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Abstract— This paper studies a partial-fraction expansion for
lossless negative imaginary systems and presents a generalized
lossless negative imaginary lemma by allowing poles at zero.
First, a necessary and sufficient condition for a system to
be non-proper lossless negative imaginary is developed, and a
minor partial-fraction expansion of lossless negative imaginary
property is studied. Second, according to the minor decompo-
sition properties, two different and new relationships between
lossless positive real and lossless negative imaginary systems
are established. Third, according to one of the relationships,
a generalized lossless negative imaginary lemma in terms of a
minimal state-space realization is derived by allowing poles at
zero. Some important properties of lossless negative imaginary
systems are also studied in this paper, and three numerical
examples are provided to illustrate the developed theory.

I. INTRODUCTION

The concept of lossless is related to that of passivity [1].
An m-port network, assumed to be storing no energy at time
t, is called lossless if it is passive and if, when a finite
amount of energy is put into the elements, all the energy
can be extracted again [1]. It is well known that systems
which dissipate energy often result in positive real properties
[1]–[4]. The so-called lossless positive real systems are
systems whose positive real transfer matrix F(s) satisfies the
condition: F( jω)+F∗( jω) = 0 for all real ω . That is, the
negative of a lossless positive real transfer matrix is its own
complex conjugate transpose [3]. More physical descriptions
about the lossless positive real systems can be found in [1],
[3], [5].

Since the concept of lossless positive real systems first
appeared in [3], the research of lossless positive real systems
have attracted more attention among control theorist [5]–[8].
For example, article [5] gave a matrix fraction description of
lossless positive real property in terms of a Hankel matrix.
The invariance of characteristic values and L∞ norm under
lossless positive real transformations were studied in [8].
The continuous-time and discrete-time lossless positive real
lemma in terms of minimal state-space realization were
developed in [1] and [9], [10], respectively. Also, it is
noteworthy that lossless positive real transfer functions form
a convex set, which showed an important role in the proof
of Kharitonov’s theorem, see [7].

One major limitation of (lossless) positive real system is
that their relative degree must be zero or one [2]. Negative
imaginary systems theory, which allowed the relative degree
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to be two, has appeared as a useful complement to passivity
theory and positive real theory [11], [12]. More research and
applications on negative imaginary systems can be found
in [13]–[18]. In this paper, we are interested in studying a
special and important class of negative imaginary system-
s, that is, lossless negative imaginary systems. Dynamical
systems with lossless negative imaginary properties have
much more applications in the control of undamped flexible
structures and lossless electrical circuits, see [1], [3], [19].
The definition of proper lossless negative imaginary systems
was firstly proposed in [19] by restricting no poles at zero
and infinity, and a minimal state-space characterization of
such systems was also developed in [19]. Then, an algebraic
approach to the realization of lossless negative imaginary
systems was studied in [20]. Subsequently, article [21] ex-
tended the definition of lossless negative imaginary systems
to non-proper case by allowing poles at zero and infinity.

In this paper, we will further present a partial-fraction ex-
pansion for lossless negative imaginary systems. That is, the
lossless negative imaginary systems can be decomposed as a
sum of several lossless negative imaginary systems. Based on
this minor decomposition properties, two new relationships
between lossless positive real and lossless negative imaginary
transfer matrices are established from proper and non-proper
case, and a generalized lossless negative imaginary lemma in
terms of minimal state-space condition is derived by allowing
poles at zero. The extended results of the paper show a nice
parrel to the better understood results on non-proper lossless
positive real systems.

The rest of the paper is organized as follows: Section II
reviews the definition of lossless positive real and lossless
negative imaginary systems. Some useful preliminary results
and the minor decomposition theory are also introduced in
this section. Section III establishes two relationships between
lossless negative imaginary and lossless positive real transfer
matrices. Based on one of the relationships, a generalized
lossless negative imaginary lemma is developed in Section
IV. Section V concludes the paper.

