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Abstract—Fault diagnosis with formal languages can be per-
formed in an interpretable way. However, traditional formal
languages cannot deal with noisy environments. Additionally,
finding the optimal formal language for fault diagnosis is still
a challenge due to the sparse reward issue. This paper presents
a novel method to find formal languages, written with signal
spectral logic (SSL), to describe the fault behaviours among
frequency domain for fault diagnosis. The formal language
defined by SSL is robust to noise, acts as the fault diagnoser,
and provides interpretabilities for human operators. Moreover,
the fault diagnoser construction procedure has been formulated
as a language generation process and an adversarial training
technique is used to find the optimal formal language and avoid
sparse reward issue existing in language generation problems.
Some experiments with real rolling element bearing data and
simulated signals demonstrate that our method is able to find
formal languages to diagnose faults efficiently and accurately
under noisy environments.

Index Terms—Adversarial training, fault diagnosis, language
generation, long short-term memory network, spectral logic.

I. INTRODUCTION

Modern industrial systems grow increasingly complex and
large-scale, and because of that, the fault diagnosis becomes
more critical than the past [1]-[3] as the systems’ reliabilities
and availabilities suffer when faults accumulate. The goal of
a fault-diagnosis system is to rapidly detect and determine
the root causes of faults based on the obtained information,
such as sensor data and the system model. Real-time fault
detection and diagnosis have many benefits, such as preventing
catastrophic failures, enhancing safety and reliability, positive
economic and environmental impacts. Moreover, the inter-
pretabilities of fault-diagnosis process is significantly impor-
tant for timely responses to the faults occurring in the system
[4]. For example, for the task of bearing condition monitoring
for a wind turbine in [5], the monitoring system was able to
detect deterioration of bearings and found that it’s the high
temperature causing the faults. Thus human experts can then
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deduce that the high temperature was due to insufficient or
inefficient lubricant properties with his domain knowledge.

In this work, we define a formula language, called signal
spectral logic (SSL), to describe the fault events among a
system for fault diagnosis with real time-series data. SSL is a
formal language to specify frequency domain behaviours of the
systems to be diagnosed, which is inspired by signal temporal
logic (STL). SSL is defined over spectral kurtosis, which is
robust to noise [6], and provides interpretability for the fault
diagnosis results. It gives an explanation about the diagnosis
process with spectral events occurring among the system. For
instance, SSL can explain the fault diagnosis process for a
rolling element bearing as “the out race of the bearing is
faulty because whenever there exists a frequency resonance
mode, whose amplitude is larger than 0.3, there exists another
frequency resonance mode, whose amplitude is larger than 0.3
within the next 150 Hz.” Additionally, we present a language
generation framework with an adversarial training technique
to generate the optimal formal languages for fault diagnosis,
which borrows the idea of language generation in natural
language processing field to avoid the sparse reward issue
during formal language construction process. Moreover, using
the adversarial training technique will increase the robustness
of the learning results with respect to noise and improve the
fault diagnosis accuracy [7], [8].

A. Related Works

Recently, there has been increasing interests in applying
temporal logic, a kind of formal language for fault detection
and diagnosis and have obtained good performance [9], [10].
Fault diagnosis with temporal logic belongs to data-driven
approaches, but the diagnosis procedure is interpretable, thus
avoids the interpretability issues of traditional data-driven
methods. Similar to natural language, formal languages de-
fined by temporal logic formulas (can be seen as sentences)
describe temporal patterns between events in a form close to
human’s way of reasoning. Therefore, many temporal logic-
based formal languages have been applied to monitoring tasks,
such as first-order temporal logic [11], metric temporal logic
[12], linear temporal logic [13] and signal temporal logic
(STL) [14]. Among these methods, STL is defined over the
continuous state, makes it suitable for describing continuous-
state systems. The basic idea of monitoring with STL is
learning an STL formula to describe the normal behaviour of
the system. The status of the system is checked by passing the
signal of the system to the learned formula. When the signal
satisfies the formula, we say the system is normal. Otherwise,
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a fault alarm is triggered. However, since real systems usually
work in a noisy environment, and STL is brittle to noise,
applying STL to systems with noise is a challenge.

Another challenge of applying formal language to fault
diagnosis is to find the optimal formula (sentence). There
are mainly two categories of techniques to learn a formula
defined by a formal language. The first category assumes the
structure of the formula was given, usually defined by experts,
but with unknown parameters [15]. Under this assumption,
the problem is transformed into an optimization problem. The
goal is to find the optimal parameters, such that the generated
formula could classify the time-series data for monitoring
tasks. However, this assumption is too conservative for many
real complex systems, since it is hard for experts to define
the formula structures. Therefore, the second category relaxes
the assumption and attempts to infer a discriminating formula
without specifying its structure [9]. The investigation of this
scenario is similar to natural language generation: Given a set
of atom formulas (words in natural language), the goal is to
choose a set of words in a right order, such that the words
can construct a formula (sentence in natural language) that
classifies the time-series data correctly. Many approaches have
been proposed to generate STL formulas for monitoring tasks.
For example, the method in [16] tried all combinations of basic
formulas according to a predefined order and selected the best
one. Nevertheless, this method suffered from a combinatorial
explosion issue. To reduce the computational complexity, the
author in [9] formulated the formula generation problem as a
Markov decision process and solved it with a reinforcement
learning (RL) algorithm. A main drawback of learning based
methods is that the reward is only available when the entire
formula is generated. For example, when we need to generate
a sentence with length of N, we do not receive any reward
when we generate the first N — 1 words until we compete the
sentence. In the other words, the language generation problem
has a sparse reward, and this issue becomes extremely serious
when we need to generate a long formula (will be discussed in
detail in Section II-B). Also, the scalar reward received when
the formula has been completed is non-informative as it does
not necessarily preserve the picture about the intermediate
syntactic structure and semantics of the formula that is being
generated for the learning algorithm.

