
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339904851

Semantic Inference for Cyber-Physical Systems with Signal Temporal Logic

Conference Paper · December 2019

DOI: 10.1109/CDC40024.2019.9030138

CITATIONS

0
READS

67

3 authors, including:

Some of the authors of this publication are also working on these related projects:

UAS and UAS Swarms for Agricultural and Defense Applications View project

Interpretable Fault Diagnosis and Fault Tolerant Control View project

Mei Liu

Tianjin University

15 PUBLICATIONS   106 CITATIONS   

SEE PROFILE

Zhaodan Kong

University of California, Davis

65 PUBLICATIONS   1,525 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Zhaodan Kong on 14 April 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/339904851_Semantic_Inference_for_Cyber-Physical_Systems_with_Signal_Temporal_Logic?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/339904851_Semantic_Inference_for_Cyber-Physical_Systems_with_Signal_Temporal_Logic?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/UAS-and-UAS-Swarms-for-Agricultural-and-Defense-Applications?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interpretable-Fault-Diagnosis-and-Fault-Tolerant-Control?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mei-Liu-24?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mei-Liu-24?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tianjin_University?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mei-Liu-24?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaodan-Kong-2?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaodan-Kong-2?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Davis?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaodan-Kong-2?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhaodan-Kong-2?enrichId=rgreq-7f89b0c43dbc6b9b76b078ee0c33bc55-XXX&enrichSource=Y292ZXJQYWdlOzMzOTkwNDg1MTtBUzo4ODAyNjY1OTE2MjExMjZAMTU4Njg4MzMxODUxNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Semantic Inference for Cyber-Physical Systems with Signal Temporal Logic

Gang Chen, Mei Liu, and Zhaodan Kong

Abstract— Formal specification plays crucial roles in the rig-
orous verification and design of cyber-physical systems (CPS).
The challenge of getting high-quality formal specifications
is well documented. This challenge is further exacerbated
in CPS with artificial-intelligence- or machine-learning-based
components. This paper presents a problem called ‘semantic
inference’, the goal of which is to automatically translate the
behavior of a CPS to a formal specification written in signal
temporal logic (STL). To reduce the potential combinatorial
explosion inherent to the problem, this paper adopts a search
strategy called agenda-based computation, which is inspired
by natural language processing. Based on such a strategy, the
semantic inference problem can be formulated as a Markov
decision process (MDP) and then solved using reinforcement
learning (RL). The obtained formal specification can be viewed
as an interpretable classifier, which, on the one hand, can
classify desirable and undesirable behaviors, and, on the other
hand, is expressed in a human-understandable form. The
performance of the proposed method is demonstrated with a
case study.

Index Terms— Cyber-physical systems, reinforcement learn-
ing, semantic inference, signal temporal logic.

I. INTRODUCTION

The development and deployment of cyber-physical sys-
tems (CPS) is revolutionizing our economy and society in
domains, such as agriculture, health care, transportation,
manufacturing, etc. Formal specification, a mathematical
or logical statement of what the CPS is supposed to do,
plays crucial roles in the rigorous verification and design
of CPS, particularly those for safety-critical applications.
However, coming up with high-quality formal specifications
for complex CPS is a challenge task, even for domain
experts [2]. The emergence of CPS equipped with artificial
intelligence (AI) and machine learning (ML) components
further exacerbates the challenge. For instance, it is not very
clear how to construct a set of proper specifications for the
vision system used by many autonomous vehicles [3].

We believe that finding formal specifications for complex
CPS relies on solving an inverse problem first. Our rationale
is that in order for a designer to specify what a system
is supposed to do, the designer needs to first understand
what the system can do, particularly when the system is
complex. We will call the latter process as ‘semantic infer-
ence’, the specific goal of which is to automatically translate
the behavior of a CPS into a formal specification. The
specification will be ‘formal’ in the sense that it will be
written in some formal language, ideally in temporal logic

G.C. and Z.K. are with the Department of Mechanical and Aerospace
Engineering, University of California, Davis (email: zdkong@ucdavis.edu)
and M.L. is with the Department of Mechanical Engineering, University of
Hong Kong.

