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ARTICLE

Formal interpretation of cyber-physical system
performance with temporal logic
Gang Chena, Zachary Sabatoa,b and Zhaodan Kong a

aDepartment of Mechanical and Aerospace Engineering, University of California, Davis, California,
USA; bHyundai Center of Excellence in Vehicle Dynamic Systems & Control at UC Davis. Davis,
California, USA

ABSTRACT
The inherent and increasing complexity of many cyber-phy-
sical systems (CPSs) makes it challenging for human users or
designers to comprehend and interpret their performance.
This issue, without proper attention paid, may lead to
unwanted and even catastrophic consequences, particularly
with safety-critical CPSs. This paper presents a new metho-
dology of enabling (i) a human to interrogate a CPS by
inquiring with questions written in formal logic and (ii) the
CPS to interpret its performance precisely in the context of
the inquiry. This formal interpretation problem is first for-
mulated as temporal logic inference problem, which, aided
by the concept of robustness degree, can be converted into
an optimisation problem with probably approximately cor-
rect solutions. A new Gaussian-process-based active learn-
ing algorithm is then proposed to address the potential
computational budget issue arising from solving the opti-
misation problem. Both theoretical and empirical analyses
are carried out to demonstrate the performance of the
proposed algorithm. Finally, a detailed case study on auto-
motive mechatronic design is provided to showcase the
proposed formal interpretation methodology.
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1. Introduction

In recent years, the cyber-physical system (CPS) paradigm has found its way
into many safety-critical domains, e.g. transportation, power generation, med-
ical sectors, and military applications. Equipping CPSs with advanced sensors,
autonomy, and/or distributed computation offers stakeholders a significant
opportunity to reduce cost, extend operational range, and enhance system
capabilities. However, the increasing complexity of many of these systems, e.g.
the potentially nonlinear and sometimes unexpected interactions between
their cyber and physical components, makes it hard for users or designers to
comprehend and interpret the performance of these systems.
Misinterpretations, without timely mitigation, may lead to a wide spectrum
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of consequences, from a minor inconvenience to a major catastrophe. This
motivates us to develop a tool allowing human users (or designers) to inter-
rogate a CPS (e.g. an autonomous vehicle or an industrial robot) via inquiries.

Specifically, given an inquiry from a user (or designer), the CPS must inter-
pret its own performance in the context of the inquiry in a rather precise (and
hopefully insightful) manner.

In this paper, we are interested in inquiries expressed in a formal logic called
signal temporal logic (STL) [1–3]. STL is a ‘rich’ specification language and has
been widely used in specifying many high-assurance CPSs [4,5]. The parsing of
STL formulas is quite easy to learn. For instance, an STL interpretation of an
autonomous vehicle’s acceleration performance may be written as F½0;τ�ðv > πÞ,
which reads ‘between times 0 and τ, the speed v is eventually greater than π’,
where F is the temporal operator for ‘eventually’. Compared with natural
language interpretations, which are vague and largely rely on human experts
to provide (an expensive, time-consuming, and potentially error-prone task),
STL interpretations are quantitative, precise, and can be algorithmically
extracted (described shortly). The STL interpretation methodology presented
in this paper offers human users (or designers) an effective means to actively
interact with CPSs, interrogate them, and explore the interwoven threads of
interacting cyber and physical components in the context of system perfor-
mance. Accordingly, our methodology can potentially facilitate the human
users’ (or designers’) formation of meta-knowledge of the complex CPSs they
are interacting with (or designing).

We formulate the formal interpretation of CPS performance as a logic inference
problem: Given a system S, e.g. a Stateflow/Simulink model of an automobile
steering system, and an user inquiry, codified as a parametric STL template φθ

with a set of unknown parameters θ, find a θ� such that the interpretation φθ� is
satisfied by the system S. We solve this problem by first utilising the concept of
robustness degree [2,6]. Instead of merely proving a yes or no answer about
whether a system S exhibits a temporal logic property φθ� , robustness degree
quantifies how strongly the system S satisfies the property φθ� with a real number.
With the help of robustness degree, the above problem can be converted into an
optimisation problem where θ� optimises the expected robustness degree of the
system S against φθ� . Then we leverage active learning [7,8] to mitigate the need
for a large number iterations during optimisation, improving efficiency and doing
more with a constrained computational budget.

Related work. Our work is closely related to literature in the fields of
requirement mining and active learning. Requirement mining was first pro-
posed in the context of extracting requirements from software execution
traces for the purposes of, e.g. software maintenance and legacy code under-
standing [9,10]. In that context, traces are of discrete, finite state; the mined
requirements are generally written in regular languages or linear temporal
logic (LTL). In recent years, the idea of requirement mining (also called
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specification mining [11] or specification inference [12]) has been extended to
the mining of requirements for CPSs [4,8,11–15], given the critical role require-
ments play in the formal specification, verification, validation, and controller
synthesis of CPSs. In this work, the data are in the form of trajectories, which
can have hybrid (i.e. continuous and discrete) states; the trajectories can be
either generated online by a system or collected offline; the mined require-
ments are generally written in STL or metric temporal logic (MTL). One recur-
ring theme in these latest developments is to leverage the power of
optimisation and machine learning. For instance, in [11], the requirement
mining problem was formulated as a parameter optimisation problem and
counter-examples were used to guide the search for the optimal parameter(s);
in [14,15], the requirement mining problem was formulated as a combined
structure and parameter optimisation problem, with lattice search and simu-
lated annealing used to find the satisfactory formula structure as well as the
optimal parameters. We would argue that requirement mining and formal
interpretation differ in not only their means but also their ends. Requirement
mining stops once a requirement has been found and can be conducted
offline, while formal interpretation needs to be conducted in an iterative and
online fashion. That is, a user cannot wait hours in order to get an interpreta-
tion from a CPS; moreover, once an interpretation has been provided, it is
quite likely that further inquiries from the user will follow. The implication is
that computational efficiency is a pressing issue for formal interpretation.

One way to address this issue is by exploring the advantages offered by
active learning algorithms. The main idea behind active learning is to accel-
erate learning by actively selecting potentially ‘informative’ samples, rather
than random sampling from a pre-defined distribution [7,8]. Active learning
was originally developed to reduce the number of data points needed for
labelling, where a human serves as the oracle to provide the labels [16]. But
recently it has been used to facilitate the verification/falsification of CPSs
[8,13,17]. In this context, a system model serves as the oracle, which can
generate trajectories. Existing active learning algorithms are then used to
sample the search space (which can be of infinite dimension) aided by certain
‘informativeness’ metrics, in addition to knowledge gained from the already-
sampled data. This practice helps to focus ongoing searches in promising
ranges, thus eliminating unnecessary samples and producing increasingly
better results to verify/falsify the system of interest. One benefit of using active
learning is that it promises theoretical guarantees (under certain assumptions).
In this paper, we will develop our own active learning algorithm while taking
advantage of this benefit.

Contributions. The main contributions of this paper are threefold. First, we
develop a formal interpretation methodology for CPS performance by formu-
lating and solving a temporal logic inference problem, which is solved in the
sense of obtaining solutions that are probably approximately correct (PAC), a
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concept that offers rich connections to machine learning theory. We believe
such a formulation paves the way for future developments in CPS interpreta-
tion (or system explanation). Second, instead of using existing learning algo-
rithms, this paper develops a new active learning algorithm called Gaussian
process adaptive confidence bound (GP-ACB). The performance of GP-ACB, as
compared with that of other Gaussian-process-based active learning algo-
rithms, is demonstrated both theoretically and empirically. Third, we imple-
ment and illustrate our interpretation methodology with a case study on
automotive mechatronic design, which we believe may greatly help practi-
tioners to understand our methodology and idea, and to gain their own
insights.

An earlier version of this paper [18] appeared in the 2016 IEEE 55th
Conference on Decision and Control (CDC). This paper significantly extends
that paper by (i) solving a formal interpretation problem rather than a require-
ment mining problem, (ii) removing the assumption that the hyper-parameters
of the underlying Gaussian process (GP) are known a priori, (iii) providing
detailed proofs of theoretical results, and (iv) offering a detailed case study
that is closer to real practices.

This rest of the paper is organised as follows. Section 2 provides the
necessary background on STL and GPs. Section 3 defines the formal inter-
pretation problem. Section 4 discusses our GP-ACB algorithm. Section 5
shows how to solve the formal interpretation problem with GP-ACB.
Section 6 provides two case studies to demonstrate our methodology: an
academic example with the Rastrigin function, and an mechatronic design
example. Finally, Section 7 concludes the paper and mentions some future
directions for continuing work.