B. Contributions and Advantages

This paper proposes a novel formal language, namely SSL,
to define the properties of signals in frequency domain for fault
diagnosis. Compared with STL, SSL describes the spectral
properties of the signals instead of temporal properties. Since
many systems’ faults signals are contaminated by noises and
can only be detected in frequency domain, the proposed
formula language is suitable for these systems. To apply
SSL to fault diagnosis scenarios, we focus on generating
SSL formulas to discriminate different faulty scenarios with
time-series data via adversarial training, in which we allow
the discriminator to provide richer information about the
current incomplete formula to the generator, thus the learning
algorithm can get reward at every step of extending the current

formula, not only at the last step, thus avoid the sparse reward
issue. In summary, the major contributions of this paper are
as follows:

1) Signal spectral logic for fault diagnosis: We propose a
novel formal language, called SSL, which is suitable to
describe the spectral properties of time-series data and
diagnose the fault for rotational machines. The proposed
language provides interpretation for the fault diagnosis
results, and is robust to noisy environments.

2) Formal language generation framework: We propose
an adversarial training framework to generate SSL for-
mulas (sentences) for fault diagnosis, which addresses
the sparse reward issue of formal language generation
problems. Some experimental results demonstrate our
method outperforms state-of-the-art methods for gener-
ating long sentences in terms of efficiency and accuracy.

This paper is organized as follows. Section II defines the
signal spectral logic and formulates the problem solved in this
paper. Section III introduces the adversarial training frame-
work and the solution to the problem. Section IV applies the
proposed method to real data sets and shows the comparison
results, and section V draws the conclusions.

II. PROBLEM FORMULATION
A. Signal Spectral Logic

Signal spectral logic is inspired by signal temporal logic
[9], which is defined over continuous-frequency, continuous-
valued spectral of a signal. Given two sets A and B, F(A, B)
denotes the set of all functions from A to B. Given a frequency
domain R* := [0, 00), the continuous-frequency, continuous-
valued spectral is defined as a function z € F(RT,R").
When the signal is multi-dimensional, its spectral is calculated
for each dimension independently using spectral kurtosis [6].
Therefore, the spectral of a multi-dimensional signal is also
multi-dimensional. In the rest of this paper, we use z(f) to
denote the value of spectral for signal x at frequency f.

Definition 1. Signal spectral logic (SSL) is a spectral logic de-
fined over a signal’s spectral. Its syntax is defined recursively
as:

@ = ple1 A pale1 V o2|Oia,p 910,519 €]

where a and b are non-negative finite real numbers. p is a
predicate over a signal, which can be defined as I(z(f)) <7
with | € F(R",R) being a function, <€ {<,>}, and
7 € R being a constant. The Boolean operators V and A
are disjunction (“or””) and conjunction (“and”), respectively.
The spectral operators ¢ and [J stand for “eventually” and
“always”, respectively.

The above syntaxes define how to use basic words, e.g.,
Iy 1, P2, to construct a sentence (or formula). With these
syntaxes, SSL is a powerful language to express the spec-
trum pattern of signals. The exists of spectral operators [
(always) and ¢ (eventually) make SSL suitable for depicting
the periodical properties of a spectrum. For instance, the
spectrum of a faulty rolling element bearing signal contains
a cyclic impulse energy. Fig. 1(left) gives an example of
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such spectrum, and the periodical impulse energy, has the
pattern written in English “whenever the spectrum has a
energy density smaller than 0.5 for 325 Hz, the energy density
for the spectrum will be bigger than 0.8 in the next 15
Hz” If we denote z(f) to be the spectrum of the signal at
frequent f, the spectral pattern can be easily described by
an SSL formula ¢ := OO,a75(Do,325/(x(f) < 0.5) —
Oro,15)(z(f) > 0.8)), where [0 without any frequency bound
means a frequency bound [0, co]. SSL is interpretable and can
be understood by human users. In the formula, 50[0,475] , read
as always eventually within 475 Hz, denotes that after the
pattern occurs, then within 475 Hz, the pattern will occur
again. Op 395)(2(f) < 0.5) denotes the amplitude of the
spectrum will be always smaller than 0.5 for 325 Hz, —
denotes implication relationship. 0o 15)(2(f) > 0.8) denotes
the energy density of spectrum z(f) can be over 0.8 at least
once within next 15 Hz. As shown in Fig. 1(left), at frequency
f2, the spectrum is smaller than 0.5 until frequency f3, and
fs — fo = 325 Hz. After keeping the value being smaller
than 0.5 for 325 Hz, the spectrum is bigger than 0.8 between
frequency fs to f4, and fy — f3 = 15 Hz.

Amplitude

(185.1.04]
1 686,0.98]
[1187,091]  [1686,0.91

1] 121 1131 1141

Amplitude

0 500 1000 1500
Frquency(Hz)

Fig. 1: (left) A signal with frequency pattern described with
SSL formula p = DQ[Q,475](D[07325] (l'(f) < 05) —
Oro,15/((f) > 0.8)); (right) Robustness degrees for different
signals with formula ¢ = O(z(f) > 0) indicated by black
directed line.