statement, such as signal temporal logic (STL) [4], which
has been used extensively in the specification of CPS. We
envision that semantic inference will enable an interactive
process in which a human can inquire a CPS regarding its
capability and eventually the human and the CPS can work
together to come up with an intuitive and at the same time
rigorous specification for the CPS. Specifically, semantic
inference tries to find an STL formula ϕ, which serves as
a classifier that distinguishes the desirable behaviors from
the undesirable ones. Traditional classifiers, such as Support
Vector Machine (SVM), usually require a human expert to
interpret the classifier in the context of possibly complex
and non-intuitive features. On the contrary, our classier ϕ is
written in STL [4], which can be easily understood by even
a lay user (with some minimal training). For instance, one
such ϕ can be �[0,2](x < 60), which reads “between times
0 and 2, the value of x is always smaller than 60”, where �
is the temporal operator for “always”.

a) Related work: Our work is closely related to the prob-
lem of requirement mining, which was first proposed in the
field of software engineering for legacy code understanding,
software maintenance, etc. [5]. In recent years, there has been
a surge of interest in requirement mining for CPS [6], [1],
[7], [8], [9], [10], particularly those with ML- or AI-based
components [3]. Existing works address the requirement
mining problem in two ways. The first way assumes that
the output of the requirement mining problem is a formula
ϕθ with a fixed structure but unknown parameter θ. With
such an assumption, the requirement mining problem can be
transformed into an optimization problem with the goal of
finding a parameter θ∗ such that ϕθ∗ optimizes certain cost
function, which is usually defined with the concept of robust-
ness degree [4]. Obviously, the fixed structure assumption is
not that realistic in the sense there needs to be a human
domain expert, who ideally should also be knowledgeable
of formal language, to prescribe the structure. To make
the techniques of requirement mining or semantic inference
more useful and widely adopted, the second way drops the
assumption and finds a method to automatically construct a
formula with the proper structure and parameter, such as the
methods in [8], [9]. But such a relaxation makes the problem
much harder, since the number of candidate structures that
need to be searched grows exponentially with the length
of the formula (this is essentially a combinatorial problem).
Algorithms proposed in [8], [9] provide some strategies to
conduct such a search. But the strategies work well only
under some conditions. For instance, the algorithm presented
in [8] organizes all the candidate structures in a lattice and
then searches the lattice starting from the most restrictive

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 6269



structure; if a satisfactory parameter cannot be found for
such a structure, its children (less restrictive structures) will
then be searched. But such a method is not very efficient.
Moreover, the search order is pre-defined and knowledge
gained during the search, e.g., more promising structures vs.
less promising ones, is not utilized. This paper will explore a
more strategic method by borrowing techniques from natural
language processing (NLP) and machine learning (ML).

b) Contributions: The main contributions of this paper is
that we propose a way of formulating the requirement mining
problem (under the challenging condition that the formula
structure is not provided a priori) as a semantic inference
problem (Section III). Such a formulation subsequently en-
ables us to strategically search formula structures by using
techniques from NLP and ML (Section IV) and improve the
searching efficiency significantly (as demonstrated theoreti-
cally in Section IV-D and empirically in Section V).

II. PRELIMINARIES

A. Signal Temporal Logic

Signal Temporal Logic (STL) is a temporal logic defined
over signals [4]. It is basically a predicate logic with interval-
based temporal semantics. The syntax of STL used in this
paper is defined as

ϕ ::= µ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|♦[τ1,τ2)ϕ|�[τ1,τ2)ϕ, (1)

where τ1 and τ2 are non-negative finite real numbers, and µ is
a predicate over a signal, which can be defined as l(x[t]) ∼ c,
where x ∈ E(Rn,R+) is a signal, and x[t] is the valuation of
signal x at time t, l ∈ F(Rn,R) is a function, ∼∈ {≤, <,≥
, >}, and c ∈ R is a constant. The Boolean operators ∨ and ∧
are disjunction (“or”) and conjunction (“and”), respectively.
The temporal operators ♦ and � stand for “eventually” and
“always”, respectively. STL is equipped with a quantitative
semantics called robustness degree ρ : Ψ× E(Rn,R+)→ R
which maps an STL formula ϕ ∈ Ψ and a signal x to a
real value. ρ(x, ϕ) indicates how far a signal x is away from
satisfying STL formula ϕ, which is defined nested as follows
[4]:

ρ(x, (l(x[t]) < c) = c− l(x[t])
ρ(x, (l(x[t]) ≥ c)) = l(x[t])− c
ρ(x, ϕ1 ∧ ϕ2) = min

(
ρ(x, ϕ1), ρ(x, ϕ2)

)
ρ(x, ϕ1 ∨ ϕ2) = max

(
ρ(x, ϕ1), ρ(x, ϕ2)

)
ρ(x,�[a,b)ϕ) = min

t′∈[t+a,t+b)
ρ(x, ϕ)

ρ(x,♦[a,b)ϕ) = max
t′∈[t+a,t+b)

ρ(x, ϕ).

B. Attribute Grammar

The attribute grammar used in this paper is defined by a
4-tuple [11]

G =< VN , VT , P, g >, (2)

where VN is the set of non-terminal nodes, VT is the set
of terminal nodes, P is the set of production rules, and g
is a relation mapping each node to its attributes. We use
capital letters to denote non-terminal nodes, e.g., A ∈ VN ,
and use lowercase letters, including Greek ones, to denote

terminal nodes, e.g. a ∈ VT . The attributes of a node is
specified by the relation g. For instance, the list of attributes
of a non-terminal node A is g(A). In this paper, we will
use those attributes that are synthesized [11], meaning that
if A0 → A1A2 is a production rule in P (in the computation
tree, A1 and A2 are the children of A0), then g(A0) is the
collection of g(A1), g(A2), namely g(A0) = g(A1)∪ g(A2)
(more details will be provided in Section III-A).

C. Markov Decision Process

Definition 1: A Markov decision process (MDP) is de-
fined as a 5-tuple M =< S,A,4(·|·, ·), r(·|·, ·), γ >, where
S is a set of states, A is a set of actions, 4(s′|s, a) is
the probability that action a in state s will lead to state s′,
r(s′|s, a) is the immediate reward received for taking action
a at state s, and γ ∈ [0, 1] is the discount factor.

III. PROBLEM FORMULATION

In this section, we will first show that STL can be defined
with a new formalism called STL attribute grammar. We
will then present the semantic inference problem pertaining
to this grammar.

A. STL Attribute Grammar

Definition 2: The STL attribute grammar GST L is an
attribute grammar < VN , VT , P, g > with the following
specific components:
• VN = {A,B}, where each element of VN corresponds

to an STL fragment (partial formula);
• VT = {µ,♦,�,∨,∧}, where the meanings of the

symbols are the same as those in Eqn. (1);
• P = {P1, · · · , P7}, where the specific production rules

are shown in Table I (there are five categories of rules,
namely Instance, Eventually, Always, Or, and And);

• g maps each node to two types of attributes: (a) time
attributes that specify the time bounds of the temporal
operators used in the node and (b) predicate attributes
that specify the predicates used in the node. Specifically,
the predicate attributes includes signal name, compar-
ison operator, and constant. To give an example, for
a terminal node µ : x1 > 1, its ordered list of time
attributes is µ.time = {}, which is empty, and its set
of predicate attributes is µ.pre = {x1, >, 1} (we will
use the notations .pre and .time throughout the paper).
Both types of attributes are synthesized. For instance,
production rule P5 : A′ → A ∨B indicates that:

A′.time = A.time∪B.time; A′.pre = A.pre∪B.pre.
Proposition 1: Any STL formula ϕ can be derived with

the STL attribute grammar GST L.
Example 1: This proposition can be best illustrated with

an example as shown in Fig. 1. It can be easily seen that an
STL formula ϕ = �[0,3](♦[0,2](x1 > 1) ∧ �[0,1](x2 < 2))
can be derived by following a sequence of production rules
P3P7P2P1P5P1 applied to a set of properly attributed termi-
nal nodes VT = {�[0,3],♦[0,2], µ1 := (x1 > 1),�[0,1], µ2 :=
(x2 < 2)}.

6270



TABLE I: Production rules of GST L.