Notation: Rm×n and Rm×n denote the sets of m× n real
matrices and real-rational proper transfer matrices, respec-
tively. AT , Ā and A∗ denote the transpose, the complex
conjugate and the complex conjugate transpose of a com-
plex matrix A, respectively. A > (≥)0 denotes a symmetric
positive (semi-) definite matrix.

II. PRELIMINARY RESULTS

The concept of lossless positive real and lossless negative
imaginary systems are introduced in this section. Also,
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some useful properties for lossless positive real and lossless
negative imaginary systems, which will be used to develop
the main results of this paper, are stated in this section.

A. Lossless positive real transfer function matrices

This subsection introduces the concepts of positive real
and lossless positive real transfer matrices, and derives a
generalized lossless positive real lemma by removing the
observability assumption.

Definition 1: [1] A square transfer function matrix F(s)
is said to be positive real if

1) All elements of F(s) are analytic in Re[s]> 0;
2) F(s) is real for real positive s;
3) F∗(s)+F(s)≥ 0 for Re[s]> 0.
Definition 2: [1] A square real-rational transfer function

matrix F(s) is said to be lossless positive real if
1) F(s) is positive real;
2) F( jω)+F∗( jω) = 0 for all ω > 0 except values of ω

where jω is a pole of F(s).
The following lemma extends the positive real lemma in

[1] by relaxing the observability requirement of (A,C) and
the non-singularity requirement of P.

Lemma 1: [22] Let (A,B,C,D) be a state-space realiza-
tion of a real-rational proper transfer function matrix F(s) ∈
Rm×m, where (A,B) is completely controllable, (A,C) is
not necessarily completely observable, A ∈Rn×n, B ∈Rn×m,
C ∈Rm×n, D∈Rm×m, and m≤ n. Then, F(s) is positive real
if and only if there exist real matrices P = PT ≥ 0, P∈Rn×n,
L and W such that

PA+AT P =−LLT

PB =CT −LTW

D+DT =W TW.

(1)

Similarly, we can extend the lossless positive real lemma
in [1, page 229] by relaxing the observability requirement of
(A,C) and the non-singularity requirement of P. Lemma 2
is useful in the proof of lossless negative imaginary lemma
in Section IV.

Lemma 2: Let (A,B,C,D) be a state-space realization of
a square real-rational proper transfer function matrix F(s) ∈
Rm×m, where (A,B) is completely controllable, (A,C) is not
necessarily completely observable, A∈Rn×n, B∈Rn×m, C ∈
Rm×n, D ∈Rm×m, and m≤ n. Then, F(s) is lossless positive
real if and only if there exist real matrices P = PT ≥ 0, P ∈
Rn×n, L and W such that

PA+AT P = 0

PB−CT = 0

D+DT = 0.

(2)

Proof: (Necessity) Suppose F(s) is lossless positive
real. It is also positive real. According to Lemma 1, there
exist real matrices P= PT ≥ 0, L and W satisfying (1). Then,
from the L and W , we can construct that

F(s)+F∗(s) =[W T +BT (−sI−AT )−1L][W +LT (sI−A)−1B]

+BT (s∗I−AT )−1P(sI−A)−1B(s+ s∗),

and hence,

F(s)+FT (−s)

= [W T +BT (−sI−AT )−1L][W +LT (sI−A)−1B]

, ∆
T (−s)∆(s).

(3)

Let s = jω . Condition 2 of Definition 2 implies that

F( jω)+FT (− jω) = ∆
∗( jω)∆( jω) = 0.

Hence, ∆( jω) =W +LT ( jωI−A)−1B= 0 for all real ω . The
rest proof is the same as the proof of lossless positive real
lemma in [1, Page 222]. Note that only the controllability of
(A,B) is used to prove L = 0.

(Sufficiency) Suppose (2) holds. Because (2) is the same as
(1) with L= 0 and W = 0, it follows from Lemma 1 that F(s)
is at least positive real. Applying the spectral factorization in
(3), we have F( jω)+F∗( jω) = 0 for all real ω . According
to the Definition 2, F(s) is lossless positive real.