SSL is incorporated with a quantitative semantics called
robustness degree p : F(RT,R") x ¥ — R, which maps
a spectral z € F(R™,R™) and an SSL formula ¢ € ¥ to a
real value. p(x, ) indicates how far the spectral of a signal
at frequency f is away from satisfying an SSL formula ¢. It
is defined as [9]:

pla, (l(z) <m), f) =m—1x(f))
f

p(z, (I(x) > )7)=((f)7r

p(x, 01 Npa, f)  =min (p(z, 01, f), p(x, 02, f))
p(x, 01V @2, f) :maX(p( <p1,f) p(z, 02, f))
p(z, Oy, f) =f,e[ﬁz§f+b)P(I7w7f’)

p(z, Oy, f) = max  p(z,p,f).

f€lf+a,f+b)

The robustness is sound, meaning that p(z, ¢, f) > 0 implies
that signal x satisfies ¢ at frequency f, and denoted as z[f] =
o, whereas p(z,p, f) < 0 implies that signal = violates ¢
at frequency f, and denoted as z[f] ¥ . In the rest of this
paper, we denote the robustness of specification ¢ at frequency
0 with respect to signal x by p(x, ) for short. Fig. 1(right)
shows four spectrums and their robustnesses with respect to

3

SSL formula ¢ = O(x(f) > 0), where the length of a directed
line indicates the magnitude of the robustness, up direction
indicates negative robustness and down direction indicates
positive robustness. Fig. 1(right) shows spectrum z1,zs and
x4 have positive robustnesses and satisfy the formula, while
spectrum x3 has negative robustness and violates the formula.
Moreover, spectrum xo has the largest robustness, thus the
satisfaction of x5 is more robust to noise, i.e., it is harder for
disturbances to change the satisfaction state.

Faulty Signal 3

Faulty

25 [2500,1.2] |===-=Normal

N [1500,1%] -;
< (3600, 1"7\

Amplitude

0 0.2 0.4 0.6
Time (Second)
Normal Signal
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Time (Second)

"o 2000 4000 6000
Frequency (Hz)

Fig. 2: left: The waveforms of two signals collected from a
normal and a faulty rolling element bearing; right: The spectral
kurtosis of the two signals’ wavelet package transform based
decomposed components.

B. Motivation Example

SSL formulas are quite expressive and interpretable. The
following example will show the signals can be classified with
spectrum patterns, but it is hard to be classified with temporal
patterns. The spectrum patterns are written with SSL formulas,
such that a human user can interpret SSL formulas easily.
Moreover, we will show when learning an SSL formula with
reinforcement learning algorithm as presented in [9], the sparse
reward issue will occur.

Example 1. For instance, we can use an SSL formula

n = Op1s500,2500] (€5 < 1.2) A Op2900,3600) (€2 > 1.7)

to distinguish the normal and faulty signals shown in Fig. 2
(left), where e’ in the formula is the spectral kurtosis for ith
dimension of the signal s. ¢,, can be dissected as follows:

Yn =1 N\ P2,
©1 := Ops00,2500] (€5 < 1.2), 2 := Q29003600 (€2 > 1.7).

¢ppn can be interpreted with natural language and read as
“properties (1 and 92 must both be true at the same frequency
f to satisfy ¢,”; 1 can be read as “e; must always be
smaller than 1.2 within the next 1500 and 2500 Hz”; and
2 can be read as “e2 must be no smaller than 1.7 at least
once within the next 2900 and 3600 Hz”. As shown in Fig.2
(right), the green region indicates the requirement of 1, where
the trajectory should always stay in that region. The yellow
region indicates the requirement of @5, where the trajectory
should occur in that region at least once. We can see that the
faulty (red) signal satisfies the formula ¢,, whereas the normal
(blue) signal violates ¢,,. Moreover, the spectrums of the
signals are smooth, thus robust to noise. While the waveforms
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are contaminated by noise and hard to be distinguished with
traditional formal languages defined over time domain using
temporal patterns.

In this example, we assume ¢, is learned with a rein-
forcement learning algorithm. During the learning process,
the algorithm should choose atom formulas (words) from a
set of atom formulas (dictionary). The dictionary has two
classes of words. The first one includes words constructed
with a spectral operator and a predicate, e.g., O o) (2(f) >
3.4), and the second one includes words constructed with a
Boolean operator, a spectral operator and a predicate, e.g.,
A0 20 (z(f) > 3.4). To construct an SSL sentence, the
algorithm should choose one word from the first class for the
initial word and choose other words from the second class
to extend the formula. For example, to construct ¢,,, the first
word is ¢; and the second word is Ags. In order to choose the
optimal words sequentially, reinforcement learning algorithm
can be applied [9]. Howeyver, to construct a sentence, assuming
the sentence has /N words, the algorithm should take NV actions
to choose the words, while it does not receive any reward until
the last step when a sentence has been completed. Namely,
the algorithm comes up with sparse reward issue. This issue
becomes serious when the length of the sentence is long. In
the rest of this paper, we will try to address this issue.

C. Problem Formulation

In this paper, we are given a set of signals from the system
to be diagnosed, and they are labelled with positive examples
and negative examples, i.e., X = X U X~. The goal is
to generate a formula ¢, such that all positive examples
satisfy the formula, whereas all negative examples violate the
formula. Note that here we consider two conditions of the
system (i.e., normal and faulty), and the system can have
more than two fault types, which, in this case, one SSL
formula will be generated for each fault type. To better relate
the formula language with natural language, we use word to
denote the atomic formula (formulas with a spectral operator
and a predicate), sentence to denote the generated formula,
and vocabulary to denote the set of all atomic formulas.

In this paper, the words have the forms of D[a,b] 1, Q[a,b] L4
D[al,bl]o[ag,bg]ﬂ and Q[al,bl]D[az,bQ]M’ where a, b,al,bl,ag
and b, are frequency parameters. Obviously, SSL is expressive
since the parameters can be adjusted according to the signals.

During the language generation procedure, we can assume
that there is an agent choosing words from vocabulary V' and
Boolean operators that connect the words. In order to reduce
the agent’s actions and complexity, we embed the words in V
with Boolean operators in advance. The embedded vocabulary
is atube V =< Vo, 1% >, where Vo is the set of words from the
original vocabulary V), and V is the set of Boolean operators
embedded words that have Boolean operators embedded which
have the forms of AU ppts AQap)tts ADay 511 as ba] o
AQlar,b1)Haz,b2) s VO[a,pytts VOiab)tts VUay 511 Qlas,be] 44 and
VOlay,b1]U[as,bo) - Therefore, the agent first chooses a word
from Vp, then chooses a sequence of words from V to
construct a sentence, without the need to choose Boolean
operators. The problem solved in this paper can be defined
formally as:

Problem 1. (Formal Language Generation) Given a vocabu-
lary V,a positive integer 7" and two sets of signals, X and
X~ , find an optimal policy 7 (-), which decides a sequence
of words (o, 1, - ,pr), Where g € Vo and P € V for
1 <t <T, to construct a sentence sp, such that

p(X,sT) = min(;gg(p(x, sT)), nin (p(z,=sT))) ()

is expected to be maximized, where X = X TUX . p(z, s7)
and p(z, —st) denote the robustness degrees of x with respect
to sy and its negation, respectively.