2. Preliminaries

2.1. Signal temporal logic

Given two sets A and B, ℱ ðA; BÞ denotes the set of all functions from A to B.

Given a time domain R
þ :¼ ½0;1Þ, a continuous-time, continuous-valued signal

is a function s 2 ℱ ðRþ;RnÞ. This paper uses sðtÞ to denote the value of signal s
at time t.

STL is a temporal logic defined over signals [1]. The syntax of STL used in
this paper is defined as

φ :¼ fðsÞ,d :φj jφ1 ^ φ2 φ1 _ φ2j jF½a;bÞφjG½a;bÞφ; (1)

where a and b are non-negative finite real numbers, fðsÞ,d is a predicate
where s is a signal, f 2 ℱ ðRn;RÞ is a function, , 2 f< ;�g, and d 2 R is a
constant. The Boolean operators :, ^ , and _ are negation (‘not’), conjunction
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(‘and’), and disjunction (‘or’), respectively. The temporal operators F and G
stand for ‘Finally (eventually)’ and ‘Globally (always),’ respectively.

A robustness degree [2,6] function (which serves as the semantics of STL)

r : Ψ � ℱ ðRþ;RnÞ ! R maps an STL formula φ 2 Ψ and a signal s 2
ℱ ðRþ;RnÞ to a real value, called the robustness degree (or the degree of
satisfaction) of s against φ:

rðs; ðf ðsÞ< dÞ; tÞ ¼ d � fðsðtÞÞ
rðs; ðf ðsÞ � dÞ; tÞ ¼ f ðsðtÞÞ � d
rðs;φ1 ^ φ2; tÞ ¼ minðrðs;φ1; tÞ; rðs;φ2; tÞÞ
rðs;φ1 _ φ2; tÞ ¼ maxðrðs;φ1; tÞ; rðs;φ2; tÞÞ
rðs;G½a;bÞφ; tÞ ¼ min

t02½tþa;tþbÞ
rðs;φ; t0Þ

rðs; F½a;bÞφ; tÞ ¼ max
t02½tþa;tþbÞ

rðs;φ; t0Þ:

A positive rðs;φ; 0Þ indicates that the signal s satisfies STL formula φ at time
t ¼ 0; a negative rðs;φ; 0Þ indicates that s violates φ at t ¼ 0. If rðs;φ; 0Þ is large
and positive, then s would have to undergo a large deviation in order to
violate φ.

Parametric signal temporal logic (PSTL) is an extension of STL where the
bound d and the endpoints of the time intervals ½a; bÞ are parameters
instead of constants [19]. This paper calls variables used to parameterise d
as scale parameters π and those parameterising a and b as time parameters
τ. A full parameterisation is given as θ :¼ ½π; τ�. The syntax and semantics of

PSTL are the same as those of STL. A valuation �θ is a mapping that assigns
real (numerical) values to the parameters θ appearing in a PSTL formula. A

valuation �θ of a PSTL formula φθ paramterised by θ induces an STL formula
φ�θðθÞ. For example, if φθ ¼ F½τ1;τ2Þðx< π1Þ with θ ¼ ½π1; τ1; τ2� and
�θðθÞ ¼ ½0; 0; 3�, then φ�θðθÞ ¼ F½0;3Þðx< 0Þ. In the following, we will use φ�θ to

denote φ�θðθÞ for simplicity. We will also use φθi (or φθ� ) to denote the STL

formula resulting from valuating the parameters θ of the PSTL formula φθ at
θiðθÞ (or θ�ðθÞ).

2.2. Gaussian processes

A GP is defined in a continuous domain as a collection of random variables,
any finite linear combination of which has a joint Gaussian distribution [20].
Any GP over d 2 D can be defined completely with its mean function μdðdÞ
and its covariance function Σdðd; d0Þ as follows:

μdðdÞ ¼ E½f ðdÞ�;
Σdðd;d0Þ ¼ E½ðf ðdÞ � μðdÞÞðf ðd0Þ � μðd0ÞÞ�: (2)

A flat (or even zero) mean function μdðdÞ is chosen in the majority of cases in
the literature. Such a choice does not cause many issues since the mean of the
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posterior process in not confined to zero. There is a large set of available
kernels kdðd;d0Þ to construct μdðdÞ and Σdðd;d0Þ (see e.g. Equation (5)) but not
all kernel functions lead to universal approximation [21].

3. System definition and problem statement

3.1. System definition

We make the following assumptions regarding the class of CPSs studied in this
paper.

Assumption 1. The dynamics of the CPSs are deterministic, but subject to sto-
chastic initial condition perturbations, i.e. their dynamics can be described by
[22,23]

xðtÞ ¼ fðxðtÞ; ζÞ; (3)

Assumption 1. where xðtÞ is the state vector and ζ is a perturbation vector, a
zero mean Gaussian with an unknown covariance Σζ , i.e. ζ,Nð0; ΣζÞ.
Moreover, there is no measurement noise.

Remark 1. Based on this assumption, a CPS S maps an initial condition x0 2
X0 � R

nx and a perturbation ζ (due to e.g. uncontrolled and unknown envir-
onmental conditions) to a discrete-time output signal yðtjx0; ζÞ 2 ℱ ð½0; T �; YÞ
with Y � R

ny and T as the finite maximal simulation time. Then
rðyðtjx; ζÞ;φ�θ; 0Þ stands for the robustness degree of an output signal
yðtjx; ζÞ starting from x at time t ¼ 0 against an STL property φ�θ. In the
following, unless specified otherwise, we will use rðx;φ�θÞ to
denote rðyðtjx; ζÞ;φ�θ; 0Þ.

Assumption 2. Both X0 and Y can be represented as the Cartesian product of
intervals ½a1; b1� � ½a2; b2� � . . . ½an; bn�, where ai; bi 2 R .

3.2. Problem statement

The formal CPS performance interpretation solved in this paper can be defined
as follows:

Problem 1. (Formal CPS Performance Interpretation) Given a CPS S with an

initial set X0 � R
nx , two user-specified bounds δ 2 ð0; 1Þ; � 2 R

þ, and a user-
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specified PSTL φθ with parameters θ 2 Θ � R
nθ , where Θ is the set of all feasible

valuations, find a valuation θ� such that

Pð0< min
x2X0

rðx;φθ�Þ �Þh i1� δ; (4)

where Pð0<minx2X0rðx;φθ�Þ< �Þ is the probability that 0<minx2X0rðx;φθ� Þ< �.

Remark 2. The condition minx2X0rðx;φθ� Þ> 0 says that the output signal
yðtjx; ζÞ starting from any initial state x 2 X0 has a positive robustness degree
against the STL formula φθ� . According to the concept of the robustness
degree, this implies that all output signals starting from X0 satisfy φθ� , which
will be called the formal interpretation of the CPS S’s performance in this
paper. The condition minx2X0rðx;φθ� Þ< � dictates that the found interpretation
should only be satisfied by the CPS S barely. Moreover, notice that there are
infinitely many such interpretations (formulas), which together form a Pareto-
front-like surface in Θ (see [11] and Section 5.2 for details).

Problem 1 suffers from the curse of dimensionality with a search space of
dimension nx � nθ. To mitigate this complexity, this papers solves Problem 1
by solving two separate sub-problems iteratively: one with a search space of
dimension nx and the other with a search space of dimension nθ. Before
elaborating on these two sub-problems, let us first introduce an assumption
regarding the property of the robustness degree function rðx;φθÞ.