Remark 1: The proof of Lemma 2 is mainly motivated by
Lemma 1 and the proof of lossless positive real lemma in
[1, page 222]. The details on the spectral factorization for
positive real transfer matrix can be found in [1, page 219].
The main difference between the proof of Lemma 2 and the
proof of lossless positive real lemma in [1, page 222] is that
the positive real lemma used in [1, page 222] is replaced by
Lemma 1 in here.

B. Lossless negative imaginary transfer function matrices

This subsection introduces the concepts of negative imag-
inary and lossless negative imaginary transfer matrices, and
studies some important properties of lossless negative imag-
inary systems.

Definition 3: [21] A square real-rational transfer function
matrix G(s) is said to be negative imaginary if

1) G(s) has no poles in Re[s]> 0;
2) j[G( jω)−G∗( jω)]≥ 0 for all ω > 0 except values of

ω where jω is a pole of G(s);
3) If s = 0 is a pole of G(s), then it is at most a double

pole, lims→0 s2G(s) is positive semidefinite Hermitian,
and lims→0 smG(s) = 0 for all m≥ 3;

4) If s = jω0 with ω0 > 0 is a pole of G(s), ω0 is finite,
it is at most a simple pole and the residue matrix
K = lims→ jω0(s− jω0) jG(s) is positive semidefinite
Hermitian;

5) If s = j∞ is a pole of G(s), then it is at most a double
pole, limω→∞

G( jω)
( jω)2 is negative semidefinite Hermitian,

and limω→∞
G( jω)
( jω)m = 0 for all m≥ 3.

Definition 4: [21] A square real-rational transfer function
matrix G(s) is said to be lossless negative imaginary if

1) G(s) is negative imaginary;
2) j[G( jω)−G∗( jω)] = 0 for all ω > 0 except values of

ω where jω is a pole of G(s).
The following lemma provides a necessary and sufficient

condition for a system to be non-proper lossless negative
imaginary.

Lemma 3: A square real-rational transfer function matrix
G(s) is lossless negative imaginary if and only if
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1) All poles of elements of G(s) are purely imaginary;
2) If s = 0 is a pole of G(s), it is at most a double pole,

lims→0 s2G(s) is positive semidefinite Hermitian, and
lims→0 smG(s) = 0 for all m≥ 3;

3) If s = jω0 with ω0 > 0 is a pole of G(s), ω0 is finite,
it is at most a simple pole and the residue matrix
K = lims→ jω0(s− jω0) jG(s) is positive semidefinite
Hermitian;

4) If s = j∞ is a pole of G(s), it is at most a double pole,
limω→∞

G( jω)
( jω)2 is negative semidefinite Hermitian, and

limω→∞
G( jω)
( jω)m = 0 for all m≥ 3;

5) G(s) = GT (−s) for all s such that s is not a pole of
any element of G(s).

Proof: (Necessity) Suppose G(s) is lossless nega-
tive imaginary. Condition 2 of Definition 4 implies that
j[G( jω) − G∗( jω)] = 0 for all ω > 0 except values
of ω where jω is a pole of G(s). Then, we have
j[G( jω)−G∗( jω)] = 0 for all ω > 0 with jω not a pole
of G(s), that is, j[G( jω)−G∗( jω)] = 0 for all ω < 0 with
jω not a pole of G(s). According to the continuity of G(s),
it follows that j[G(0)−G∗(0)] = 0. Hence, we have

j[G(s)−GT (−s)] = 0,

for all s = jω , where jω is not a pole of G(s). Because
j[G(s)−GT (−s)] is an analytic function of s, it follows
from maximum modulus theorem ( [3, Theorem A4-3]) that
j[G(s)−GT (−s)] = 0 holds for all s such that s is not a pole
of G(s), and hence G(s) = GT (−s). Condition 5 holds.

Suppose s0 is a pole of G(s). It follows from Condition 5
that −s0 is also a pole of G(s). According to Definition 3, we
know that G(s) has no poles in Re[s]> 0. If Re[s0]< 0, then
Re[−s0]> 0, there exists contradiction. So, the only case is
that all poles of elements of G(z) lie on the imaginary axis.
Condition 1 holds. Moreover, conditions 3-5 of Definition 3
imply that conditions 2-4 hold.

