 4 4.53.5
L

1

2.5

3

3.5

4

4.5

 L

2

FIGURE 4. The relationship between the configuration robustness
and the two parameters L1 and L2 for a robot with two links.

6 Conclusion
The paper presents a new way of modeling and designing

reconfigurable robots. We propose a series of concepts, includ-
ing structural reconfigurable grammar, structural reconfigurable
automaton, and functional reconfigurable grammar, to formally
characterize how a reconfigurable robot can be configured and
re-configured not only structurally but also functionally. Further-
more, we propose a correct-by-construction design strategy of
utilizing such models. We demonstrate with a planar multi-link
manipulator and a pick-and-place task as an example to show
how such a strategy works.

REFERENCES
[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll,

H. Lipson, E. Klavins, and G. S. Chirikjian, “Modu-
lar self-reconfigurable robot systems [grand challenges of
robotics],” IEEE Robotics & Automation Magazine, vol. 14,
no. 1, pp. 43–52, 2007.

[2] H. Ahmadzadeh, E. Masehian, and M. Asadpour, “Modular
robotic systems: Characteristics and applications,” Journal
of Intelligent & Robotic Systems, vol. 81, no. 3-4, pp. 317–
357, 2016.

[3] K. Harada, E. Susilo, A. Menciassi, and P. Dario, “Wireless
reconfigurable modules for robotic endoluminal surgery,”
in Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on. IEEE, 2009, pp. 2699–2704.

[4] A. C. Satici, A. Erdogan, and V. Patoglu, “Design of a re-
configurable ankle rehabilitation robot and its use for the
estimation of the ankle impedance,” in 2009 IEEE Inter-

9 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

national Conference on Rehabilitation Robotics. IEEE,
2009, pp. 257–264.

[5] A. M. Farid and L. Ribeiro, “An axiomatic design of a
multi-agent reconfigurable manufacturing system architec-
ture,” in International Conference on Axiomatic Design,
2014, pp. 1–8.

[6] N. Eckenstein and M. Yim, “Modular reconfigurable
robotic systems: Lattice automata,” in Robots and Lattice
Automata. Springer, 2015, pp. 47–75.

[7] J. Neubert and H. Lipson, “Soldercubes: a self-soldering
self-reconfiguring modular robot system,” Autonomous
Robots, vol. 40, no. 1, pp. 139–158, 2016.

[8] C. Sung, J. Bern, J. Romanishin, and D. Rus, “Reconfigu-
ration planning for pivoting cube modular robots,” in 2015
IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2015, pp. 1933–1940.

[9] M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic
configuration recognition methods in modular robots,” The
International Journal of Robotics Research, vol. 27, no. 3-
4, pp. 403–421, 2008.

[10] G. Freitas, G. Gleizer, F. Lizarralde, L. Hsu, and N. R. S.
dos Reis, “Kinematic reconfigurability control for an envi-
ronmental mobile robot operating in the amazon rain for-
est,” Journal of Field Robotics, vol. 27, no. 2, pp. 197–216,
2010.

[11] S. Ferguson, A. Siddiqi, K. Lewis, and O. L. de Weck,
“Flexible and reconfigurable systems: Nomenclature and
review,” in ASME 2007 International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechani-
cal Engineers, 2007, pp. 249–263.

[12] A. L. Balmaceda-Santamaría, E. Castillo-Castaneda, and
J. Gallardo-Alvarado, “A novel reconfiguration strategy of
a delta-type parallel manipulator,” International Journal of
Advanced Robotic Systems, vol. 13, 2016.

[13] L. Cucu, M. Rubenstein, and R. Nagpal, “Towards self-
assembled structures with mobile climbing robots,” in 2015
IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2015, pp. 1955–1961.

[14] A. M. Djuric, R. Al Saidi, and W. ElMaraghy, “Global kine-
matic model generation for n-dof reconfigurable machinery
structure,” in 2010 IEEE International Conference on Au-
tomation Science and Engineering. IEEE, 2010, pp. 804–
809.

[15] F. Reiter, “Distributed graph automata,” in Proceedings of
the 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). IEEE Computer Society, 2015,
pp. 192–201.

[16] A. Aho and J. D. Ullman, “Introduction to automata theory,
languages and computation,” 1979.

[17] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of
model checking. MIT press, 2008.

[18] N. Dantam and M. Stilman, “The motion grammar: Analy-
sis of a linguistic method for robot control,” IEEE Transac-
tions on Robotics, vol. 29, no. 3, pp. 704–718, 2013.

[19] W. Chen, “Dynamic modeling of multi-link flexible robotic
manipulators,” Computers & Structures, vol. 79, no. 2, pp.
183–195, 2001.

[20] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learn-
ing and detection of anomalous behavior,” IEEE Transac-
tions on Automatic Control, in press.

[21] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta,
“Q-learning for robust satisfaction of signal temporal logic
specifications,” in Decision and Control (CDC), 2016 IEEE
55th Conference on. IEEE, 2016, pp. 6565–6570.

[22] G. Chen and Z. Kong, “Correct-by-construction for self-
evolvable robots,” Arxiv.

[23] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic
deployment of robotic teams,” IEEE Robotics & Automa-
tion Magazine, vol. 18, no. 3, pp. 75–86, 2011.

[24] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, G. J. Pappas, and P. Tabuada,
“Scalable motion planning using lazy smt-based solving,”
pdfs.semanticscholar.org, 2016.

[25] A. Komuravelli and et.al, “Smt-based model checking for
recursive programs,” in International Conference on Com-
puter Aided Verification. Springer, 2014, pp. 17–34.

[26] I. Haghighi, A. Jones, Z. Kong, E. Bartocci, R. Gros, and
C. Belta, “Spatel: a novel spatial-temporal logic and its
applications to networked systems,” in Proceedings of the
18th International Conference on Hybrid Systems: Compu-
tation and Control. ACM, 2015, pp. 189–198.

[27] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Min-
ing requirements from closed-loop control models,” in Pro-
ceedings of the 16th international conference on Hybrid
systems: computation and control. ACM, 2013, pp. 43–
52.

[28] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and
C. Belta, “Temporal logic inference for classification and
prediction from data,” in Proceedings of the 17th inter-
national conference on Hybrid systems: computation and
control. ACM, 2014, pp. 273–282.

[29] G. Chen, Z. Sabato, and Z. Kong, “Active learning based
requirement mining for cyber-physical systems,” in Deci-
sion and Control (CDC), 2016 IEEE 55th Conference on.
IEEE, 2016, pp. 4586–4593.

10 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