Assumption 3. For a CPS S, its marginal robustness degree functions
rð:;φ�θÞ 2 ℱ ðX0;RÞ and rðx;φ:Þ 2 ℱ ðΘ;RÞ can both be approximated by GPs.
rð:;φ�θÞ 2 ℱ ðX0;RÞ maps an initial state x 2 X0 to a robustness degree taken
with respect to an STL formula φ�θ (i.e. a PSTL formula φθ with a fixed valuation
�θ), while rðx;φ:Þ 2 ℱ ðΘ;RÞ maps a valuation of θ 2 Θ to a robustness degree
taken with respect to a fixed initial state x. Specifically, given a set of initial-
state-robustness-degree pairs Lx;r ¼ fðxi; r̂ðxi;φ�θÞÞgi¼1;���;N for a fixed valuation
�θ, rð:;φ�θÞ can be approximated by a GP r̂�θð:Þ with its mean function and
covariance function defined as follows [20]:

μxðxÞ ¼ kxðx; xLÞkxðxL; xLÞ�1r̂�θL
Σxðx; x0Þ ¼ kxðx; x0Þ � kxðx; xLÞkxðxL; xLÞ�1kxðxL; x0Þ;

(5)

where xL ¼ ½x1; � � � ; xN�T , r̂�θL ¼ ½̂rðx1;φ�θÞ; � � � ; r̂ðxN;φ�θÞ�T , and kxð:; :Þ is a kernel
function, which is chosen to be the automatic relevance determination (ARD)
kernel in this paper

kxðx; x0Þ ¼ σ2x;ARD exp �
1
2

Xnx
j¼1

wx;jðxj � xj 0Þ2
 !

: (6)
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The ARD kernel is characterised by a set of hyper-parameters

σx ¼ σ2x;ARD;wx;1;wx;2; � � � ;wx;nx

n o
, where wx;j; j ¼ 1; � � � ; nx weights the impor-

tance of the j-th dimension of X0. The reason that the notation r̂ðxi;φ�θÞ instead of
rðxi;φ�θÞ is used will be detailed in Section 5.1. Before that, :̂ can be read as
indicating ‘estimated’ or ‘observed’ robustness degrees (due to, for instance, the
perturbation ζ or the GP approximation) rather than the ‘real’ ones. Similarly,
given a set of valuation-robustness-degree pairs Lθ;r ¼ fðθi; r̂ðx;φθiÞÞgi¼1;���;N (or

Lθ;r ¼ θL; r̂xL
� �

with θL ¼ ½θ1; � � � ; θN�T , rxL ¼ ½̂rðx;φθ1Þ; � � � ; r̂ðx;φθNÞ�T ) for a fixed
initial state x, rðx;φ:Þ can be approximated by another GP r̂xðθÞ with its kernel
function, mean function, covariance function, and hyper-parameters denoted as

kθð:; :Þ, μθð:Þ, Σθð:; :Þ, and σθ ¼ σ2θ;ARD;wθ;1;wθ;2; � � � ;wθ;nθ

n o
, respectively.

Remark 3. Since GPs is a universal functional approximator [24,25], the above
assumption is a quite reasonable one. In comparison to isotropic squared expo-
nential kernels with equal weight for each dimension, our choice of ARD kernels
allows different weights for different dimensions, and is thus more flexible.

The two sub-problems are formulated as follows:

Problem 2. (Marginal Robustness Degree Function Regression) Given a CPS S

with an initial set X0 � R
nx , two user-specified bounds ρ 2 ð0; 1Þ, � 2 R

þ, an STL

formula φ�θ with a fixed valuation �θ, find a set of initial-state-robustness-degree

pairs Lx;r ¼ xL; r̂
�θ
L

n o
and a set of hyper-parameters ~σ�x such that

Pð r̂�θðx�Þ � rðx�;φ�θÞ
�� �� �h jLx;r; ~σ

�
xÞ> 1� ρ (7)

where

~σ�x ¼ argmax~σx logPð̂r
�θ
LjxL; σÞxÞ;

x� ¼ argminx2X0 r̂�θðxÞ;
(8)

rð:;φ�θÞ is the real marginal robustness function for a fixed φ�θ, r̂�θð:Þ is its GP

approximation (see Assumption 3), and Pð̂r�θLjxL; ~σxÞ is the marginal likelihood
taken with respect to hyper-parameters ~σx .

Remark 4. ~σx ¼ σx [ σxν , where σx is a set of hyper-parameters defined in
Assumption 3 and σxν is another hyper-parameter. Details regarding σxν as well

as the marginal likelihood Pðr�θLjxL; ~σxÞ will be provided in Section 5.1. A by-
product of generating Lx;r is a set of sampled output signals
yL ¼ fyiðtjxi; ζÞgi¼1;���;N. In practice, these signals can be obtained from a real

system or a through simulation of a high-fidelity Stateflow/Simulink model.
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Problem 3. (Parameter Estimation) Given a CPS S with an initial state x (or

equivalently an output signal yðtjx; ζÞ), three user-specified bounds ρ 2 ð0; 1Þ, � 2
R
þ and ε 2 R

þ, and a user-specified PSTL formula φθ with parameters

θ 2 Θ � R
nθ , find a set of valuation-robustness-degree pairs Lθ;r ¼ θL; r̂xL

� �
, a

valuation θ�, and a set of hyper-parameters ~σ�θ such that

Pð r̂xðφθ� Þ � rðx;φθ�Þj j �h jLθ;r; ~σ
�
θÞ> 1� ρ (9)

where

~σ�θ ¼ argmax~σθ logPð̂rxLjθL; ~σθÞ
θ� ¼ argmaxθ2Θmaxð0; ε� r̂xðφθÞj jÞ (10)

where rðx;φ:Þ is the real marginal robustness function for a fixed x, r̂xðφ:Þ is its GP
approximation (see Assumption 3) and Pð̂rxLjθL; ~σθÞ is the marginal likelihood

taken with respect to hyper-parameters ~σθ ¼ σθ [ σθν (details regarding σθν will be
provided in Section 5.1).

Remark 5. The function maxð0; ε� �Þ in Equation (10) is a modified hinge
loss function. We utilise this function to favour those interpretations i.e. STL
formulas, that are only barely satisfied by the CPS S. See Remark 2.

Theorem 1. Given a CPS S with an initial set X0 � R
nx , three user-specified

bounds δ 2 ð0; 1Þ, � 2 R
þ, ε 2 R

þ, a ρ satisfying ð1� ρÞ2=2 � 1� δ, and a
user-specified PSTL φθ with parameters θ 2 Θ � R

nθ , where Θ is the set of all
feasible valuations, if there exists a set of 4-tuples
L ¼ fðxi; θi; yiðtjxi; ζÞ; rðxi;φθiÞÞgi¼1;���;N, two sets of hyper-parameters σ�x and

σ�θ, and a valuation θ� such that together they solve Problems 2 and 3

simultaneously, then θ� is a solution to Problem 1.

Remark 6. The proof of this theorem is provided in Appendix 8.1. The
implication is that solving Problem 1, which has a search space of dimension
nx � nθ, can be converted into solving two sub-problems iteratively, Problem 2
with a search space of dimension nx and Problem 3 with a search space of
dimension nθ.

4. Gaussian process adaptive confidence bound active learning
algorithm

A close inspection of Problems 2 and 3 reveals that a crucial computational
bottleneck for the formal interpretation problem is the generation of the
output signal yðtjx; ζÞ given an initial state x and a CPS S. In practices, this
involves either conducting tests with a real CPS or generating signals with a
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high-fidelity Stateflow/Simulink CPS model; both can be experimentally/com-
putationally expensive. In this paper, we assume that:

Assumption 4. A Stateflow/Simulink model of the CPS S under investigation
is available and can serve as an oracle i.e. given an initial state x, it automa-
tically generates an output signal yðtjx; ζÞ. The formal CPS performance inter-
pretation problem is restricted by a computational budget, manifesting as a
constraint on the number of simulations, Nsim.

Many sampling based optimisation methods, such as particle swarm opti-
misation [26], simulated annealing [14], Nelder–Mead [11], and the stochastic
gradient descent algorithm [15] may not be suitable for the formal interpreta-
tion problem then, due to the large number of simulations needed. Instead
this paper develops an active learning algorithm called GP-ACB, inspired by
the Gaussian process upper confidence bound (GP-UCB) approach [24], but
with improved performance (to be demonstrated both theoretically and
empirically in this work).