(Sufficiency) Suppose conditions 1-5 hold. Conditions 1-4
imply Condition 1 and conditions 3-5 of Definition 3 hold.
Then, Condition 5 implies G(s) = GT (−s), which implies
that j[G( jω)−G∗( jω)] = 0 for all ω > 0 such that jω is
not a pole of any element of G(s). It follows from Definitions
3 and 4 that G(s) is lossless negative imaginary.

Remark 2: Lemma 3 can be considered as a generalization
of Lemma 2 in [19] by allowing poles at zero and infinity.

The following lemma characterizes the properties of sum
of non-proper lossless negative imaginary transfer matrices.

Lemma 4: Given two square real-rational lossless negative
imaginary transfer function matrices G1(s) and G2(s), and a
negative imaginary transfer function matrix G3(s). Then,

1) G1(s)+G2(s) is lossless negative imaginary;
2) G1(s)+G3(s) is negative imaginary;

Proof: The proof is trivial according to the definitions
of negative imaginary and lossless negative imaginary trans-
fer function matrices.

C. Partial-fraction expansion of lossless negative imaginary
systems

In this subsection, we consider the minor decomposition
theory of lossless negative imaginary systems in terms of
a partial-fraction expansion, which provides the core to
develop the lossless negative imaginary theory in this paper.

Suppose G(s) is a square real-rational lossless negative
imaginary transfer matrix. Then, define the following matri-
ces,

A2 = lim
ω→∞

G( jω)

( jω)2 , C2 = lim
s→0

s2G(s),

A1 = lim
ω→∞

(G( jω)− ( jω)2A2)

jω
,

C1 = lim
s→0

s(G(s)− C2

s2 ).

(4)

According to Lemma 3, it follows that A2 = A∗2 ≤ 0 and
C2 =C∗2 ≥ 0. Note that jω is a pole of G(s), the − jω must
also be a pole of G(s), that is, jω and − jω occur in pairs.
Because all the poles of lossless negative imaginary transfer
matrices lie on the imaginary axis, and the forms for these
poles in a partial-fraction expansion are known, G(s) can be
decomposed in terms of those residue matrix properties as
the following form:

G(s) =∑
i

− jKi

s− jωi
+∑

i

jK∗i
s+ jωi

+
1
s

C1 +
1
s2 C2

+ sA1 + s2A2 +G(∞)

=∑
i

sQi +Ti

s2 +ω2
i
+

1
s

C1 +
1
s2 C2 + sA1 + s2A2 +G(∞),

where Ki is the residue matrix of jG(s) at jωi, A2 = A∗2 ≤ 0,
C2 =C∗2 ≥ 0, Qi = j(K∗i −Ki), and Ti = ωi(Ki+K∗i ). Accord-
ing to Condition 3 of Lemma 3, we know Ki = K∗i ≥ 0, it
follows that Qi = 0 and Ti = T ∗i . Then, we have

G(s) = ∑
i

Ti

s2 +ω2
i
+

1
s

C1 +
1
s2 C2 + sA1 + s2A2 +G(∞).

We can find that ∑i
Ti

s2+ω2
i

, 1
s2 C2 and s2A2 are lossless negative

imaginary. The fact that they are negative imaginary is
immediate from the definition of negative imaginary systems,
the lossless character follows by observing that

j
[ 1
( jω)2 C2−

1
(− jω)2 C∗2

]
= 0;

j[( jω)2A2− (− jω)2A∗2] = 0;

j
[
∑

i

Ti

( jω)2 +ω2
i
−∑

i

T ∗i
(− jω)2 +ω2

i

]
= 0.

Now, we will study the properties of matrices A1 and C1
in the following lemma, where A1 and C1 are defined in (4).

Lemma 5: Given a square real-rational lossless negative
imaginary transfer function matrix G(s). Then A1 +A∗1 = 0
and C1 +C∗1 = 0 hold.

