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Abstract— This paper uses active learning to solve the
problem of mining signal temporal requirements of cyber-
physical systems or simply the requirement mining problem.
By utilizing robustness degree, we formulate the requirement
mining problem as an optimization problem. We then propose a
new active learning algorithm called Gaussian Process Adaptive
Confidence Bound (GP-ACB) to help in solving the optimization
problem. We show theoretically that the GP-ACB algorithm has
a lower regret bound–thus a larger convergence rate–than some
existing active learning algorithms, such as GP-UCB. We finally
illustrate and apply our requirement mining algorithm with two
case studies: the Ackley’s function and a real world automotive
power steering model. Our results demonstrate that there is
a principled and efficient way of extracting requirements for
complex cyber-physical systems.

I. INTRODUCTION

In this paper, we propose the use of active learning for
mining signal temporal logic (STL) requirements of cyber-
physical systems (CPSs). CPS is a modeling paradigm in
many safety-critical domains, such as automotive, medical,
and aerospace industries, where the correctness of the end
product is of significant importance [1]. However, in many
industrial settings, the requirements intended to enforce the
correctness guarantee are vague and in many cases expressed
in natural languages, such as “smooth steering” and “good
fuel efficiency.” Further, due to the complex nature of many
CPSs, writing down the appropriate requirements to reflect
the desirable system properties can be challenging even for
experienced designers.

Given a system S, e.g., a Stateflow/Simulink model of a
steering system, and a requirement template ϕ with a set of
unknown parameters θ, the goal of this paper is to develop
an improved method which can automatically infer a require-
ment ϕθ written in signal temporal logic, i.e., the system S
satisfies the requirement ϕθ. Such a problem can be called a
requirement mining problem. In the past few years with the
introduction of the concept of robustness degree [2], [3], the
problem has received increased attention and has achieved
significant progress. With the help of robustness degree, the
requirement mining problem of a CPS can be converted to
an optimization problem for the expected robustness [4]–
[6]. Various techniques, such as particle swarm optimization
[7], simulated annealing [5], Nelder-Mead [8], and stochastic
gradient descent algorithm [6] can then be used to solve the
optimization problem.
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& Control at UC Davis. Z. Kong is the corresponding author. (email:
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Due to the complex nature of CPSs, the robustness degree
function can be highly nonlinear. Furthermore, many CPSs
are stochastic because of various uncertainties inherent to
the system. These complexities added together make uni-
form sampling method inefficient to solve the optimization
problem (there are even cases in which the exact probability
distribution over the parameter space is unknown a priori).
Monte-Carlo techniques have been shown to be an effective
sampling method to tackle the issue [8], [9]. It is worth
pointing out that these techniques may suffer from slow
convergence, meaning that the inference procedure may take
a long time. In many applications, a quick verdict is needed,
consider for instance an online diagnosis of a faulty safety-
critical system.

In this paper, we develop a new active learning algorithm
called Gaussian Process Adaptive Confidence Bound (GP-
ACB) and use it to partially mitigate the need for a large
number of iterations during optimization. The idea behind
active learning is to accelerate convergence by actively
selecting potentially “informative” samples, in contrast with
random sampling from a predefined distribution [10]. Our
paper unifies two complementary camps of requirement
mining and verification philosophies: one is model based
[8], [9], [11], and the other is data driven [5], [12]. In our
method, models are used as oracles, generating data which
enables our method to gain knowledge of the system. This
helps focus ongoing searches in promising parameter ranges,
and thus eliminates unnecessary samples.

This paper is divided into the following sections. Section
II discusses the relevant background on signal temporal
logic and Gaussian processes. Section III formally defines
the requirement mining problem. Section IV discusses our
GP-ACB algorithm. Section V provides two case studies to
demonstrate our algorithm. Section VI concludes the paper.