GP-ACB is used to solve both Problem 2 and Problem 3. According to
Assumption 3, functions rð:;φ�θÞ 2 ℱ ðX0;RÞ and rðx;φ:Þ 2 ℱ ðΘ;RÞ can be
approximated by GPs r̂�θð:Þ and r̂xð:Þ, respectively. Then from a computational
perspective, the two problems are quite similar: Problem 2 involves finding

enough samples Lx;r ¼ xL; r̂
�θ
L

n o
to construct the underlying r̂�θð:Þ (exploration)

and at the same time locating the x� minimising the current r̂�θð:Þ (exploita-
tion); Problem 3 involves finding enough samples of Lθ;r ¼ θL; r̂xL

� �
to con-

struct the underlying r̂xð:Þ (exploration) and at the same time locating the θ�

maximising Equation (10), which is determined by r̂xð:Þ (exploitation). Thereby
a necessary mechanism needs to be in place to formally address the trade-off
between exploration and exploitation. Moreover, according to Assumption 4,
the number of simulations of the CPS model should be as small as possible.1

These needs are addressed by GP-ACB.
Specifically, GP-ACB chooses the next sample based on the following

strategy:

dt ¼ argmax
d2D

ðμt�1ðdÞ þ ημðdÞ
1
2β

1
2
tΣt�1ðdÞÞ; (11)

where d is x for Problem 2 and θ for Problem 3 (the search space D is X0 in the
former case and Θ in the latter one); subscripts t and t � 1 indicate iteration
steps e.g. dt is the instance that will be sampled at step t; μt�1ð�Þ and Σt�1ð�Þ
are the underlying GP’s mean and covariance functions at time step t � 1,
respectively, which are evaluated based on all the data obtained until step t �
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1 (see Equations (2) and (5)); the underlying GP is r̂�θð:Þ for Problem 2 and r̂xð:Þ
for Problem 3; ημðdÞ normalises the mean μt�1ðdÞ:

ημðdÞ ¼
μt�1ðdÞ �min

d2D
ðμt�1ðdÞÞ

maxd2Dðμt�1ðdÞÞ �mind2Dðμt�1ðdÞÞ
; (12)

and βt is a function of t and independent of d (see Theorem 2). Note that
Equation (11) is formulated as maximisation (i.e. to maximise reward) instead
of minimisation (i.e. to minimise cost) to be consistent with active learning
literature.

The GP-ACB algorithm balances the classical exploitation-exploration trade-
off as follows: the term μt�1ðdÞ tends to pick those points that are expected to
achieve high rewards (exploitation), and the term Σt�1ðdÞ tends to pick those
points that are uncertain (exploration). The normalisation term ημðdÞ
(0 	 ημðdÞ 	 1) acts as an adaptive factor favouring exploration directions

associated with higher rewards. Its role is summarised in the following
proposition:

Proposition 1. Set Lt ¼ maxðμtðdÞÞ �minðμtðdÞÞ, "d 2 D, and let βt be
defined as in Lemma 2 (see Appendix 8.2), then

1� ημðdtÞ1=2 	 β
1=2
t Σt�1ðdtÞ=Lt "t � 1:

Remark 7. Proposition 1 shows that when the scaling function Lt is large,
ημðdÞ will be close to 1, meaning the GP-ACB algorithm degrades to GP-UCB

[27]. Conversely, when Lt is large, μtðdÞ will drive the algorithm to be greedy.
The proof of this proposition is provided in Appendix 8.2.

Algorithm 1: GP-ACB algorithm

Input: Search space D; kernel function with hyperparameters σd; maximal
simulation time T .

Output: A set of sample-observation pairs ðdi; riÞf gTi¼1.
1: Set GP priors μ0ðdÞ ¼ 0 and Σ0ðdÞ ¼ 0;
2: for t ¼ 1 to T`
3: Update μt�1ðdÞandΣt�1ðdÞ with Equation (2);
4: Calculate ημðdÞ with Equation (12);
5: Calculate dt with Equation (11);
6: Obtain rt that corresponds to dt .
7: end for
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Algorithm 1 describes the GP-ACB in pseudocode. At Line 5, if D is X0, i.e. for
Problem 2, rt is obtained by first using the oracle (the Stateflow/Simulink
model of the CPS of interest) to generate an output signal ytðtjx; ζÞ starting
from initial state xt and then calculating the corresponding robustness degree
with respect to the fixed STL formula φ�θ; if D is Θ i.e. for Problem 3, rt is
obtained by directly calculating the robustness degree of the given output
signal yðtjx; ζÞ with respect to the current STL formula φθt .

Theorem 2. Let δ 2 ð0; 1Þ, βt ¼ 2 logð Dj jt2π2=6δÞ, p ¼ mint¼ð1;���;TÞðημðdtÞÞ,
q ¼ maxt¼ð1;���;TÞðημðdtÞÞ, and Dj j 	 1. Running GP-ACB results in a regret

bound as follows

Pr RT 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qC1TβTγT

p
;"T � 1

n o
� 1� δp; (13)

where C1 ¼ 8= logð1þ σ�2Þ.

Remark 8. Based on the bound on ημðdÞ in Proposition 1 and the defini-
tion of the information gain γT (see Appendix 8.2), it is obvious that Σt�1ðdtÞ
is close to 0 when the iteration step t is large, implying that p and q in
Theorem 2 are close to one in this case. This means that GP-ACB algorithm
is greedy at first (when the iteration step t is small) and then gradually
degrades to GP-UCB algorithm (when t is large). The regret bound of the
GP-UCB algorithm is [27]

Pr RT 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1TβTγT

p
;"T � 1

n o
� 1� δ:

With the same parameter setting, the regret bound of the GP-ACB algorithm is
Equation (13). Since 0< p; q 	 1, we can conclude that the GP-ACB algorithm
can get the same regret bound more efficiently than the GP-UCB algorithm.
Since the regret bound can be easily translated into the convergence rate, we
can also conclude that, on average, the GP-ACB algorithm has a higher con-
vergence rate than GP-UCB. The setting Dj j 	 1 implies that the search space
X0 or Θ needs to be normalised before the application of GP-ACB. The proof of
this theorem is provided in Appendix 8.2.

5. Solutions

As already pointed out in Section 3.2, the solution to Problem 1 is not one
single satisfactory valuation θ� but a set of satisfactory valuations. In this
section, we will first show how to find single satisfactory valuations and then
briefly describe how to get sets of satisfactory valuations.
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5.1. Single satisfactory valuation

Algorithm 2: Formal CPS performance interpretation with a single valuation
as the output

Input: A CPS S with an initial set X0; a user-specified PSTL φθ with parameters
θ 2 Θ � R

nθ ; kernel functions kx and kθ with unknown hyper-para-
meters ~σx and ~σθ, respectively; bounds ρ, � and ε; computational
budget Nsim.

output: A satisfactory valuation θ�.
1: Initialise θ to a random value �θ within Θ;
2: Set ~σx and ~σθ to some prior values;
3: Randomly select a set of c� 1 (c
 Nsim) initial states within X0,

xL  xif gi¼1;���;c�1;
4: Use S as an oracle to simulate a set of output signals yL  
fyiðtjxiÞgi¼1;���;c�1 with xL as initial states;

5: r̂�θL  �r̂ðxi;φ�θÞ
� �

i¼1;���;c�1;
6: repeat
7: repeat
8: Construct GP approximation r̂�θð:Þ i.e. μ�θc�1ð:Þ and Σ

�θ
c�1ð:Þ, with kx, ~σx,

xL, and r̂
�θ
L;

9: ~σ�x  argmax~σx logPð̂r�θLjxL; ~σxÞ;
10: xc  argmaxx2X0ðμ�θc�1ðxÞ þ η

�θ
μðxÞ

1
2β

1
2
cΣ

�θ
c�1ðxÞÞ;

11: Use S to simulate ycðtjxcÞ with xc as initial state;
12 xL  xL [xc ; yL  yL [yc ; r̂�θL  r̂

�θ
L [f �r̂ðycðtjxcÞ;φ�θÞg;

13: c cþ 1;
14: until 2β1=2c Σc�1ðxcÞ< �

15: Initialise θL; t ¼ θLj j;
16: r̂xL  maxð0; ε� r̂ðxc;φθiÞ

�� ��Þ� �
i¼1;���;t ;

17: repeat
18: Construct GP approximation r̂xð:Þ i.e. μxt ð:Þ and Σxt ð:Þ, with kθ, ~σθ, θL,

and r̂xL; 19: ~σ
�
θ  argmax~σθ logPð̂rxLjθL; ~σθÞ;

20: θtþ1  argmaxθ2Θðμxt ðθÞ þ ηxμðθÞ
1
2β

1
2
tþ1Σ

x
t ðθÞÞ;

21: θL  θL [θtþ1 ; r̂xL  r̂xL [fmaxð0; ε� ĵrðycðt xcÞ;φθtþ1Þ
�� ��Þg;

22: until 2β1=2tþ1Σ
x
t ðθtþ1Þ< �

23: �θ θtþ1;
24: until c � Nsim

The pseudocode of the algorithm to solve Problem 1 is provided in
Algorithm 5.1. The procedures are rather self-explanatory: lines 7–14 use GP-
ACB to solve Problem 2 and lines 17–22 use GP-ACB to solve Problem 3.
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Moreover, notice that constructing r̂
�θ
L (lines 5 and 12) and r̂xL (lines 16 and 21)

conform with Equations (8) and (10).
For the remainder of this subsection, we will elaborate on the hyper-para-

meters ~σx (line 9 in Algorithm 2 and Equation (8) in Problem 2) and ~σθ (line 19
in Algorithm 2 and Equation (10) in Problem 3). Interest in leveraging GPs for
the purpose of formal verification, mining, and inference of CPSs has surged as
of late [8,13,17,18,28]. Among the current works, many assume that the true
hyper-parameters are known a priori and also fixed. This is obviously not the
case in the majority of practical cases. In this paper, we instead estimate
relevant hyper-parameters from data. To demonstrate, we shall use the mar-
ginal robustness degree function rð:;φ�θÞ and the set of its hyper-parameters ~σx
as an example (the other marginal robustness degree function rðx;φ:Þ and the
set of its hyper-parameters ~σθ can be understood accordingly).