Proof: Suppose G(s) is lossless negative imaginary. It
follows that G(s) has at most a double pole at infinity and
zero. First, we will prove A1 +A∗1 = 0. When G(s) has no
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poles at infinity, one has that A2 = 0, A1 = 0, and hence
A1 +A∗1 = 0.

When G(s) has a simple pole at infinity, A2 = 0. Let

G(s) = G0(s)+ sA1 +G(∞),

where G0(s) is strictly proper. G(s) and G0(s) have the same
poles except at infinity. Condition 2 of Definition 4 implies
that

j[G( jω)−G∗( jω)]

= j[ jωA1 +G0( jω)+GT (∞)+ jωA∗1
−G∗0( jω)−G∗(∞)]

=−ω(A1 +A∗1)+ j[G0( jω)−G∗0( jω)] = 0,

(5)

for all ω > 0, where jω is not a pole of G(s) and G0(s).
Suppose A1 +A∗1 6= 0. Then, since G0(s) is strictly proper,
there exists a sufficiently large ω1 such that j[G0( jω1)−
G∗0( jω1)] = 0, which contradicts with (5). So, A1 +A∗1 = 0.

When G(s) has a double pole at infinity, Let

G(s) = G0(s)+ sA1 + s2A2 +G(∞),

where A2 = A∗2 ≤ 0 and G0(s) is strictly proper. Similar-
ly, Condition 2 of Definition 4 implies that j[G( jω)−
G∗( jω)] = −ω(A1 +A∗1)+ j[G0( jω)−G∗0( jω)] = 0. Using
the similar analysis as the case where G(s) has a simple pole
at infinity, we have A1 +A∗1 = 0.

Next, we will prove C1+C∗1 = 0. When G(s) has no poles
at zero, one has that C2 = 0, C1 = 0, and hence C1 +C∗1 = 0.

When G(s) has a simple pole at zero, C2 = 0. Let

G(s) = ∑
i

Ti

s2 +ω2
i
+

1
s

C1 + sA1 + s2A2 +G(∞),

where Ti = T ∗i . Condition 2 of Definition 4 implies that

j[G( jω)−G∗( jω)]

= j
[

∑i
Ti

( jω)2+ω2
i
+ 1

jω C1 +( jω)A1 +( jω)2A2 +G(∞)

−∑i
T ∗i

(− jω2)+ω2
i
− 1

(− jω)C1− (− jω)A1− (− jω)2A2−G∗(∞)

]
=−ω(A1 +A∗1)+

1
ω
(C1 +C∗1)] = 0,

for all ω > 0, where jω is not a pole of G(s). Because
−ω(A1 +A∗1) = 0, it follows that C1 +C∗1 = 0.

When G(s) has a double pole at zero, let

G(s) = ∑
i

Ti

s2 +ω2
i
+

1
s

C1 +
1
s2 C2 + sA1 + s2A2 +G(∞),

where Ti = T ∗i . Then, Condition 2 of Definition 4 with A1 +
A∗1 = 0 implies that

j[G( jω)−G∗( jω)] =
1
ω
(C1 +C∗1)] = 0.

This completes the proof.
Remark 3: If G(s) is a symmetric lossless negative imag-

inary transfer matrix, it follows that A1 = A∗1 ≤ 0 and C1 =
C∗1 ≥ 0, and hence, A1 = 0 and C1 = 0. In other words,
it is impossible for symmetric lossless negative imaginary
transfer matrix having simple poles at zero and infinity.

The following lemma gives a decomposed property about
lossless negative imaginary transfer matrices.

Lemma 6: Let G(s) be a square real-rational transfer
function matrix of the form

G(s) = G0(s)+
1
s

C1 +
1
s2 C2 + sA1 + s2A2 +G(∞),

where G0(s) is strictly proper, and G0(s) has no poles at zero
and infinity. Then, G(s) is lossless negative imaginary if and
only if G0(s) is lossless negative imaginary, A2 = A∗2 ≤ 0,
C2 =C∗2 ≥ 0, A1 +A∗1 = 0, C1 +C∗1 = 0 and G(∞) = GT (∞).