Rule Category Notation Attributes
P1 Instance A|B → µ g(A|B) = g(µ)
P2 Eventually A→ ♦A g(A) = g(♦) ∪ g(A)
P3 Always A→ �A g(A) = g(�) ∪ g(A)
P4 Eventually B → ♦B g(B) = g(♦) ∪ g(B)
P5 Always B → �B g(B) = g(�) ∪ g(B)
P6 Or A|B → A ∨B g(A|B) = g(A) ∪ g(B)
P7 And A|B → A ∧B g(A|B) = g(A) ∪ g(B)

A
A . time = { [0,3], [0,2], [0,1]}

A . pre = {(x
1
,>, 1), (!

2
, < , 2)}

A
A . time = { [0,2], [0,1]}

A . pre = {(x
1
,>,1), (!

2
, < , 2 )}

A
A . time = { [0,2]}

A . pre = {(x
1
,>, 1)}

A
A . time = { }

A . pre = {(x
1
,>, 1)}

B
B. time = { [0,1]}

B. pre = {(x
2
,>, 2)}

B
B. time = { }

B. pre = {(x
2
,>, 2)}

m
1

m
2

m
1
.time = { }

m
1
.pre = {(x

1
,>, 1

 
)}

m
2
.time = { }

m
2
.pre= {(!

2
, < , 2)}

. time = {[ 0, 3]}

. pre = { }

. time = {[ 0, 2]}

. pre = { }

. time = {[ 0, 1]}

. pre= { }

V

Fig. 1: The semantic inference tree of ϕ = �[0,3](♦[0,2](x1 >
1) ∧ �[0,1](x2 < 2)). The arc with an arrow indicates the
And operator. The time and predicate attributes of a node
are shown immediately underneath the corresponding node.

B. Semantic Inference Problem Formulation

Problem 1: (Semantic Inference) Given the STL attribute
grammar GST L =< VN , VT , P, g >, a positive integer T ,
and two labeled signal sets, X+, the desirable behaviors of
a CPS, and X−, the undesirable behaviors of the CPS, find
a formula d such that the robustness degree

ρ(X, d) = min( min
x∈X+

(ρ(x, d)), min
x∈X−

(ρ(x,¬d))) (3)

is maximized, where (a) X = X+ ∪ X−, (b) ρ(x, d) and
ρ(x,¬d) denote the robustness degrees of a signal x with
respect to the formulas d and ¬d, respectively, and (c) |d| ≤
T with |d| denoting the number of production rules used to
generate d.

Remark 1: It is helpful to understand Eqn. (3) by visual-
izing it in terms of Support Vector Machine (SVM): formula
d defines the boundary between desirable and undesirable
behaviors; minx∈X+(ρ(x, d)) and minx∈X−(ρ(x,¬d)) are
the distances between the boundary and the desirable and
undesirable behaviors, respectively; and finally maximizing
ρ(X, d) results in a boundary that maximally separates the
desirable and undesirable behaviors. But compared with
the boundaries in SVM, which are hyper-planes in some
high dimensional feature spaces, which might be hard to
interpret, our boundary is defined by an STL formula ϕ,
which is easily understandable and obtained without any
human intervention.

IV. SOLUTION

To solve the semantic inference problem, several chal-
lenges present themselves. First, the space of possible formu-
las (formula structures) grows exponentially with respect to
|d|, the number of production rules (or equivalently the length
of the corresponding STL formula ϕ). We will need to handle
this combinatorial explosion. Second, finding the sequence of
production rules to derive d is a sequential decision process:
the computation decisions made in the past may affect both
the availability and goodness of future decisions.

We observe that the CPS semantic inference problem, i.e.,
Problem 1, is quite similar to the semantic parsing problem
in question answering [12], the goal of which is, given a
natural language sentence, to assign appropriate semantic
roles to each component of the sentence. So our main idea is
to borrow techniques from question answering, in conjunc-
tion with machine learning, to address the aforementioned
challenges. Specifically, we will first use the idea of agenda-
based computation to search possible formulas in a strategic
order [12], thereby handling the combinatorial explosion
(Section IV-A); we will then re-formulate the agenda-based
computation problem as an MDP (Section IV-B), which
enables the utilization of reinforcement learning to deal with
issues due to sequential decision (Section IV-C).

A. Agenda-based Semantic Inference

XQ

H EvaluatorComputator

G
STL

rW

Formulas

CPS

Learner

Fig. 2: Agenda-based semantic inference framework.