Let us return to the original notation of the robustness degree. The robust-
ness degree function rðyðtj:; �Þ;φ�θ; 0Þ 2 FðX0;RÞ corresponding to observed
output signals yðtj:; �Þ can be approximated as the summation of a latent
function rðyðtj:; 0Þ;φ�θ; 0Þ 2 FðX0;RÞ, which is exactly the marginal robustness
degree function rð:;φ�θÞ mentioned in Assumption 3, and an additive perturba-
tion term νð:Þ, namely

rðyðt :; �Þ;φ�θ; 0Þ ¼ rðyðt�� ��:; 0Þ;φ�θ; 0Þ þ νð:Þ: (14)

Then from the interpretation algorithm’s perspective, only rðyðtjx; �Þ;φ�θ; 0Þ can
be accessed, while rðyðtjx; 0Þ;φ�θ; 0Þ is hidden. Recall that we use rðx;φ�θÞ to
denote rðyðtjx; 0Þ;φ�θ; 0Þ and r̂ðx;φ�θÞ to denote rðyðtjx; �Þ;φ�θ; 0Þ.2 According to
Assumption 3, given a set of initial-state-robustness-degree pairs

Lx;r ¼ xL; r
�θ
L

n o
, rðx;φ�θÞ can be approximated by a GP with its prior as

PðrðxL;φ�θÞjxL; σxÞ,Nð0; ΣxÞ (15)

where rðxL;φ�θÞ ¼ ½rðx1;φ�θÞ; � � � ; rðx xLx;rj j;φ�θÞ�T and σx ¼ σ2x;ARD;wx;1;
n

wx;2; � � � ;wx;nx

�
(see Assumption 3). Assume that ν in Equation (14) is

approximately Gaussian and uniform. Then the likelihood for a pair
ðrðxi;φ�θÞ; r̂ðxi;φ�θÞÞ is given by

Pð̂rðxi;φ�θÞjrðxi;φ�θÞÞ,Nðrðxi;φ�θÞ; σ2νÞ (16)

where σν is the covariance for the perturbation ν. The likelihood function for

Lx;r ¼ xL; r
�θ
L

n o
is then given by

Pðr�θLjrðxL;φ�θÞ; σνÞ ¼
YLx;rj j

i¼1
Pð̂rðxi;φ�θÞjrðxi;φ�θÞÞ: (17)

Finally,
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Pðr�θLjxL; ~σxÞ ¼
�Pðr�θL rðxL;φ�θÞ; σνÞPðrðxL;φ�θÞ

�� ��xL; σxÞdrðxL;φ�θÞ
where ~σx ¼ ½σx; σν�. Then the hyper-parameters ~σx can be estimated by opti-

mising the log marginal likelihood Pðr�θLjxL; ~σxÞ, namely

~σ�x ¼ argmax
σx

logPðr�θLjxL; ~σxÞ: (18)

This is exactly Equation (8). In this paper, the above optimisation problem is
solved with the Gaussian processes for machine learning (GPML) toolbox with
the Polack–Ribiere conjugate gradients implementation [29].

5.2. Sets of satisfactory valuations: critical level sets

The way to obtain a set of satisfactory valuations is quite straightforward
given Algorithm 2. Such sets can be mathematically characterised by critical
level sets. A critical level set of a function F e.g. a marginal robustness
degree function rðx;φ:Þ, with a parameter space D is a connected compo-
nent χ satisfying χ � ccð d 2 D : FðdÞ ¼ clf gÞ, where cl is the corresponding
critical level e.g. a robustness degree value [30]. In the context of formal CPS
performance interpretation, a human user is in the loop, who wants to
understand the intricacies and tendencies of the CPS. We are therefore
not only interested in one valuation θ� that explains the CPS’s performance
(Problem 1), but also how the robustness degree changes with respect to
different parameters and valuations (an illustrative example will be provided
in Section 6.2).

The construction of critical level sets can be achieved by (i) setting cl (a
robustness degree value in this case) to a specific value; (ii) running the
method elaborated in the last sub-section M times to find M parameters
θif gi¼1;���;M, each of which solves Problem 1, specifically each θi satisfies

Pð0< min
x2X0

rðx;φθiÞ �Þh i1� δ; (19)

(iii) using ε-SVR (epsilon-insensitive support vector regression) to approximate
the critical level set corresponding to cl, and (iv) choosing a different cl and
continuing (i)-(iv) until halted by the user.

6. Case studies

In this section, we will first illustrate the performance of GP-ACB (the algorithm
provided in Section 4) on a known benchmark, the global optimisation of the
Rastrigin function. Then we will illustrate our formal CPS performance inter-
pretation methodology (using algorithms provided in Section 5) with a case
study in automotive mechatronic design.
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6.1. Global optimisation of Rastrigin function

The performance of four active learning algorithms based on GPs are com-
pared: (i) GP-UCB with fixed hyper-parameters [27], (ii) GP-UCB with optimised
hyper-parameters [31], (iii) GP-ACB with fixed hyper-parameters, and (iv) GP-
ACB with optimised hyper-parameters; the last strategy is the one being
advocated in this paper. We choose GP-UCB since it is a state-of-the-art active
learning algorithm. The usage of ‘optimised’ means that the real hyper-para-
meters are unknown a priori, and actually estimated from data. The global
optimisation of the Rastrigin function (shown in Figure 1(a)) is used as the
benchmark here. This surface is described with the following formula:

fðx; yÞ ¼ 20þ x2 � 10 cosð2πxÞ þ y2 � 10 cosð2πyÞ þ e

where e is a Gaussian noise with zero mean and variance σ2 of 1. The search

space D ¼ ½�5; 5�2 is randomly discretised into 1000 points. Each algorithm is
run for T ¼ 300 iterations. Since the global minimum of the Rastrigin function
ðx�; y�Þ is known (though unknown to the learning algorithms), for the i-th

trial, if ðxit; yitÞ is the solution obtained by running the algorithm for t iterations,
then the mean regret for the algorithm at time t is
�Rt ¼

PNt
i¼0½f ðxit; yitÞ � f ðx�; y�Þ�=Nt , where Nt is the number of trials. In this

case study, Nt is set to 100. Each trial is initialised randomly.
Figure 1(b) shows the mean regrets �Rt incurred by the four Gaussian-

process-based algorithms. GP-ACB with optimised hyper-parameters
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Figure 1. (a) The contour map of the Rastrigin function. (b) Comparison of the performances
of the four active learning algorithms. The notation ‘-opt’ in the legend indicates that the
hyper-parameters are allowed to be re-optimised after each iteration. The mean regret over
100 trails �RðtÞ :¼ �Rt ¼

P100
i¼0½fðxit; yitÞ � fðx�; y�Þ�=100 is chosen as the performance metric.
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outperforms the others. For instance, GP-UCB arrives at its minimum regret in
an average of 300 iterations; while GP-ACB arrives at its minimum regret in an
average of 150 iterations. Moreover, the mean regret �Rt of the GP-ACB is much
lower than that of the GP-UCB.

6.2. Formal interpretation for automotive mechatronic design

Next, the utility of the proposed interpretation approach elaborated in Section
5 is demonstrated in the context of automotive mechatronic design; an
engineer explores the influence of certain cyber and physical system para-
meters on satisfaction of performance targets, in addition to the completeness
and valuation of these objectives.