Proof: (Necessity) Suppose G(s) is lossless negative
imaginary. According to Lemmas 3 and 5, it follows that
A2 = A∗2 ≤ 0, C2 = C∗2 ≥ 0, A1 +A∗1 = 0, C1 +C∗1 = 0 and
G(∞) = GT (∞). G(s) and G0(s) have the same poles except
at zero and infinity. For ω > 0, jω is not a pole of G(s) and
G0(s), we have

j[G( jω)−G∗( jω)] = j[G0( jω)−G∗0( jω)] = 0.

If jω0, ω0 > 0 is a pole of G(s), then lims→ jω0(s −
jω0) jG(s) = lims→ jω0(s− jω0) jG0(s). Hence, G0(s) is loss-
less negative imaginary.

(Sufficiency) Suppose G0(s) is lossless negative imaginary,
and A2 = A∗2 ≤ 0, C2 = C∗2 ≥ 0, A1 +A∗1 = 0, C1 +C∗1 = 0
and G(∞) = GT (∞). It follows that 1

s C1, 1
s2 C2, sA1, s2A2

are lossless negative imaginary. Then, according to the sum
properties of lossless negative imaginary systems, G(s) is
lossless negative imaginary.

Remark 4: Based on the analysis in this subsection, we
can find that the lossless negative imaginary transfer matrices
can be seen as a sum of several lossless negative imaginary
transfer matrices. For example, consider G(s) = 1−2s4

s2(s2+1) .
G(s) can be decomposed as G(s) = 1

s2 + 1
s2+1 − 2, where

C2 = 1, G(∞) = −2, the residue matrix of jG(s) at s =
j is K = 1

2 , and hence T1 = K + K∗ = 1. Both 1
s2 and

1
s2+1 are lossless negative imaginary. Moreover, the negative
imaginary transfer matrices also have similar properties as
Lemma 6. We are able to decompose any negative imaginary
transfer matrix G(s) into the sum of a lossless negative
imaginary transfer matrix GLNI(s) and a negative imaginary
transfer matrix GNI(s).

Decompose the lossless negative imaginary transfer ma-
trices into proper part and non-proper part. We have the
following result.

Corollary 1: Let G(s) be a square real-rational transfer
function matrix of the form

G(s) = G0(s)+ sA1 + s2A2 +∑
i

siAi,

where G0(s) has no poles at infinity. Then, G(s) is lossless
negative imaginary if and only if G0(s) is lossless negative
imaginary, A2 = A∗2 ≤ 0, A1 +A∗1 = 0 and Ai = 0 for i≥ 3.

Proof: Trivial.
Remark 5: Corollary 1 is useful in deriving the non-

proper descriptor lossless negative imaginary lemma. Also,
for the non-proper negative imaginary transfer matrices, we
have a similar result, that is, G(s) is negative imaginary if and
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only if A2 = A∗2 ≤ 0 and G0(s)+ sA1 is negative imaginary,
which is also useful in the study of non-proper descriptor
negative imaginary systems. If G(s) is symmetric, we have
G(s) is negative imaginary if and only if A2 = A∗2 ≤ 0,
A1 = A∗1 ≤ 0 and G(s) is negative imaginary.

III. RELATIONSHIP BETWEEN LOSSLESS POSITIVE REAL
AND LOSSLESS NEGATIVE IMAGINARY SYSTEMS

In this section, two new relationships between lossless
negative imaginary and lossless positive real transfer func-
tions will be established in non-proper and proper case. First,
we present a new description of the relationship between
non-proper lossless negative imaginary and non-proper loss-
less positive real transfer matrices.