II. PRELIMINARIES

A. Signal Temporal Logic

Given two sets A and B, F(A,B) denotes the set of all
functions from A to B. Given a time domain R+ := [0,∞),
a continuous-time, continuous-valued signal is a function s ∈
F(R+,Rn). We use s(t) to denote the value of signal s at
time t. Signal temporal logic (STL) [13] is a temporal logic
defined over signals. STL is a predicate logic with interval-
based temporal semantics. The syntax of STL is defined as

ϕ := f(s) ∼ d|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|F[a,b)ϕ|G[a,b)ϕ,

where a and b are non-negative finite real numbers, and
f(s) ∼ d is a predicate where s is a signal, f ∈ F(Rn,R)
is a function, ∼∈ {<,≥}, and d ∈ R is a constant. The
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Boolean operators ¬ and ∧ are negation (“not”) and conjunc-
tion (“and”), respectively. The other Boolean operators are
defined as usual. The temporal operators F and G stand for
“Finally (eventually)” and “Globally (always)”, respectively.

STL is equipped with a robustness degree [2], [3] (also
called “degree of satisfaction”) that quantifies how well a
given signal s satisfies a given formula ϕ. The robustness is
calculated recursively as follows

r(s, (f(s) < d), t) = d− f(s(t))
r(s, (f(s) ≥ d), t) = f(s(t))− d
r(s, ϕ1 ∧ ϕ2, t) = min

(
r(s, ϕ1, t), r(s, ϕ2, t)

)
r(s, ϕ1 ∨ ϕ2, t) = max

(
r(s, ϕ1, t), r(s, ϕ2, t)

)
r(s,G[a,b)ϕ, t) = min

t′∈[t+a,t+b)
r(s, ϕ, t′)

r(s, F[a,b)ϕ, t) = max
t′∈[t+a,t+b)

r(s, ϕ, t′).

We use r(s, ϕ) to denote r(s, ϕ, 0). If r(s, ϕ) is large and
positive, then s would have to deviate substantially in order
to violate ϕ.

Parametric signal temporal logic (PSTL) is an extension
of STL where the bound d and the endpoints of the time
intervals [a, b) are parameters instead of constants [11]. We
denote them as scale parameters π = [π1, ..., πnπ ] and time
parameters τ = [τ1, ..., τnτ ], respectively. A full parameteri-
zation is given as [π, τ ]. The syntax and semantics of PSTL
are the same as those of STL. A valuation θ is a mapping
that assigns real values to the parameters appearing in an
PSTL formula. A valuation θ of an PSTL formula ϕ induces
an STL formula ϕθ. For example, if ϕ = F[τ1,τ2)(x < π1)
and θ([π1, τ1, τ2]) = [0, 0, 3], then ϕθ = F[0,3)(x < 0).

B. Gaussian Processes

A Gaussian process (GP) is defined as a collection of
random variables, any finite linear combination of which
have a joint Gaussian distribution [14]. Any GP is completely
specified by its mean function m(~x) and its covariance
function or kernel k(~x, ~x′)

m(~x) = E[f(~x)],

k(~x, ~x′) = E[(f(~x)−m(~x))(f(~x′)−m(~x′))].

A flat (or even zero) mean function m(~x) is chosen in the
majority of cases in the literature. Such a choice does not
cause many issues since the mean of the posterior process in
not confined to zero. There is a large set of available kernels
k(~x, ~x′). Two common ones are [14]

• Gaussian kernel with length-scale l > 0, k(~x1, ~x2) =
exp(−|~x1 − ~x2|2/(2l2)), where |.| is the Euclidean
length.

• Matérn kernel with length-scale l > 0

k(~x1, ~x2) =
21−ν

Γ(ν)
(

√
2ν|~x1 − ~x2|

l
)νKν(

√
2ν|~x1 − ~x2|

l
)

where Γ(ν) is the Gamma function, Kν is the modified
Bessel function and ν is a positive parameter.

III. PROBLEM FORMULATION

In this section, we first define the requirement mining
problem. Then, we show how to formulate the requirement
mining problem as a search for critical level sets.

A. Problem Statement

Notations from [9], [15] are adopted here. A system S
maps an initial condition (or uncontrolled environmental
conditions, e.g., road conditions) ~x0 ∈ X0 ⊂ Rnx to a
discrete-time output signal ~y ∈ F([0, T ], Y ) with Y ⊂ Rny
and T as the finite maximal simulation time. We assume
both X0 and Y can be represented as the Cartesian product
of intervals [a1, b1]× [a2, b2]× . . . [an, bn], where ai, bi ∈ R.