We solve a language generation problem in this paper. The
obtained sentence st can be regarded as an interpretable clas-
sifier which has two roles. The first role is a classifier, and the
second role is a decision explanator. It classifies the conditions
of the system and gives explanations to the decision-making
process with its semantics. Since we use labelled data to
train a model, it is a supervised learning problem previously
addressed in [17] with a reinforcement learning algorithm.
However, in the previous work, the learning efficiency to
generate long sentence is low due to the sparse rewards. In
this paper, we address this issue with adversarial training
by allowing the discriminator to provide richer information
about the current incomplete formula to the generator, and the
information will guide the language generation process. The
following section introduces the adversarial training frame-
work in detail.

III. SPECTRAL LOGIC FORMULA GENERATION VIA
ADVERSARIAL TRAINING

A. Word to Vector

Before we generate the formal language, we need to map
words and sentences to vectors and matrices, such that the
adversarial training can be applied. Similar to the natural
language process, the word should be first encoded into a
vector. In this paper, we encode the atomic formula to a
nine-dimensional vector (Note that this vector is used to
define the word, but not the vector representation of the
word used in the learning process, in which the representation
is learned automatically). As illustrated in Fig. 3, Boolean
operator embedded word in V is encoded to a nine-dimensional
vector. The first dimension decides the Boolean connector;
the second dimension decides the type of temporal operators;
the third dimension decides the signal’s dimension index; the
fourth dimension decides the type of inequality sign; the fifth
dimension decides the scalar for the predicate; the sixth and
seventh dimensions decide the frequency interval for the first
spectral operator; the eighth and ninth dimensions decide the
frequency interval for the second spectral operator. If there
is only one spectral operator, the last two dimensions will be
zeros. To map the words in vocabulary V to vectors, we design
the encoding table as shown in Table I. With the encoding
table, every word in V can be mapped to a ninth-dimensional
vector uniquely. With the encoding of different words, the
sentence can be mapped to a matrix, which is the stack of the
words. Example 2 shows how to map words and sentences to
vectors and matrices.
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[Alolw[>]a[2]2]o]s]
High bound two

Low bound two
High bound one

Boolean Connecto:

Temporal Operator

Dimension Index Low bound one

Inequality Operator Scalar

Fig. 3: Example encoding of a Boolean operator embedded
word ¢ = Ay 9)Op0,3 (21 > 1) to a nine-dimensional vector
[1,3,1,1,1,1,2,0,3].

TABLE I: Encoding table for words in 1%

Category Symbol  Value  Category Symbol  Value
Boolean N 1 Boolean \ 2
Boolean none 0 Temporal O 1
Temporal O 2 Temporal [le} 3
Temporal o 4 Inequality > 1
Inequality < 2 Scalar ™ ™
Lower Bound ay a1 Upper Bound by by
Lower Bound as as Upper Bound ba bo
Dimension A %

Example 2. Consider a sentence ¢, = @1 A @o with

two words, ¢1 = Opsoo2500/(es < 1.2) and ¢p =
/\<>[290073600](e§ > 1.7). Based on the encoding table
in Table I, the words can be mapped to vectors, de-
noted as v,, = [0,1,1,2,1.2,1500,2500,0,0] and v,, =
[1,2,2,1,1.7,2900, 3600, 0, 0], respectively. The sentence can

: — T
be mapped to a matrix M, = [vg,,Vy,]
B. Adversarial Training Framework
L Discriminator D,
Feature . 3 5 (XS
Current __ oo or (= 10 l;obustn'ess 4 t
Sentence CNN — egression
St It
Generator Gg  ~ ~ ~ " T~
Policy Subgoal ge Mapper
(LSTM) Reshaping (LSTM)
Last word W(p [ W, Ors1
Pe ‘ Action ‘ X Softmax -
Embedding Sample
0, Next word

Fig. 4: An overview of the formal language generation frame-
work. While the generator is responsible to generate the next
word, the discriminator adversarially judges the generated
sentence once it is complete. The major novelty lies in that,
unlike the conventional method, during the sentence generation
process, the discriminator reveals its internal state (feature ftD )
in order to guide the generator more informatively, and tries
to approximate the true robustness degree of the sentence.

We formulate the formal language generation problem as a
sequential decision-making process [18]. To solve the prob-
lem, we apply the adversarial training technique to generate
formulas for fault diagnosis. As illustrated in Fig.4, the overall
framework is a generative adversarial network (GAN), which
has two functions called Generator and Discriminator. The
Generator generates sentences for fault diagnosis, while the

Discriminator evaluates the performance of the generated
sentences. In Fig.4, the f-parametrized generator has a hi-
erarchical structure, which consists of a high-level Mapper
module and a low-level Policy module. The Mapper and Policy
modules are comprised of long short-term memory networks
(LSTM) [19] and serve as mediators. In summary, the gener-
ator Gy, which corresponds to a stochastic policy, maps the
current sentence s; and last word to a distribution over the
whole vocabulary, i.e., Gg(-|s¢), from which the action @41,
i.e. the next word to select, is sampled. The discriminator,
D, consists of a feature extractor which is a convolutional
neural network (CNN), and a robustness regression module
which approximates the robustness degree of the sentence with
respect to signals in X. At each step, the generator receives
high-level feature representation from the discriminator D,
i.e., the feature comes from the CNN, and uses it to set up
the guiding goal for the Policy module with the help from the
Mapper.