Lemma 7: Let G(s) be a square real-rational transfer
function matrix. Suppose G(s) has no poles at zero. Then
G(s) is lossless negative imaginary if and only if

1) G(0) = GT (0);
2) F(s) =− 1

s [G(s)−G(0)] is lossless positive real.
Proof: (Necessity) Suppose G(s) is lossless negative

imaginary. It follows from [21, Lemma 9] that G(0)=GT (0).
When G(s) has no pole at infinity, F(s) has no poles at
infinity. When G(s) has a simple pole at infinity, then F(s)
has also no poles at infinity. Let G(s) = sA1 +G0(s), where
G0(s) is proper and A1 +AT

1 = 0. Then,

F(s) =−A1−
1
s

G0(s)+
1
s

G(0).

As ω → ∞, it follows that

F( jω)+F∗( jω) =−(A1 +AT
1 ) = 0.

The rest of the proof is the same as the necessity proof of
[21, Lemma 9].

(Sufficiency) The sufficient proof is the same as the
sufficient proof of [21, Lemma 9].

Example 1: To illustrate the usefulness of Lemma 7, con-

sider a non-proper transfer matrix G(s) =

(
1

s2+1 −s
s 1

s2+1

)
.

G(s) has no poles in Re[s] > 0. A calculation shows that
j[G( jω) − G∗( jω)] = 0. G(s) has a simple pole at in-
finity and s = j. The residue matrix of jG(s) at s = j
is positive semidefinite Hermitian, being K = lims→ j(s−

j) jG(s) =
( 1

2 0
0 1

2

)
. Moreover, limω→∞

G( jω)
( jω)2 = 0 and

A1 = limω→∞
G( jω)

jω =

(
0 −1
1 0

)
, which satisfies A1 +

A∗1 = 0. According to Definitions 3 and 4, it follows
that G(s) is lossless negative imaginary. We can say that
G(s) is lossless negative imaginary if and only if F(s) =

− 1
s [G(s)−G(0)] =

( s
s2+1 1
−1 s

s2+1

)
is lossless positive real

and G(0) = GT (0). A calculation shows that F(s) satisfies
all conditions in Definition 2: F(s) is positive real, and
F( jω)+F∗( jω) = 0 for all ω with jω not a pole of F(s).

When G(s) is a real-rational proper transfer matrix, we
have the following result.

Lemma 8: Let G(s) be a square real-rational proper trans-
fer function matrix. Then G(s) is lossless negative imaginary
if and only if

1) G(∞) = GT (∞);
2) F(s) = s[G(s)−G(∞)] is lossless positive real.

Proof: (Necessity) Suppose G(s) is lossless negative
imaginary. It follows from [21, Lemma 11] that G(∞) =
GT (∞). When G(s) has no pole at zero, F(s) has no poles
at zero, and F(0) + F∗(0) = 0. When G(s) has a simple
pole at zero, then F(s) has also no poles at zero. Let
G(s) = 1

s C1 +G0(s), where G0(s) has no poles at zero and
C1 +C∗1 = 0. Then, F(s) =C1 + sG0(s)− sG(∞), and hence,
F(0) +F∗(0) = C1 +CT

1 = 0. The rest of the proof is the
same as the necessity proof of [21, Lemma 11].

(Sufficiency) The sufficient proof is the same as the
sufficient proof of [21, Lemma 11].

Example 2: As an illustration of Lemma 8, consider a

proper transfer matrix G(s) =

(
−s2

s2+1
1
s +1

−1
s +1 −s2

s2+1

)
. It can

be found that G(s) is lossless negative imaginary if and

only if F(s) = s[G(s)−G(∞)] =

( s
s2+1 1
−1 s

s2+1

)
is lossless

positive real and G(∞) = GT (∞). A calculation shows that
G(s) and F(s) satisfy all conditions in Definition 4 and
Definition 2, respectively. Note that G(s) has a simple pole at

zero, C1 = lims→0 sG(s)=
(

0 1
−1 0

)
satisfies C1+CT

1 = 0,

and F(s) has no poles at zero.
Remark 6: Lemma 7 can be considered as a generalization

of Lemma 9 in [21] by allowing simple pole at infinity.
Lemma 8 can be considered as a generalization of Lemma
11 in [21] by allowing simple pole at zero.