6.2.1. Model description
In this case study, our modelling assumptions yield a computational descrip-
tion that (i) defies traditional analytic guarantees on closed-loop stability, and
(ii) can adequately represent some established vehicle design trade-offs. We
depict a typical modern mid-size passenger car with 4-corner semi-active
suspension shock absorbers (whose effective damping coefficients can be
modulated on-the-fly). Though a complete derivation of the simulation
model is outside the scope of this paper, here we would like to highlight a
few interpretation and design challenges related to the following output
signals: the lateral component of the vehicle inertial trajectory (Y), lateral
velocity (v), yaw rate (ωy), sideslip angle (θside), sprung mass vertical accelera-
tion (aheave), and the normal force on the road wheels (Fzi at each corner).

An important and safety-critical controller found in most all modern vehicles
is one that provides torque assistance (and haptic feedback) to the driver for
the steering task. This controller is usually at least partially tuned using
heuristics, embedding a manufacturer-specific feeling. This nuanced configura-
tion may take the form of non-linear multi-dimensional look-up tables; a basic
example is shown in Figure 2(a). Note that the steering ‘boost’ generally
decreases with forward velocity: the scrubbing effect associated with the
tire’s steered (diametral) axis is reduced with increased rolling rate, owing to
its viscoelastic properties and the friction conditions at the road interface. A
simulation model designed to steer at high and low forward velocities cannot
fairly represent these dynamics with a linear function. Moreover, analytic
guarantees on the closed-loop steering performance can be hard to obtain
without significant simplifying assumptions regarding this subsystem.

The vehicle model is designed to be valid under large centre-of-gravity
accelerations, which cause large changes in chassis attitude (by comparison
with nominal driving conditions). These can be a result of emphatic user
inputs, or simply changes in roadway elevation taken at speed. Such
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occurrences result in weight transfer–changes in the vertical (normal) force
under each wheel. An important non-linear relationship relates changes in the
normal and lateral tire forces, the latter of which motivates changes in the
vehicle’s physical trajectory (an important component of vehicle handling
assessment). Figure 2(b) shows the lateral force generation with increasing
slip angle (slip angles result from steering, or the vehicle dynamics), for high
and low normal loads. Not only is the amplitude impacted, but the rate of
change of lateral force is non-constant with increasing vertical force–an essen-
tial trend in the analysis and design of both suspension parts and feedback
compensators. For this case study, we consider two parameters (one each
cyber and physical) as a design demonstration. The physical parameter is the
fore-aft distribution of the (fixed) total vehicle roll stiffness, in the form of a
dimensionless ratio of anti-roll bar rates (N-m/rad). This has a significant effect
on handling properties, particularly closer to the limits of road adhesion
[32,33].

The software governing the semi-active suspension houses the second
(tuning) parameter we investigate in this study. A modal chassis control
algorithm addresses the basic vibratory patterns of the body [34]: here we
develop expressions for the desired (i) rolling torque, (ii) pitching torque and
(iii) heaving (vertical) force that are proportional to the roll/pitch/heave velo-
cities. This creates the effect of ‘inertial damping,’ a concept germane to work
focusing on the improvement of vehicle ride qualities. The following items are
used to make this calculation: (i) the vehicle roll, pitch and heave momenta,

p ¼ ½pR; pP; pH�T , (ii) the body mass and centroidal mass moments of inertia in
the roll and pitch principle directions (m, JR, JP), (iii) platform dimensions
including those locating the centre-of-gravity longitudinally relative to the
axles and track widths (a, b, w1, w2), and (iv) the inertial roll, pitch and heave
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Figure 2. (a) Boost curve for a generic electric power-assist steering system (EPAS). (b) Non-
linear relationship for lateral tire force generation as a function of normal loading. Note the
saturating effect of added weight transfer.
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damping coefficients (Cr , Cp, Ch). The heave coefficient Ch is allowed to vary for
this study. The required force and torques is mapped to the desired forces at
each corner (to be generated by the damper, if possible), FL1, FR1, FL2, FR2,
through the platform geometry:

� p �
Cr
JR
Cp
JP
Ch
m

2
64

3
75 ¼ 1 1 1 1

� w1
2

w1
2 � w1

2
w1
2�a �a b b

2
4

3
5

FL1
FR1
FL2
FR2

2
664

3
775;

where � is element-wise multiplication.
These forces, as designed above, can demand power from corner actuators.

In our example application, semi-active dampers are selected, only capable of
dissipating power, albeit at a variable rate [35]. We must therefore restrict the
corner commands to represent those which can be created by semi-active
force generators. This is achieved with the process described in Algorithm 3.
This switching condition serves as a final example of system properties that are
realistic, difficult to analytically verify, though necessary for representing the
relevant dynamics and objectives.

Algorithm 3: Calculation of suspension semi-active damper forces using
passivity

Input: Allocated forces F ¼ ½FL1; FR1; FL2; FR2�T ; suspension relative velocities

vrel ¼ ½vL1; vR1; vL2; vR2�T .
Output: Desired passive suspension damper forces Fp.
1: Restrict computation to appreciable relative velocities vrelj j< ε4�1;
2: if F � vrel > 0
3: Fp ¼ F;
4: else
5: Fp ¼ Fmin, the damper OFF state.
6: end if

6.2.2. Test conditions and PSTL templates
We select two test modes suitable for evaluating the ride and handling
properties of a road vehicle. For testing the handling performance, a step
steer manoeuvre is chosen (ISO 7401 provides guidance and specifications). To
inspect one aspect of ride, we traverse a bump on the right track only–thus
exciting heave, roll and pitch motion.

Bump Test: During the bump test, the vehicle with a forward speed of 30
kph runs over a rounded obstacle as shown in Figure 3(a) with the wheels on
the right-hand side. The PSTL templates for the bump test (that can be used
by a designer to formally query the performance of the vehicle) are as follows:
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● The vehicle should have a straight trajectory as much as possible after
traversing the bump, φ1 :¼ Gð Yj j< π1Þ;

● Normal force variation should be minimised, for both safety and handling
reasons, φ2 :¼ Gð Fz � F0j j< π2Þ;

● Small heave acceleration obtains a good ride experience, φ3 :¼ Gðaheave < π3Þ.
Thus, the formal interpretation of a particular automobile design in the context
of a rounded obstacle test can be the conjunction of the above three PSTL
templates:

ϕbump :¼ φ1 ^ φ2 ^ φ3: (20)

Step Steering Test: During the step steering test, an open-loop steering input
in used; the final steering angle is first calibrated to the desired output, then
the driver has no effect on the results (a mechanised driver can be used). The
input is shown in Figure 3(b), the standard forward speed is 100 kph (about 62
mph). Starting with yaw rate and lateral velocity close to zero, the steering
wheel is turned quickly to that value which yields a selected nominal lateral
acceleration in the steady state. The PSTL templates for the step steering test
are as follows:

● Design changes should minimise body sideslip angle, φ4 :¼ Gðθside < π4Þ;
● Excessive heave acceleration should be avoided, φ5 :¼ Gðaheave < π5Þ;
● Maximise steady-state yaw rate and bounded maximum yaw
rate, φ6 :¼ F½3;τÞðωys > π6Þ ^ Gðωym < π7Þ.

Thus, the formal interpretation in the context of the step steer test can be the
conjunction of the above three templates:

ϕstep :¼ φ4 ^ φ5 ^ φ6: (21)
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Figure 3. Test input for (a) the bump test, in road elevation profile for the right track and (b)
the step steering test, in steering angular displacement. Note how the total wheel angle
setting is a combination of the handwheel input and passive contributions from the suspen-
sion (both kinematic and compliant).
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This example set of PSTL templates for the bump and step tests clearly do not
represent all conceivable objective metrics for automotive ride and handling
performance. They can, however, serve as a basis to illustrate how a designer
might interact with our formal CPS interpretation methodology, and gain
insight into the design of complex CPSs.