During the generation process, the Policy module encodes
the current generated word with an LSTM, and combines the
output with the feature sub-goal generated from the Mapper.
The Mapper takes feature £ as the input and passes it through
another LSTM. Then we take the final action at current state
by choosing a word from 1% through a Softmax function. In
such a way, the guiding signals from D, is available to the
generator Gp in terms of a goal embedding vector during the
generation process and teaches Gy how to get improved. To
realize the information sharing between the discriminator and
generator, we find out that a hierarchical RL architecture is an
effective way to incorporate such shared information into the
generation procedure of Gy. We describe the detailed generator
model in the following subsection.

1) Generator: The generator G have two LSTM networks.
For the rest of this paper, we use 6, to denote all parameters
in the Policy LSTM and use 6,, to denote all parameters in
the Mapper LSTM. Then the two LSTMs can be defined with
functions M(fP, ki, 0,,) and P(pys, h{_,0,), respectively.
During the generation process, the Policy and Mapper modules
both start with all-zero hidden states, denoted as h{ and h}!.
At each step, the Mapper receives feature vector f from the
discriminator D, which is further combined with the current
hidden state h} | to produce the sub-goal vector g;, such as

.@fnhiw:M(ftD7h1]5\{179m)7gt:gt/HgtH' (3)

To incorporate the output from Mapper with the output from
the Policy, a linear transformation is applied to reshape
the summation over previous C' goals with a matrix W,
and the result is an embedding vector w;, where w; =
Ww(ziczﬂgtfi)-

The Policy module takes the current word ¢, as the input
and outputs a matrix Oy, which is further combined with w; by
matrix product to determine the final action space distribution
under current state s; through a softmax function,

Otvhf = P((ptahfflvepx 4)
Gy(-|s¢) = softmax(Oy - w /),

where « is a parameter to control the generation entropy.
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2) Discriminator: The discriminator measures the perfor-
mance of the generated sentence, which tries to approximate
the true robustness degree of the sentence based on Eqn. (2).
The CNN with 8 convolutional layers is used to extract an 18
dimensional feature vector ftD , which is further fed to a feed-
forward network to approximate the real robustness degree.
We denote the network as

fE = Folse,Wy)re = Dy = R(fP, Wp), (5

where ftD is the feature vector, r; is the estimated robustness,
W is the parameter matrix for the CNN, Wp is the parameter
matrix for the discriminator and s; is the current sentence.
With s;, the real robustness degree can be calculated with
Eqn.(2) with respect to the training dataset, since the sentence
is also an SSL formula. In summary, the discriminator tries
to extract the optimal features, which can be used to estimate
the real robustness degree and guide the training process in
the following section.

C. Training Process

We train the above procedure by policy gradient algo-
rithm, since the functions Dy (s¢, W), M(fL,h}M,6,,) and
P(pr, i 1,0,) are fully differentiable. The training process
is shown in Algorithm 1. The algorithm first pre-trains the
generator and discriminator, then the generator Gy and dis-
criminator D, are alternatively trained until convergence. Line
13 trains the discriminator to minimize the estimation error for
robustness. The structure of the discriminator is classical and
the training process is omitted here. To simplify the training
process for the generator, here we follow the method in [20]
and train the Policy and Mapper modules separately. In the
generator, the Policy and Mapper LSTMs are alternatively
trained while fixing the other. Next, we will introduce how
to train the Policy network and Mapper network, respectively.

Line 11 in Algorithm 1 trains the Mapper and fixes the pol-
icy network, such that the Mapper will predict advantageous
directions in the discriminative feature space and the Policy
will obtain good performance by following the directions. The
gradient of the Mapper is defined as,

Vo, = —Q(st,9:)Vo, d(fEr — P 0:(0)), (6

where Q(s¢, g:) = E[ry] is the expected robustness degree
obtained under the current policy, which can be approximately
estimated via Monte Carlo search [21]. d is the distance
measure between two vectors, Here we use the cosine sim-
ilarity to measure the distance between the change of feature
representation after C'—step transitions and the goal vector
9¢(0,,) produced by the Mapper as in Eqn. (3). Intuitively,
the training process tries to find the parameters 6,,, such that
the goal vector will match the transition in the feature space
and achieves high robustness for the generated formula.

Line 12 trains the Policy network to maximize the reward
using the REINFORCE algorithm as is shown in [21],

Vo, = Es,_1~aX,, 71 P(0el56,6p)]

(7N
= Es,,_le,apf,NP(gatlst_ﬂ [TtIv%logtp(Qa“st*l? gp)]v

6
where r/ is the intrinsic reward for the policy and
1 &
I
== _d(fe = fe—is 9t—i)- 8
T C;(ft fi—is gt—i) (8)

Then the gradient of the policy parameters, Vo, can be
approximated by sampling the state s;_; and the action ¢
taken by the Policy network.

Note that the proposed framework do not have sparse reward
issue, since the expected robustness degree r; and intrinsic
reward 7! can be obtained at every step ¢, not only the last step
when the entire formula is generated. Moreover, the adversarial
learning in this paper means that the samples generated by
the generator are expected to be adversarial examples for
the discriminator, since the samples are not fitted by the
discriminator, which is slightly different from the traditional
adversarial learning algorithm.

Algorithm 1 Adversarial Training Framework

Input: A set of labelled signals X = X TUX~, a vocabulary
V and a positive integer T'.

Output: The optimal formal language st

1: Initialize Gy and D, with random weights 0,,, ,,, Wp.

2: Pre-train D, with output from the generator.

3: Pre-train Gy with the feature vectors from D.,.

4: repeat

5: for 5-steps do

6 Generate a sequence of sentence Sg, S1,- - , ST.

7 fortinl:7+1do

8 Store fP from D,.

9: Compute Q(s¢, g¢) by Monte Carlo Search.

10 Compute g; by Eqn.(3).

11: Update Mapper parameters by Eqn.(6).