1) Framework: Fig. 2 shows our agenda-based framework
for the semantic inference problem. The framework takes
the STL attribute grammar GST L and a set of labeled
signals X as the inputs and outputs an STL formula ϕ (or
the equivalent formula d). At each computation step, the
Computator chooses a formula from agenda Q and adds
it to chart H (the roles of Q and H will be explained
later) based on a value function with a parameter vector
w. The Evaluator evaluates the performance of the chosen
formulas in chart H with respect to X and the Learner
updates w according to the performance. For readers who
are familiar with reinforcement learning, it is helpful to think
the Evaluator and the Learner work together as a critic and
the Computator works as an actor. The Computator selects
actions based on the value function defined by the Evaluator
and the Learner, which criticize the actions made by the
Computator.

6271



2) Discretization: In this paper, instead of treating the
time bounds of the temporal operators and the constants
in the predicates as real numbers, we discretize them. We
choose a sequence of time instances τ = (t0, t1, · · · , tn)
with an equal interval, i.e., ti−ti−1 = τ0,∀1 ≤ i ≤ n, where
τ0 is the time interval, as the time attributes. Combining
these time bounds with temporal operators � and ♦, we
can get temporal operators with different time bounds. For
example, for a time bound [t1, t2), its two corresponding
temporal operators are �[t1,t2) and ♦[t1,t2), called timed
temporal operators. We treat the predicate attributes the same
way. With discretization, agenda Q will be initialized with
a set of simple formulas, each of which is constructed by
combining a timed temporal operator and a predicate, i.e.,
φ1 = ♦[0,2](x1 > 1) and φ2 = �[0,1](x2 < 2); chart H will
be initialized as an empty set.

3) Agenda and Chart Update: Agenda Q and chart H
will be updated whenever the Computator chooses a formula
from agenda Q. At each computation step, after the Compu-
tator chooses a formula from agenda Q, the chosen partial
formula will be removed from agenda Q and added to chart
H; moreover, new formulas will be added to agenda Q based
on grammar GST L. Specifically, let’s assume the chosen
formula is dt and the current set of formulas in H is ϕH(i) ∈
H(i = 1, · · · , |H|), then formulas �dt,♦dt, dt ∧ϕH(i) and
dt∨ϕH(i)(i = 1, · · · , |H|) can be generated with production
rules P2/P4, P3/P5, P6 and P7 and then added to agenda Q.

TABLE II: Agenda Q and chart H generated in the first three
steps for Example 1.

Step Agenda Q Chart H Chosen dt
0 φ1, φ2 - φ2
1 φ1, �φ2, ♦φ2 φ2 φ1
2 �φ2, ♦φ2, �φ1, ♦φ1,

φ2 ∨ φ1, φ2 ∧ φ1
φ2, φ1 φ1 ∧ φ2

3 �(φ1 ∧ φ2), · · · φ2, φ1, φ1 ∧ φ2 �(φ1 ∧φ2)

Example 1: (Cont.) Table II shows how agenda Q and
chart H are updated in the first three steps of Example 1.
In this case, agenda Q is initialized with formulas φ1 =
♦[0,2](x1 > 1) and φ2 = �[0,1](x2 < 2) and the H
is initialized as an empty set. At step 0, the Computator
chooses formula φ2 from agenda Q (the policy to determine
which formula to choose will be specified in Section IV-
C.1) and put it into chart H . The chosen formula is used to
generate new formulas �φ2 and ♦φ2 with production rules
P2/P4, P3/P5 (As H is empty initially, production rules P6

and P7 are not applied). Then the new formulas are added
to agenda Q. At step 1, the Computator chooses formula φ1,
which is used to generate new formulas �φ1, ♦φ1, φ1 ∧ φ2
and φ1 ∨ φ2 with production rules P2/P4, P3/P5, P6 and
P7, respectively. The new formulas are added to Q and φ1
is added to H . At step 2, the Computator chooses formula
φ1∧φ2, then formula ϕ in Example 1 can be generated with
production rule P2/P4. The Computator can proceed with
choosing a formula from agenda Q, putting it to chart H ,
generating new formulas, adding them back to agenda Q,

and continuing until the number of formulas in the chart,
|H|, reaches the limitation T .