6.2.3. Algorithmic performance
Here we use the bump test as an example to demonstrate the performance of
our proposed algorithm in solving the formal interpretation problem i.e.
Problem 1, when only a single satisfactory valuation is required (the corre-
sponding algorithm was provided in Section 5.1). The iteration limit Nsim is set
to 400. Figure 4 shows the performance of four active learning algorithms (the
same as those mentioned in Section 6.1) over 10 randomly-initialised runs
when the user-specified PSTL template is φ1 :¼ Gð Yj j< π1Þ. The error percen-
tages are calculated by dividing estimation errors by the approximated true
valuation, which is obtained by sampling the parameter space with 10,000
points and choosing the one that leads to a robustness closest to zero. The
results show that the active learning algorithms with optimised hyper-para-
meters outperform those with fixed hyper-parameters. The performances of
GP-ACB and GP-UCB with optimised hyper-parameters are indistinguishable
for this performance metric.

Next we use the step input test as an example to demonstrate the perfor-
mance of our proposed algorithm in solving the formal interpretation problem
when a set of satisfactory valuations is required (the corresponding algorithm
was provided in Section 5.2). In this case, we set the critical level cl to zero and

10 20 30 40 50 60 70
# Active samples

3

4

5

6

7

8

E
st

im
at

io
n 

E
rr

or
 (

%
)

gpucb
gpacb
gpucb-opt
gpacb-opt

(a)

0 0.2 0.4 0.6 0.8 1

Robustness

0

0.2

0.4

0.6

0.8

1

C
um

la
tiv

e 
D

is
tr

ib
ut

io
n 

F
un

ct
io

n 
(C

D
F

)

gpucb
gpacb
gpucb-opt
gpacb-opt

(b)

Figure 4. (a) Comparison of the performance of the four active learning algorithms over 10
randomly-initialised runs when the user-specified PSTL template is φ1 :¼ Gð Yj j< π1Þ. The
x-axis corresponds to the number of samples selected by the active learning algorithms (c in
Algorithm 2). Standard deviation intervals correspond to σ bounds. (b) The cumulative
distribution functions (CDFs) of the absolute values of all the sampled output signals’
robustness degrees for the four active learning algorithms. The user-specified PSTL template
is chosen to be ϕstep.
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plot the cumulative distribution function (CDF) of the absolute values of the

robustness degrees of the sampled output signals, i.e. the r̂θL in Algorithm 2.
Ideally a learning algorithm with high efficiency tends to sample signals with
robustness degrees closer to the set critical level (0 in this case). Therefore, the
CDF can serve as a good indicator of the sampling efficiency of learning
algorithms. To compare the performance of the four active learning algo-
rithms, we let all of them start with the same 10 randomly-selected initial
states and the computational budget Nsim is set to 500. Figure 4(b) shows the
CDFs of the absolute values of all the sampled signals’ robustness degrees for
the four algorithms. It clearly shows that GP-ACB outperforms GP-UCB in term
of sampling efficiency and GP-ACB with optimised hyper-parameters has the
best performance.

6.2.4. Formal-interpretation-aided design
In this sub-section, we show two effective ways that the formal interpretation
methodology proposed in this paper can be utilised to help designer to
analyse and design complex CPS.

The first way is to investigate the pair-wise relationships between interpre-
tation parameters and their joint effects on the system performance, as
described by STL formulas. In this procedure, the designer only allows one
parameter to change while keeping all the others fixed. The designer can then
investigate the effect of the changes in interpretation parameterisation on the
robustness degree with respect to a particular performance that he or she is
interested in studying which is codified by a PSTL template. Figure 5(a) shows
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Figure 5. (a) Pair-wise relationships between the four parameters ðπ4; π5; π6; π7Þ and the
robustness degree with respect to ϕstep. The sub-figures show the effect of a single para-
meters’ change in interval ½0; 2� to the robustness degree, during which the other three
parameters are fixed to 0.4 (top left), 0.8 (top right), 1.2 (bottom left), and 1.6 (bottom right).
(b)Critical level sets of the vehicle systems robustness degree for the bump test (the
corresponding STL formula is ϕbump :¼ φ1 ^ φ2 ^ φ3 with valuation ½1; 1; 1�) with respect to
two design parameters: a physical one, the roll bar stiffness ratio Kr , and a cyber one, the
inertial heave damping coefficient Ch.
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the pair-wise relationship between the robustness degree with respect to ϕstep

and four parameters for the step steering test: sideslip angle θside, heave
acceleration aheave, steady yaw rate ωys, and maximum yaw rate ωym. To get
these results, the algorithm described in Section 5.2 is used to find the sets of
valuations of the varying parameter corresponding to a range of robustness
degree critical levels. In the sub-figures, one of the four parameters changes in
interval ½0; 2�, and the other three parameters are fixed. For example, the
bottom-left figure indicates that all four parameters impact the robustness
degree when the others are held fixed at 1.2. The bottom right belies the
insensitivity of the robustness degree to the changes of maximum yaw rate
ωym and sideslip angle θside when the fixed value is high (effectively relaxed
requirements). Moreover, Figure 5(a) also shows the rates of change of the
robustness degrees with the slope of these curves, a quite useful information
for conditioning the PSTL template structure. With the knowledge obtained
from analysing the pair-wise relationships, designers can adjust their design
and balance the influence of different cyber-physical parameters knowing their
impact on the overall satisfaction of the system requirements.

The second way to help designers to gain insights and form meta-knowl-
edge of CPSs is to utilise plots of critical level sets of the robustness degree
against various cyber-physical parameters. Here again the algorithm described
in Section 5.2 can be used. Figure 5(b) shows the effect of the two selected
cyber-physical parameters, inertial heave damping coefficient Ch and roll bar
stiffness distribution Kr , to the robustness degree for the bump test (ϕbump).

With this plot, it is easy for the designers to know how the changes in the
design parameters can affect the vehicle’s performance in the context of the
interpretation of interest. For example, Figure 5(b) shows two critical positions
where the satisfaction reaches a local maximum, namely two peaks can be
seen around point ð0:21; 0:7Þ and point ð0:63; 0:4Þ. One can place these two
viable configurations on the contours of the step steering test (which is not
shown here), and perhaps find that only one of these may be suitable when
the testing regimen is evaluated in total.

In a general case, it is useful to further interrogate these two points by
viewing the time-series data associated with them; this often has the effect of
clarifying a way that the total interpretation is incomplete. Thus the process of
design with this method is iterative in nature. For instance, Figure 6(a) shows a
comparison of the body yaw torque for the two maxima found in Figure 5(b),
obtained by running a simulation and extracting additional interesting output
signals (over and above those used to construct the interpretation). One
difference apparent from this plot is that the torque imparted to the cabin
appears to have either a lower average value, or energetic transfer occurring
across a higher bandwidth. Depending on design requirements and occupant
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location, one of these signals may be preferred over the other, suggesting that
a more complete interpretation is needed.

In order to investigate the coupling effect between different STL formulas,
or interpretations, an extra experiment is conducted here for the bump test. In
this experiment, the system’s performance is analysed with respect to the
three individual component interpretations φ1, φ2, and φ3 in ϕbump :¼ φ1 ^
φ2 ^ φ3 (with a valuation ½1; 1; 1�). The way to analyse the system’s perfor-
mance with respect to an individual interpretation is exactly the same as the
procedure for generating the map in Figure 5(b). After all three maps are
generated, we select the regions having robustness degree bigger than 0.1
and put them into a single plot, as shown in Figure 6(b). Figure 5(b) and
Figure 6(b) together clearly show that there are coupling effects between the
three component interpretations. For instance, the peak around ð0:15; 0:7Þ in
Figure 5(b) is the place where all three interpretations reach relative high
robustness degrees in Figure 6(b). However, this is not the case for the peak
around ð0:7; 0:4Þ in Figure 5(b). The difference between the peaks indicates
that a good performance with respect to an overall interpretation does not
necessary transfer to a good performance with respect to each individual
component interpretation, at least not in an absolute sense.

7. Conclusions and future work

This paper introduced a new methodology of allowing human users or
designers to interrogate the performance of complex CPSs via inquiries written
in formal logic. A new active learning algorithm, called GP-ACB, was proposed
to ease the possible computational cost related to the simulation or testing of
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Figure 6. (a)Total torque about the body yaw axis, a factor in deciding ride quality, for both
maxima found in Figure 5(b). Note the higher frequency content found in the case with
higher heave damping. (b)Parameters’ effective regions for three different STL formulas i.e.
interpretations, φ1, φ2, and φ3. The regions with the robustness degree bigger than 0.1 are
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the CPSs. The paper showed both theoretically and empirically that GP-ACB
has a better performance than many existing Gaussian-processes-based algo-
rithms, such as GP-UCB. A case study on automotive mechatronic design was
provided to demonstrate the power of the proposed methodology, and hope-
fully to provide practitioners with insights into how to design CPSs in a more
formal manner. We are currently exploring possibilities of (i) integrating
human-in-the-loop interactive learning into our methodology and (ii) allowing
flexible rather than fixed PSTL templates.