In this paper, we solve the following requirement mining
problem with the help of robustness degree.

Problem 1. Given a system S with a set of sampled traces
Ȳ = {~yi ∈ Y ⊂ Rny , i = 1, · · · , ns} starting from X̄0 =
{~xi0 ∈ X0 ⊂ Rnx , i = 1, · · · , ns}, where ~yi = S(~xi0) and
ns is the number of traces, and a PSTL formula ϕθ with
unknown parameters θ ∈ Θ ⊂ Rnθ , find a valuation set of θ
to solve

max
θ

(0, ε− min
~x0∈X̄0

(r(S(~x0), ϕθ))), (1)

where ε > 0 us a user-specified bound.

The max function max(0, ε− ·) in Eqn. (1) is a modified
hinge loss function. As the minimum of the robustness,
min(r(S(~x0), ϕθ)), is positive, the loss function rewards
values that are close to the bound 0 and at the same time
positive. It is utilized here to tackle the issue related to
the non-uniqueness of solutions to the requirement mining
problem, as pointed out in [8]. For a particular θ, the min
function rewards initial states that lead to negative robustness
degrees. The goal of the min function is to find an initial state
which leads to a trace that does not meet the requirement ϕθ
or simply to solve a falsification problem. The falsification
problem can be solved by optimization as elaborated in [16].
The outcome of the falsification problem is the set of the
sampled traces Ȳ . The max-min function in Eqn. (1) then
finds parameters θ, and, in turn, requirements ϕθ such that
for any initial state x0 ∈ X0, the output of the system has a
positive robustness degree that is smaller than ε. This means
that the system satisfies the requirements ϕθ, but only barely.

B. Solution as Critical Level Sets

To investigate the topology of a parameter space Θ,
consider the following function F : Θ → R, which is a
scalar field:

F (θ) = min
~x0∈X̄0

(r(S(~x0), ϕθ)). (2)

Denote the connected components of the parameter space
Θ as cc(Θ). A critical level set of the function F in the
parameter space Θ is a connected component ξ, which
satisfies [17]

ξ ⊂ cc({θ ∈ Θ : F (θ) = 0}). (3)
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The set of all critical sets of F in the parameter space Θ
can be denoted by Cr(F,Θ). Finally, the topology induced
partition of the function F can be defined by [17]

M (F,Θ) = cc(Θ \ Cr(F,Θ)). (4)

An example of such a topology induced partition is shown in
Fig. 1(a), where the white curves are the critical level sets.

With the definition of critical level sets, it is straightfor-
ward to conclude that solving Problem 1 is equivalent to
finding the critical level sets of function F . Fig. 7 illustrates
the scalar field of F with an automobile model and a PSTL
formula ϕθ := G[0,τ ](alat < π), where alat is the vehicle’s
lateral acceleration. The critical level set, corresponding to
the curve with zero robustness degree, divides the parameter
space Θ into two partitions, one partition Θ+ consists of
all parameters with positive robustness degrees and the
other partition Θ− consists of all parameters with negative
robustness degrees. In other words, the model satisfies the
requirement ϕθ if θ ∈ Θ+ and violates the requirement ϕθ
if θ ∈ Θ−. After the boundary of Θ+ and Θ− is found, the
requirement mining problem is solved. We will show in next
section how to find such boundaries or critical level sets with
active learning.

IV. ACTIVE LEARNING BASED REQUIREMENT MINING

In the section, we propose an active learning algorithm and
show how to use it to solve the problem of finding critical
level sets, as mentioned in Section III-B.

A. Gaussian Process Adaptive Confidence Bound Algorithm

Active learning algorithms were originally developed to
solve classification problems when an oracle is needed to
provide labels [10]. The process of obtaining labels from
the oracle can be expensive in terms of both time and
money. Thus, the goal of any active learning algorithm
is to achieve high classification or regression accuracy by
using the fewest labeled instances. The requirement mining
problem is similarly constrained. Our oracle is a simulator,
e.g., a Stateflow/Simulink model. Given the complexity of
many CPS models, to obtain a trace from the simulator can
be costly in time. Thus, we need to decrease the number of
simulations needed to learn a formula.