IV. LOSSLESS NEGATIVE IMAGINARY LEMMA IN
STATE-SPACE CONDITIONS

The lossless negative imaginary lemma proposed in this
section, which is the main result of the paper, extends the
lossless negative imaginary lemma in [19] to the case where
the transfer matrices may have poles at zero. Theorem 1
could be considered as a modification of Lemma 2 in [18]
applied to lossless negative imaginary case.

Theorem 1: Let (A,B,C,D) be a minimal state-space re-
alization of a square real-rational proper transfer function
matrix G(s)∈Rm×m, where A∈Rn×n, B∈Rn×m, C ∈Rm×n,
D ∈ Rm×m, and m ≤ n. Then, G(s) is lossless negative
imaginary if and only if D = DT , and there exists a real
matrix P = PT ≥ 0, P ∈ Rn×n, such that(

PA+AT P PB−ATCT

BT P−CA CB+(CB)T

)
= 0. (6)

Proof: The equivalence follows along the following
sequence of equivalent reformulations.

G(s)∼ (A,B,C,D) is lossless negative imaginary.
⇔ G(∞) = GT (∞), and F(s) = s[G(s)−G(∞)] is lossless

positive real (according to Lemma 8).
⇔ D = DT , and F(s)∼ (A,B,CA,CB) is lossless positive

real. Note that (A,B) is completely controllable and (A,CA)
may be not observable. The reason is that A may be singular.
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⇔ D = DT , and there exists a real matrix P = PT ≥ 0,
P ∈ Rn×n, such that

PA+AT P = 0

PB−ATCT = 0

CB+(CB)T = 0.

This equivalence is according to Lemma 2.
⇔ D = DT , and there exists a real matrix P = PT ≥ 0,

P ∈ Rn×n, such that (6) holds.
Remark 7: In Theorem 1, the state-space realization

(A,B,C,D) is assumed to be minimal realization. In fact, if
we remove the observability requirement of (A,C), the results
in Theorem 1 also hold. Moreover, consider the generalized
negative imaginary lemma in [18, Lemma 2]. Assume that
(A,B) is controllable and (A,C) is not necessarily observable.
The result in [18, Lemma 2] also hold by using Lemma 10
in [21] and Lemma 1 in here.

Remark 8: Compared to Theorem 1 in [19], Theorem 1
in this paper removes the non-singularity condition of state
matrix A, that is, det(A) = 0 is allowed in this paper by
allowing poles at zero, and P is allowed to be positive semi-
definite. Compared to Lemma 2 in [18], the inequality in
[18] is modified as equality in this paper by applying to the
case where the negative imaginary transfer matrix is lossless.

Example 3: To illustrate the main results of the paper,
consider the same example in Remark 4. One minimal
realization of G(s) = 1−2s4

s2(s2+1) is as follows

A =


0 −1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , B =


1
0
0
0

 ,

C =
(

0 2 0 1
)
, D =−2.

CB+(CB)T = 0 holds. YALMIP [23] and SeDuMi were used
to find a solution of (6) as

P =


2 0 1 0
0 1 0 0
1 0 1 0
0 0 0 0

≥ 0,

which implies that the conditions in Theorem 1 hold. This
verifies that G(s) is lossless negative imaginary from state-
space condition. Also, the lossless negative imaginary prop-
erty of G(s) can also be confirmed by directly using the
definition of lossless negative imaginary systems.

V. CONCLUSIONS

This paper has studied some new and important lossless
negative imaginary properties of square real-rational transfer
matrices. A necessary and sufficient condition has been
proposed to characterize the non-proper lossless negative
imaginary systems. Then, a minor decomposition theory for
lossless negative imaginary systems has been proposed in
terms of a partial-fraction expansion. According to this minor
decomposition theory, two different relationships between
lossless negative imaginary and lossless positive real transfer

matrices have been studied by allowing poles at zero and
infinity. Moreover, a generalized lossless negative imaginary
lemma has been derived in terms of a minimal realization.
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