Notes

1. It is worth pointing out that solving Problem 3 does not require generating new
simulated output signals. Thus, it is not strictly subjected to the computational
budget Nsim. None-the-less, in the context of CPS performance interpretation, there
is a human user who is waiting for the answer to his or her inquiry. So it is still
desirable to minimise the number of valuations θLj j to improve the interpretation
performance.

2. This explains the adoption of the sign :̂ in Section 3.2 and onward, implying ‘esti-
mated’ or ‘observed’.
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8. Appendix

8.1. Proof of Theorem 1

Proof. Based on the settings of Problems 2 and 3, we have Pð r̂�θðx�Þ � rðx�;φ�θÞ
�� �� �Þh i1� ρ and

Pð r̂xðφθ� Þ � rðx;φθ� Þj j �Þh i1� ρ. As the sampling processes for xL and θL are independent, we

have Pð r̂θ� ðx�Þ � rðx�;φθ� Þj j �Þ ¼ Pðh ĵr�θðx�Þ � rðx�;φ�θÞ �ÞPðh ĵrxðφθ� Þ � rðx;φθ� Þj j �Þh ið1� ρÞ2.
Since r̂θ� ðx�Þ ¼ 0, then Pð rðx�;φ�θÞ

�� �� �Þh ið1� ρÞ2. As rðx�;φ�θÞ is zero mean, then

Pð0< rðx�;φθ� Þ �Þh ið1� ρÞ2=2 � 1� δ. The theorem has been proved.
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8.2. Proof of Theorem 2

The proof of Theorem 2 follows the proofs of regret bound in [27,36]. Here only the cases
when the search space is finite i.e. Dj j<1, are considered. In this paper, the infinity norm
for �j j will be used.

Define γT as the maximum information gain after T rounds as follows [27]:

γT ¼ max
T 0	T

1
2

XT 0
t¼1

logð1þ σ�2Σ2t�1ðdtÞÞ:

According to [27], if the search space D 2 R
d is compact and convex, where d is the

dimension of the search space, with the assumption that the kernel function satis-

fies kðd;d0 Þ 	 1,

● γT ¼ Oððlog TÞdþ1Þ for Gaussian kernel
● γT ¼ O Tdðdþ1Þ=ð2νþdðdþ1ÞÞðlog TÞ� �

for Matérn kernels with ν> 1.

Finally, for a unknown function g (i.e. ‘real’ robustness in this paper), the following bound
for the GP-ACB algorithm can be obtained.

Lemma 1 Pick δ 2 ð0; 1Þ and set βt ¼ 2 logð Dj jπt=δÞ, where
P

t�1 π
�1
t ¼ 1, πt > 0. Then,

with Dj j 	 1,

gðdÞ � μt�1ðdÞj j 	 ημðdÞ1=2β1=2t Σt�1ðdÞ;"d 2 D;"t � 1

holds with probability � 1� δημðdÞ

Proof. For d 2 D and t � 1. It is known that conditioned on yt�1 ¼ ðy1; � � � ; yt�1Þ,
d1; � � � ;dt�1f g is deterministic. Furthermore, gðdÞ,Nðμt�1ðdÞ;Σ2t�1ðdÞÞ. Now if r,Nð0; 1Þ,
then

Pðr > cÞ ¼ e�c
2=2ð2πÞ�1=2 � e�ðr�cÞ2=2�cðr�cÞdr

	 e�c
2=2

Pðr > 0Þ ¼ ð1=2Þe�c2=2:

for c > 0, as e�cðr�cÞ 	 1 for r � c. Set r ¼ ðgðdÞ � μt�1ðdÞÞ=Σt�1ðdÞ and c ¼ ημðdÞ1=2β1=2t .
Then

Pð gðdÞ � μt�1ðdÞj j=Σt�1ðdÞ > ημðdÞ1=2β1=2t Þ 	 e�ημðdÞβt=2

After applying the adaptive bound,

gðdÞ � μt�1ðdÞj j 	 ημðdÞ1=2β1=2t Σt�1ðdÞ "d 2 D

holds with probability � 1� e�ημðdÞβt=2. Since Dj j, the infinity norm, is less than or equal to

1, e�ημðdÞβt=2 	 δημðdÞ=πt with πt ¼ π2t2=6. Thus, the statement holds.
Remark 9. Before conducting Algorithm 1, the search space D is first normalised by its

infinity norm Dj j to guarantee that the scaled search space D0 satisfies D0j j 	 1. The search
space D0 is then passed to Algorithm 1 as one of its inputs.

Lemma 2. Fix t � 1, if gðdÞ � μt�1ðdÞj j 	 ημðdÞ1=2β1=2t Σt�1ðdÞ, "d 2 D, then the regret rt is

bounded by 2β1=2t Σt�1ðdtÞ.
Proof. According to the definition of d�, μt�1ðdtÞ þ ημðdtÞ1=2β1=2t Σt�1ðdtÞ
� μt�1ðd�Þ þ ημðd�Þ1=2β1=2t Σt�1ðd�Þ � gðd�Þ. According to the definition of ημðdÞ, then

ημðdÞ 	 1. Therefore, the instantaneous regret
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rt ¼ gðd�Þ � gðdtÞ
	 ημðdtÞ1=2β1=2t Σt�1ðdtÞ þ μt�1ðdtÞ � gðdtÞ
	 2ημðdtÞ1=2β1=2t Σt�1ðdtÞ 	 2β1=2t Σt�1ðdtÞ

Proposition 1 can be proved as follows:
Proof. Set dm ¼ argmaxðμt�1ðdÞÞ, "d 2 D, according to Equation (8),

dt ¼ argmaxημðdtÞ1=2β1=2t Σt�1ðdtÞ þ μt�1ðdtÞ, thus ημðdtÞ1=2β1=2t Σt�1ðdtÞ þ μt�1ðdtÞ �
ημðdmÞ1=2 β1=2t Σt�1ðdmÞ þ μt�1ðdmÞ, then

μt�1ðdmÞ � μt�1ðdt�1Þ
	 ημðdtÞ1=2β1=2t Σt�1ðdtÞ � ημðdmÞ1=2β1=2t Σt�1ðdmÞ
Asμt�1ðdmÞ � μt�1ðdt�1Þ ¼ μt�1ðdmÞ �minðμt�1ðdÞÞ
þminðμt�1ðdÞÞ � μt�1ðdt�1Þ
¼ Ltð1� ημðdtÞ1=2Þ
) 1� ημðdtÞ1=2

	 β
1=2
t
Lt
ðημðdtÞ1=2Σt�1ðdtÞ � ημðdmÞ1=2Σt�1ðdmÞÞ

	 β
1=2
t
Lt
ðημðdtÞ1=2Σt�1ðdtÞ 	 β

1=2
t Σt�1ðdtÞ=Lt

Proposition 1 has been proved.
Then Theorem 2 can be proved as follows:
Proof. According to Lemmas 1 and 2, the regret bound fr2t 	 4ημðdtÞβtΣ2t�1ðdtÞ, "t � 1g

holds with probability � 1� δημðdtÞ � 1� δp. As βt is non-decreasing, then

4ημðdtÞβtΣ2t�1ðdtÞ 	 4qβTσ
2ðσ�2Σ2t�1ðdtÞÞ

	 4qβTσ
2S logð1þ σ�2Σ2t�1ðdtÞÞ

where S ¼ σ�2= logð1þ σ�2Þ, since σ�2Σ2t�1ðdtÞ 	 σ�2kðdt;dtÞ 	 σ�2,
C1 ¼ 8= logð1þ σ�2Þ � 8σ2 and h2 	 S logð1þ h2Þfor h 2 ½0; σ�2�. As C1 ¼ 8σ2S, for

T � 1, then

PT
t¼1

r2t 	
PT
t¼1

4ημðdtÞβtΣ2t�1ðdtÞ

	 qβTC1
1
2

PT
t¼1

logð1þ σ�2Σ2t�1ðdtÞÞ 	 qC1βTγT :

According to Cauchy–Schwarz inequality, R2T 	 T
PT
t¼1

r2t . Theorem 2 has been proven.
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