One active learning algorithm is modified from Gaussian
Process Upper Confidence Bound (GP-UCB) [18]. At each
step t, it solves the following problem

~xt = argmax
~x∈D

mt−1(~x) + β
1
2
t σt−1(~x), (5)

where D is the search space, βt is a function of t and
independent of ~x (an example of βt will be given later),
mt−1(.) and σt−1(.) are the mean and covariance functions
of the Gaussian process, respectively, and ~xt is the instance
that will be inquired at step t, meaning the label of ~xt will
be obtained from the oracle.

The second term of Eqn. (5) only depends on the co-
variance function σ(~x), which can potentially make the
exploration process random and inefficient. To address this

problem, we propose an algorithm called Gaussian Process
Adaptive Confidence Bound (GP-ACB) by adding a normal-
ization term ηm(x) to Eqn. (5) as follows:

~xt = argmax
~x∈D

mt−1(~x) + ηm(~x)
1
2 β

1
2
t σt−1(~x), (6)

where ηm(~x) normalizes the mean mt−1(~x) and can be
written explicitly as

ηm(~x) =
mt−1(~x)−min(mt−1(~x))

max(mt−1(~x))−min(mt−1(~x))
.

It is obvious that 0 ≤ ηm(~x) ≤ 1. ηm(~x) acts as an adaptive
factor to uncertainty (covariance) and favors exploration
directions associated with increasing rewards. In this paper,
we assume that the observation at time t, yt ∈ R, is yt =
f(~x) + εt with εt ∼ N(0, σ2) and σ2 known. Pseudocode
for the GP-ACB algorithm is provided in Algorithm 1.

Algorithm 1: GP-ACB Algorithm
Input:
Search space D; GP priors m(~x)0 = 0 and σ0;
Kernel function k; Maximal simulation time T .

1: for i = 1 to T do
2: Bayesian update mt−1(~x) and σt−1(~x);
3: Calculate the normalization factor ηm(~x);
4: Choose ~xt =

argmax~x∈Dmt−1(~x) + ηm(~x)
1
2 β

1
2
t σt−1(~x);

5: Calculate ~yt = f(~xt) + εt with εt ∼ N(0, σ2).

B. Regret Bound of GP-ACB

The goal of any learning algorithm can be stated as
follows: given an unknown reward function f ∈ F(D,R),
maximize the sum of rewards

∑T
t=1 f(~xt), which is equiv-

alent to finding a ~x∗ such that ~x∗ = argmax~x∈D f(~x).
A concept called regret bound can be used to quantify
the convergence rate of a learning algorithm [10], [19].
First, the instantaneous regret at time t is defined as rt =
f(~x∗) − f(~xt). Then, the cumulative regret RT after T
rounds is RT =

∑T
t=1 rt. A desired property of the learning

algorithm is then to guarantee limT→∞RT /T = 0, implying
the convergence to the global maximum ~x∗. Finally, the
bounds on the average regret RT /T are directly related to
the convergence rate of the learning algorithm. The lower
the bound is, the faster the algorithm converges. This section
investigates the regret bound of the GP-ACB algorithm.

Define γT as the maximum information gain after T
rounds as follows [19]:

γT = max
T ′≤T

1

2

T ′∑
t=1

log(1 + σ−2σ2
t−1(~xt))

If the search space D ∈ Rd is compact and convex, where d
is the dimension of the search space, we can get the following
theorem (the proof is in the Appendix).
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Theorem 1. Let δ ∈ (0, 1), βt = 2 log(|D|t2π2/6δ) , m =
mint=(1,··· ,T )(ηm(~xt)) and n = maxt=(1,··· ,T )(ηm(~xt)).
Running GP-ACB results in a regret bound as follows

Pr{RT ≤
√
nC1TβT γT ,∀T ≥ 1} ≥ 1− δm, (7)

where C1 = 8/ log(1 + σ−2).