B. Agenda-based Semantic Inference as an MDP

The semantic inference process is essentially a delayed
reward and sequential decision process. At each step, the
Computator needs to make a decision on which formula
to choose based on the current formulas in agenda Q; a
sequence of decisions made by the Computator generates a
formula d, the performance of which can only be evaluated
once a complete formula, i.e., computation step reaches the
limitation, has been derived. Thereby, we can conveniently
model the computation process as a finite horizon MDP as
follows (here we use Example 1 as an example):
• The space S =< Q,H > is the set of all possible

charts and agendas, e.g., a state s ∈ S corresponds to
the formulas in the second and the third columns of a
row of Table II.

• The actions available at state s, denoted as A(s), is the
formulas in the corresponding agenda Q.

• The transition probability 4(s′|s, d) is either 1 or 0. It
is 1 if choosing a formula d updates state s, i.e., agent
Q and chart H , to state s′, i.e., agent Q′ and chart H ′

(please consult Section IV-A.3 to see how agendas and
charts are updated); otherwise, it is 0.

• The reward r(s′|s, d) is the robustness degree over all
the signals in X when the computation step reaches
the limitation T , or the reward will be zero before the
limitation.

Here we would like to point out that we mainly use the MDP
formulation to enable us to utilize reinforcement learning
later. As in the mainstream reinforcement learning setting
[13], the MDP model will not be explicitly constructed.

C. Reinforcement-learning-based Semantic Inference

In this subsection, we will present a reinforcement-
learning-based algorithm to solve the agenda-based compu-
tation problem in the context of the MDP formalism. We will
first discuss the three components, Computator, Evaluator,
and Learner (see Fig. 2), and then the overall algorithm.

1) Computator: The Computator acts as an agent, which,
at step t, observes the current state st (or equivalently the
current chart Ht and agenda Qt) and chooses an action
(formula) dt ∈ A(st). The policy π induces a distribution
over trajectories ε of the MDP (or equivalently the formulas
d of the computation process):

pπ(ε) = p(s0)

T−1∏
t=0

4(st+1|st, dt)π(dt|st). (4)

The agent tries to find an optimal computation policy π that
maximizes the expected accumulate robustness degree over
the distribution (Eqn. (4))

π∗ = argmax
π

Epπ(ε)[

T−1∑
t=0

γtρ(X, dt)], (5)

6272



where γ is the discount factor and ρ(X, dt) is the robustness
degree for taking action dt (as defined in Eqn. (3)).

The optimal policy π∗ for Eqn. (5) is a time-varying one,
i.e., π(dt|st). We further approximate the policy π(dt|st)
by a set of softmax functions π(dt|st, wt), t = 0, · · · , T − 1
with W = {w0, w1, · · · , wT−1} as the parameter vector [13].
The policy π(dt|st) defines a conditional probability density
function of action (formula) dt given current state st, denoted
as

πwt(dt|st) =
exp{f(dt)

Twt}∑
d′∈A(st)

exp{f(d′)Twt}
, (6)

where the probability indicates the preference of the Compu-
tator to choose action dt at state st. The preference function
is a linear function, h(d) = f(d)Tw, where f(d) ∈ RF

is the feature vector with F being the dimension of the
feature space (which will be elaborated later), and w ∈
RF is the parameter vector to be obtained. With such a
parameterization method (Eqn. (6)), the objective function of
the semantic inference process, Eqn. (5), can be transformed
into another one regarding parameters:

w∗ = argmax
w

Epπw (ε)[

T−1∑
t=0

γtρ(X, dt)]. (7)

The set of features, that define the preference function
h(d) for a formula d, includes: 1) the start and end times
of time attributes, 2) the maximum and minimum values of
predicate attributes, 3) the logarithm of the number of time
bounds, 4) the logarithm of the number of production rules,
5) the logarithm of the number of predicates, 6) the logarithm
of the number of conjunction and disjunction operators, and
7) the logarithm of the number of temporal operators.

2) Evaluator: The Evaluator in Fig. 2 evaluates the
performance of the formulas in chart H (or equivalently the
actions of the MDP) based on the set of the labeled signals
of the CPS, X , according to Eqn. (3).