12: Update Policy parameters by Eqn.(7).

13: for 5-steps do

14: Use current generator Gy to generator samples and
calculate their real robustnesses.

15: Train discriminator D, for 50 epochs by Eqn.(5).

16: until Convergence

IV. CASE STUDY
A. Fault Diagnosis for Rolling Element Bearings

In this section, we investigate the properties of the proposed
method with real experimental data. The real data sets are from
a set of rolling element bearings and we want to diagnose the
faults. To get the fault signals of rolling element bearings for
training and testing, the single pitting was introduced to the
surface of the race or the rolling body of the bearings by
electrical-discharge machining method.

1) Experiment Setup: The data collection test rig is similar
to [22] as shown in Fig.5, where an a.c. motor drove the
shaft of the rotational machine through a rub belt and a shaft
coupling. The tested bearing is assembled on the shaft. The
data acquisition (DAQ) system for the test rig is based on
NI PXI system (a NI PXI-1042 chassis with NI PXI-4472
modules), where the data is sampled with an accelerometer
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(Kistler 8791A250) sensor located on a bracket by an adhesive
mounting. During the test, a series of GB203 rolling element
bearings are used to conduct the experiment and the faults are
introduced to the surface of the race or the rolling element by
the electrical-discharge machining method. Each bearing has
only one fault and each fault has been introduced to at least
5 bearings. During the experiment, we increase the difficulty
of fault diagnosis by varying the speed of the shaft from 10
HZ to 30 Hz and the sampling rate is set to 12 kHz.

Accelerometer

Fig. 5: (a) The rolling element bearing test rig and (b) the
location of the accelerometer.

We introduced four kinds of states for the bearings, which
are normal, rolling element fault, inner race fault, and outer
race fault. 200 pieces of signals with length 8192 for each
(sampled within 0.68 second) were collected for each condi-
tion. To obtain the spectrum of each signal, we applied the
wavelet package transform (WPT) with a depth of level 3 to
the signals in order to obtain their wavelet packet transform
coefficients, which has been proven to be a powerful tool for
signal processing [23]. There are 8 components at level 3 and
each of them has a length of 1024. Then, we calculate the
spectral kurtosis for each component (Fig.6) shows an example
of the spectrums). Therefore, we have 200 signal pieces for
each bearing condition, and each signal has 8 dimensions. To
construct the positive set for inner fault, 150 pieces of inner
fault signals are used, and the negative set from the other
three conditions’ signals (50 signal pieces for each condition
and 150 in total). Therefore, the size of X is 300, and the
labelled sets for normal, outer race fault and rolling element
fault are constructed accordingly. To construct the testing set
for the inner fault conditions, the positive test examples are the
rest 50 pieces, and the negative test examples come from the
other three bearing conditions (50 pieces for each condition
that are un-used for training). Other testing sets are constructed
accordingly.

Before we start the training process, we generate 1000
words randomly, including 100 initial words in Vo. In this
paper, we choose a CNN as the feature extractor. The extracted
features are different from the features in [9], which are
designed manually. The length of the sentence is set to 10 (i.e.,
T =9 in problem 1). The CNN kernel size ranges from 1 to
9. The number of each kernel is between 20 to 50. Dropout
with a keep rate of 0.5 and L2 regularization is performed
to avoid over-fitting. For the generator, the Mapper produces
a 18-dimensional goal embedding feature vector g; using the
features extracted from CNN. Moreover, the goal duration C
is set to 3 after some preliminary experiments.
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Fig. 6: The spectral kurtosis under variable speed conditions
from normal (blue) and faulty (red) rolling element bearings,
respectively. The signal is decomposed with WPT and has 8
components.
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Fig. 7: (left): Average robustness and its standard deviation
obtained; (right): Regression loss (root mean square) and its
standard deviation during the training process.

During the training, the optimal robustness degree over the
testing set obtained by the generated sentences (we generate
many sentences with the trained network and choose the
sentence that leads to maximum robustness degree) and the
regression loss by the discriminator are used as the metrics.
The training curves for each fault are depicted in Fig.7, where
the results come from 10 trials. Based on the results, the
proposed method can find a satisfactory (positive robustness)
sentence for all the fault types within 100 epochs. Moreover,
in order to demonstrate the efficiency of the proposed method
in formal language generation for fault diagnosis, we compare
it with the temporal logic inference methods in [9], [16], [17].
In these comparison experiments, the length of the sentence is
set to 10 and the training time is limited for each experiment.
We run the training on a 64bit Linux computer with a 16-core
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CPU at 3.8 GHz, GeForce GTX 1070 GPU, and 64GB RAM.

In the first experiment setting, we check the performance at
the 20th, 40th, 60th, and 80th minute. Table II-III show the
average fault diagnosis error rate and its standard derivation
among 10 trails for each method for inner race fault. The
results in Table II show that the reinforcement learning method
in [9] is not stable since the standard derivation keeps as a
high value. Additionally, the method in [17] and our proposed
method are stable, since the standard derivations decrease with
respect to the increasing of time.

TABLE II: Average error rate and its standard deviation among
10 trails for four methods for inner race fault diagnosis.

Average Error Rate(%)/ o.

Time (min) 20 40 60 80

Our Method 43.65/8.577  23.2/6.041 15.4/4.131 3.00/0.500
Method in [16]  37.00/0.000  25.00/0.000  17.70/0.000  11.00/0.000
Method in [9] 36.55/8.252  23.3/7.059 11.65/5.794  13.15/7.056
Method in [17]  42.25/9.205  31.7/7.711 24.65/6.634  12.30/3.293

TABLE III: Average robustness and its standard deviation
among 10 trails for four methods for inner race fault diagnosis.

Average Robustness/ o,

Time (min) 20 40 60 80

Our Method -0.156/0.041  -0.081/0.012  -0.065/0.008  0.002/0.003
Method in [16]  -0.141/0.000  -0.119/0.000  -0.098/0.000  -0.053/0.000
Method in [9] -0.242/0.121  -0.223/0.082  -0.065/0.010  -0.071/0.015
Method in [17]  -0.245/0.102  -0.144/0.076 ~ -0.087/0.032  -0.013/0.009

The results in Table II-III indicate that our proposed method
has the best performance, since our method can find the
satisfactory sentences quickly. The reason for this is due
to the scalability and the representative of the networks
used in this paper. In contrast, the method in [16] needs
to explore all combinations of the words to construct the
optimal sentence. When the vocabulary is large or the length
of the sentence is long, the computation time will increase
dramatically. The methods in [9], [17] define the representation
of sentences manually, which is not representative. The length
of the sentence is important, which affects the efficiency of
the algorithm. A too short sentence will not have enough
expressiveness capacity, while a too long sentence will waste
the computational source. In order to further investigate the
properties of our method, we conduct another experiment over
the inner fault case, where the sentence length is set to 4, 6, §,
10, and we use the average error rate among 10 trails at 80th
minute as the metrics. The results in Table IV reveal that when
the sentence length is small, the method in [16] will obtain
a better performance, since it can find the sentences with
optimal parameters within 80 minutes. However, when the
length of the sentence increases, [16] has worse performance,
since the algorithm does not converge yet. Moreover, when the
length increases further, the comparison performance among
training set and testing set indicate the method in [9] cannot
obtain good performance neither, since the algorithm has not
converged or been over-fitting, while our method and the
method in [17] can avoid over-fitting. The reason for this is

that our method and the method [17] extend the sentence based
on some estimated distribution about the state-space, which is
robust to noise. In summary, the method in [16] is suitable
for short sentences and small vocabulary, the method in [9] is
suitable for short sentences and large vocabulary, the method in
[17] has an average performance for all cases, and our method
outperform the others for long sentences with large vocabulary.

TABLE IV: Average error rate for our method and the methods
in [9], [16], [17] with different sentence lengths

Training set/Testing set.

Sentence length T’ 4 6 8 10
Our Method 35.40/36.15  15.10/15.30 4.90/4.80 2.50/3.00
Method in [16] 20.65/21.70  19.00/19.75  12.90/13.50  11.00/12.70
Method in [9] 23.65/25.90  18.50/19.55  13.75/14.70  13.15/14.50
Method in [17] 22.50/26.50  20.90/21.95  15.80/16.50  12.30/13.70

TABLE V: Comparison with other data-driven methods.

Error Rate(%)

Method Our method  method in [24] method in [25] method in [26]
Inner Race 3.00 4.25 4.50 1.00
Outer Race 1.50 2.50 2.50 0.00
Rolling Element 0.00 2.00 0.00 3.25

Table V shows the comparison results between our method
and other data-driven methods, which indicates that our
method has comparable performance with other methods. Even
though the Fisher based method in [26] and supper vector
machine based method in [25] have comparable performance
in some cases, their interpretabilites are limited. The reason
for this is that these data-driven methods have the feature
extraction process, which maps the original data to a high di-
mensional feature space and suppresses the physical meaning
of the original data.

B. Simulation Analysis

In this section, we further investigate the properties of the
proposed method with different levels of noise and proportion
settings of training-test samples. Since we need to manipulate
the signal to noise ratio (SNR), we simulate the faulty rolling
element bearing signals based on the bearing fault model in
[27]. The faulty signal can be described as

x(t) =, Ais(t —iM — 1;) + n(t),
s(t) = e Blsin 2w ft, A; = cos(2mfat + 0a) + Ca,

where 7; is the tiny fluctuation around M during the it"
impact of the fault, B the coefficient of resonance damping
attenuation, f,, the natural frequency related to bearing or
system, @ 4 and C'4 are constant, f4 the modulation frequency,
which can be 0 (outer race fault), shaft rotation frequency f,
(inner race fault), or cage rotation frequency (rolling element
fault). In this experiment, the parameters of simulated bearing
signal is set as follows: the natural frequency is 2000 Hz,
sampling rate 12 kHz. The characteristic defect frequency for
out race, inner race are fp,, = 20 Hz and fp,; = 30 Hz,
respectively. The rotation frequency f, = 100 Hz.
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In the first simulation setting, we investigate the perfor-
mance of the proposed method with different levels of noise
by changing the signal to noise ratio (SNR). The training set,
testing set and the network structure are constructed with the
same way in Section IV-A. Since the rotational speed is fixed,
and the frequency pattern of the signal is simply compared
with the data from real experiments. The length of the sentence
is set to 3, the training time is set to 80 minutes and other
parameters of the networks are the same with Section IV-A.
The average error rate and robustness of 10 trails are shown
in Table VI, which show that the proposed method can obtain
good performance even though the SNR is -10 dB, indicating
the method is robust to noise.

TABLE VI: Results for different signal to noise ratio.

Error Rate(%)/ p(X, o)

SNR (dB) -20 -10 0 10
Inner Race 13.50/-0.322  3.70/-0.081  1.5.00/0.022  0.00/0.132
Outer Race 14.65/-0.343  3.50/-0.075 0.00/0.093 0.00/0.112

Rolling Element  17.00/-0.232  4.90/-0.054 2.00/0.128 0.00/0.213

In the second simulation setting, we investigate the per-
formance of the proposed method with different proportion
settings of training-test samples. The SNR for this experiment
is set to -10 dB, and 200 pieces of signals with length 8192
for each (sampled within 0.68 second) were simulated for
each condition with random starting time. Then the training
and testing sets were constructed with different proportion
settings of training-test samples. The network parameters
and the length limit for the formula are the same as the
first simulation setting. The results are shown in Table VIII,
which indicate that a larger training set will lead to a better
performance. When the proportion is larger than 40%/60%,
a good performance can be obtained. Table VII shows the
obtained SSL formula with proportion 60%/40%, where the
formulas are interpretable and can be understood by human
users. For example, formula ¢ can be read with plain English
as “when inner race fault occurs, the 3rd component’s spectral
kurtosis should be always smaller than 1.45 between 1278
and 2220 Hz, and no smaller than 0.63 between 1278 and
2220 Hz, and the 5th component’s spectral kurtosis should
be no smaller than 2.38 between 2903 and 4412 Hz at least
once.” Other formulas can be interpreted accordingly. The
interpretation indicates that the spectrum should be bounded
within a frequency interval, then there exists at least a peak
after or before the bounded interval, which is consistent with
the failure mechanism of the bearing that fault signals are
caused by a series of impacts or impulses, which excite the
entire system where the bearing is mounted. Therefore, the
fault diagnosis with formal methods may reveal the failure
mechanism.