3) Learner: The role of the Learner is to find an optimal
value for w (Eqn. (7)) by using reinforcement learning [13].
It can be observed from Eqn. (6) that the state s only provides
the support for the distribution, the policy πw(dt|st) depends
only on the feature f(dt) and the parameter vector w. In this
paper, the Learner applies the Monte-Carlo policy gradient
method to learn the optimal policy [13]. At each step t, the
Learner samples full-sized trajectories ε based on the current
policy πw. Then the policy parameter w is updated with the
following rule:

wt ← wt + αγtRt∇wt ln π(dt|st), (8)

where α is the learning rate and Rt =
∑T
k=t+1 ρ(X, dk) is

the rewards received after time step t. The gradient of each
policy decision is defined as follows:

∇wt ln π(dt|st) = f(dt)−
∑

d′∈A(st)

πwt(d
′|st)f(d′). (9)

4) Overall Algorithm: The overall algorithm to solve the
semantic inference problem is shown in Algorithm 1. Line
1 initializes the state s0, where the chart is empty and
the formulas in the agenda come from the combination of
predicates and temporal operators. Line 6 updates the chart
and the agenda.

Algorithm 1 Reinforcement-learning based semantic infer-
ence
Input: A set of labeled signals X = X+∪X−, STL attribute
grammar GST L, episode horizon T , learning rate α, number
of training episodes M
Output: The optimal parameter vector w.

1: Initialize the state to s0
2: Initialize the parameter vector to W0 ∈ RF×T (e.g., to

0)
3: for m = 1 to M do
4: for t = 0 to T − 1 do
5: Choose action dt according to policy π(dt|st, wt)
6: Update (H,Q) to get state st+1 and reward ρt+1

7: for t = 0 to T − 1 do
8: Rt ←

∑T
k=t+1 ρ(X, dk)

9: wt ← wt + αγtRt 5 lnπ(dt|st, wt)

D. Complexity Analysis

Semantic inference is a structure inference problem,
known to be NP-complete [14]. With our agenda-based
paradigm, the semantic inference problem can be trans-
formed into an MDP with finite states and finite actions.
Let’s assume the time and predicate domains have been
divided into U and V intervals, respectively. Moreover, let’s
fix the episode horizon as T . Then the total numbers of states
(denoted as |S|) and actions (denoted as |A|) of the MDP are
of the orders of O(V |X|U2|X|(T−1)) and O(V |X|U2|X|T )
with |X| being the dimension of the signals in set X (see
Problem 1), respectively. Using reinforcement learning to
solve MDP has a well established complexity of O(|S||A|)
[15]. Therefore, our semantic inference framework has a
complexity that is exponential with respect to the dimension
of the signals |X|, which is generally small (e.g., 1 for the
case study in Section V) and the horizon length T .

V. CASE STUDY

In this section, we validate the performance of our pro-
posed method with an academic case study.

Here we investigate a hybrid system with 3 modes as
shown in Fig. 3 (a). Mode G0 corresponds to the normal
condition while modes G1 and G2 correspond to two at-
tacked conditions. The attacker attacks the system randomly
to generate the conditions. The transfer functions of the three
modes are as follows:

G0 = e−0.8s(0.8s2 + s+ 2 + 2ζ)/(s2 + s+ 0.5),
G1 = e−(0.4+2|ζ|)s(0.8s2 + s+ 2)/(s2 + s+ 0.2),
G2 = e−(0.4+2|ζ|)s(0.8s2 + s+ 2)/(s2 + s+ 0.8),

(10)

6273



where ζ ∼ N (0, 0.1) is the uncertainty of the model. Fig.
3 (b) shows the set of step response signal, X , used in the
case study, which are labeled by human agents.

G
0

G
1

G
2

Attack

Recover

RecoverAttack

fsdf

(a)

0 5 10 15
Time (Second)

0

0.5

1

1.5

A
m

pl
itu

de

(b)

Fig. 3: a) The hybrid system model and b) X , the set of
labeled signals used in the case study. The green signals are
with modes G0, i.e., those that are normal and belong to
X+, while the red ones are with mode G1, G2, i.e., those
that are attacked and belong to X−. The number of signals
in X− and X+ are both one hundred.