C. Statistical Testing

Considering the machine learning algorithm is usually ro-
bust to noise, the formula is generated based on the policy of
the generator, which chooses the next word with a probability
approach and it should have a high probability to overcome

the effect of noise. Next, we illustrate the noise resistance
property of the generated language with statistical testing.

Let us first consider a t-test for a given SSL formula.
The t-test compares the mean values of two fragments of
spectrum, thereby to test a whole spectrum fragment for a fault
occurrence. In other words, if the null hypothesis is rejected,
the current spectrum cannot be categorized as fault in the
baseline samples.

In several cases, however, robustness degree does not imply
a normal distribution, due to the min and max operators
in the semantics of SSL formula. Therefore, the two-sample
Kolmogorov-Smirnov test (K-S test) is used and the new
objective is to test the equality of value distributions in the
robustness from the baseline and tested operating modes. As
a result, a piece of time series is considered an outlier if a
null hypothesis of value distribution equality is rejected with
a level of significance.

During the test, we set the significance level to 0.05, and
sampled the signals with a window length of 8192 for fault
diagnosis. We calculated the robustness value with respect to
the signal’s decomposed spectral kurtosis. Then we moved the
window 200 steps forward along time axis and repeated the
calculation. The resulting trace of robustness values was used
to determine the distribution. For example, to test inner race
fault formula ¢;, 100 inner race fault signals are used, plus
the signals under the other states (i.e., normal, rolling element
fault, outer race fault) as baseline samples. The results are
provided in Table IX, which are the average results among 10
trails of learning process. The results show the formula learned
with the proposed method is robust to noise.

D. Discussion

Even though the proposed method can efficiently find the
optimal formulas for fault diagnosis, there are some issues
that should be further studied. First, the performance of the
formula for fault diagnosis is affected by the noise level, which
is the fundamental shortage for logic based method. Further
study will focus on signal processing techniques that suitable
for formal method to suppress the effect of noise. Second,
the training process is conducted off-line, which is not good
for on-line applications. In our further work, we will develop
unsupervised learning algorithm to update the formula, such
that it can be used for on-line applications. Third, the length of
the sentence affects the performance of the algorithm, which
should deal with the trade-off between computational time and
classification accuracy. Many experiments are needed to set
this parameter. More efficient algorithm should be developed
to set this parameter in our future research.

The adversarial training is a static defence method using
a supervised learning strategy. However, it can be applied
to dynamic state systems for two reasons. First, the training
and testing data sets come from dynamic systems, which are
assumed to cover enough states information of the systems
for fault diagnosis. For example, the real bearing data sets
come from rolling element bearings under changing speed
operations. Second, SSL is an expressive language, it allows
the variation of the fault patterns among frequency domain
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TABLE VII: SSL formulas for the simulated signals for inner race, outer race and rolling element faults.

Fault Type Formula
Inner Race w1 = U978 2220 (x3(f) < 1.45) A O[1978 2220123 (f) > 0.63)) A O[2003,4412] (x5 (f) > 2.38)
Outer Race 0 = Q(985,1196] (T2 (f) = 2.49)) V Uagrg,5777178(f) > 0.34)) A Upagrg 57771 (w8(f) < 1.41)

Rolling Element

YR = Qra011,5144](#5(f) > 1.47)) A U1243,1920)%3(f) > 0.65)) A Djgss 2826 (z3(f) < 1.23)

TABLE VIII: Results for different proportion settings of
training-test samples.

Error Rate(%)/ p(X, o1)

training/testing 20%/80% 40%/60% 60%/40% 80%/20%
Inner Race 11.95/-0.143  4.65/-0.044  4.10/-0.064  2.50/-0.059
Outer Race 13.65/-0.246  5.10/-0.038  3.20/-0.019 0.00/0.078
Rolling Element 14.90/-0.126  5.20/-0.023 3.65/0.012 2.10/0.006

TABLE IX: Average Statistical Testing Results.

Test Method t-test K-S test
Reject null hypothesis 94.1 95.0
Accept null hypothesis 59 5.0

with spectral operators. For example, “eventually” ({) operator
allows the fault patterns occur within a frequency interval,
which can capture the fault patterns of a dynamic system with
changing operation scenarios.

Focusing on the space complexity of Algorithm 1, the
discriminator solves a regression problem, which the required
space is in the order of O(T), where T + 1 is the length
of the formula. Regarding the generator, which is trained
with reinforcement strategy, the searching space complexity
of the Policy modular is in the order of O(NT) based on
the complexity analysis in [9], where N is the size of the
vocabulary. However, the space complexity of the generator is
in the order of O(N + T), since the structure of the networks
is fixed and the space required is related to the vocabulary size
and length of the formulas.

V. CONCLUSIONS

This paper introduces a novel method to generate formal
languages for fault diagnosis. The formal language is called
signal spectral logic, defining over signals’ spectral kurtosis.
The formal languages can be seen as interpretable classifiers,
which provide interpretability for the fault diagnosis proce-
dure. Experimental results indicate our method is robust to
noise. To find the optimal formal languages, the adversarial
training technique is used to address the sparse reward issue
during language generation process, and the results indicate
our method outperforms the state-of-the-art methods on gen-
erating long formal languages.
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