We discretize the time domain [0, 15], i.e., the range of all
time attributes, with an interval of 1, and the scale domain
[0.5, 1.5], i.e., the range of all predicate attributes, with an
interval of 0.2. With these time and scale bounds, we can
define the proper STL attribute grammar GST L. Then we
apply Algorithm 1 (the horizon T is set to 3) to solve
the semantic inference problem. The algorithm is terminated
when either a satisfactory formula, i.e., a formula with a
positive robustness degree ρ(X, d), which indicates all the
signals in X are correctly classified with the formula d, has
been found or the limit M has been reached.

TABLE III: Comparsion results between our proposed
method and the method in [8]

Our method Method in [8]
Time Error Robustness Time Error Robustness
(s) % ρ(X, d) (s) % ρ(X, d)
191 30 - 0.3571 188 50 -0.5262
392 16 - 0.2432 396 24 -0.2533
815 0 0.0452 819 11 -0.1684

In order the demonstrate the effectiveness and efficiency
of the agenda-based semantic inference method proposed in
this paper over state of the art methods, here we compare
the performances of the proposed method with the method
developed in [8]. Both methods can solve the semantic
inference problem without the formula structure being given.
The comparison result is shown in Table III. An eight-core
HP desktop was used. Moreover, during the comparison,
we controlled the number of episodes in the agenda-based
method, and the number of learning cycles in the method
developed in [8]. It can be seen that, with the former method,
a satisfactory STL formula can be derived in 815 seconds,
while such a formula cannot be obtained with the latter

method within roughly the same number of seconds (the error
is 11% and the robustness degree ρ(X, d) is still negative
after 819 seconds). The formula obtained by the agenda-
based method is

ϕ = ♦[0,15](�[11,15](x < 0.9) ∧�[11,15](x > 0.7)),

which quantitatively specifies the stable behavior of X+

around the amplitude of 0.8, between 0.7 and 0.9 specifically.

VI. CONCLUSIONS

This paper introduced the problem of semantic inference
for CPS, which infers the formal specification of a CPS with
a parser. To reduce the potential combinatorial explosion
inherent to the problem, we first formulated the process as
an agenda-based parsing process, then as a Markov decision
process, and finally used reinforcement learning to solve
the problem. The performance of our proposed method was
demonstrated with an academic case study. Further research
will learn specifications with positive examples only.

REFERENCES

[1] G. Chen, Z. Sabato, and Z. Kong, “Semantic parsing of automobile
steering systems,” in Proceedings of the 8th International Conference
on the Internet of Things. ACM, 2018, p. 41.

[2] A. Van Lamsweerde, Requirements engineering: From system goals
to UML models to software. Chichester, UK: John Wiley & Sons,
2009, vol. 10.

[3] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards verified artificial
intelligence,” arXiv preprint arXiv:1606.08514, 2016.

[4] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[5] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Trustrace: Mining soft-
ware repositories to improve the accuracy of requirement traceability
links,” IEEE Transactions on Software Engineering, vol. 39, no. 5, pp.
725–741, 2013.

[6] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining
requirements from closed-loop control models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1704–1717, 2015.

[7] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, “Telex:
Passive STL learning using only positive examples,” in International
Conference on Runtime Verification. Springer, 2017, pp. 208–224.

[8] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1210–1222, 2017.

[9] A. Bakhirkin, T. Ferrère, and O. Maler, “Efficient parametric identifi-
cation for STL,” in Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control (part of CPS Week).
ACM, 2018, pp. 177–186.

[10] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric
temporal logic properties in model-based design for cyber-physical
systems,” International Journal on Software Tools for Technology
Transfer, vol. 20, no. 1, pp. 79–93, 2018.

[11] S. Park and S.-C. Zhu, “Attributed grammars for joint estimation
of human attributes, part and pose,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2372–2380.

[12] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on
freebase from question-answer pairs,” in Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing,
2013, pp. 1533–1544.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[14] L. J. Guibas, J. E. Hershberger, J. S. Mitchell, and J. S. Snoeyink,
“Approximating polygons and subdivisions with minimum-link paths,”
International Journal of Computational Geometry & Applications,
vol. 3, no. 04, pp. 383–415, 1993.

[15] S. Koenig and R. G. Simmons, “Complexity analysis of real-time
reinforcement learning,” in AAAI, 1993, pp. 99–107.

6274

View publication statsView publication stats

https://www.researchgate.net/publication/339904851