Remark 1. The regret bound of GP-UCB is [19]

Pr{RT ≤
√
C1TβT γT ,∀T ≥ 1} ≥ 1− δ.

With the same parameter setting, the regret bound of GP-
ACB is shown as Eqn. (7). Since 0 < m,n ≤ 1, we
can conclude that the GP-ACB algorithm can get the same
regret bound more efficiently than the GP-UCB algorithm.
The maximum maxt≤T f(~xt) in the first T iterations is no
further from f(~x∗), where ~x∗ is the global optimum, than
the average regret RT /T . Thus, compared with GP-UCB, on
average, the GP-ACB algorithm has a higher convergence
rate.

C. Active Requirement Mining

Many optimization methods, such as particle swarm opti-
mization [7], simulated annealing [5], Nelder-Mead [8], and
stochastic gradient descent algorithm [6] are not suitable to
solve Problem 1 due to the large number of simulations
or objective function evaluations needed. To reduce the
number of simulations, many researchers have shown the
effectiveness of using response surfaces for the optimization
of computationally expensive problems [20]. For algorithms
based on finite samples, it should be noticed that there is an
inherent trade-off between exploration and exploitation. In
this paper, we use active learning to solve the exploration
and exploitation trade-off in a principled manner: the first
term in Eqn. (6) tends to pick points in the decision space
that are expected to achieve high rewards (exploitation); and
the second term in Eqn. (6) tends to pick points that favor
uncertainty (exploration).

We solve Problem 1 by locating the critical level sets as
elaborated in Section III-B in three steps:

1) Generate N samples by using the GP-ACB algorithm
with the reward function

max
θ∈Θ
−|F (θ)|, (8)

where F (.) is defined in Eqn. (2). The output of
the first step is a set of N data points Si :=
{(θ1, F (θ1)), · · · , (θN , F (θN )) ∈ Rnθ × R}.

2) Generate the training set by keeping the data points
having robustness degrees whose absolute values are
smaller than or equal to ε, i.e., Si′ = {(θ, F (θ)) ∈
Si| − ε ≤ F (θ) ≤ ε}.

3) Approximate the critical level sets by using the ε-SVR
algorithm [21] and data set Si′.

In the following, we call the above procedure active require-
ment mining.

An example of using the active requirement mining to
locate critical level sets is demonstrated in Fig.1. The ro-
bustness function F of the example is a Gaussian mixture
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Fig. 1. An active requirement mining example. (a) A Gaussian mixture
function with critical level sets shown in white. (b) Samples (red and blue
dots) generated by the GP-ACB algorithm and the critical level sets (black
curves) obtained by the ε-SVR algorithm.

function as shown in Fig. 1(a). In Fig. 1(b), samples gener-
ated by the GP-ACB algorithm are shown as red and blue
dots. The critical level sets obtained by the ε-SVR algorithm
are shown as black curves. It can be observed that the GP-
ACB algorithm is able to sample points around critical level
sets and it is possible to approximate the level sets by using
the ε-SVR algorithm with only a few training data points.

V. CASE STUDIES

A. Global Optimization of Ackley’s Function

To verify the performance of the proposed GP-ACB algo-
rithm, we compare the GP-ACB algorithm with four types of
Gaussian-Process-based strategies: (i) GP-UCB active learn-
ing, (ii) Batch-greedy UCB active learning [22], (iii) pure
exploration, i.e., choosing points of maximum variance at
each step, and (iv) pure exploitation or greedy, i.e., choosing
points of maximum mean at each step. We use Ackley’s
function as follows:

f(x, y) = −20e−0.2
√

0.5(x2+y2)

−e0.5(cos(2πx)+cos(2πy)) + e+ 20

where e is the observation noise with zero mean and variance
σ2 at 0.025. The search space D = [−5, 5]2 is randomly
discretized into 1000 points. We run each algorithm for
T = 58 iterations with sampling time δ = 0.1. Since the
global minimum of the Ackley’s function (x∗, y∗) is known
(unknown to the learning algorithms though), for the i-
th trial, if (xit, y

i
t) is the solution obtained by running the

algorithm for t iterations, then mean regret for the algorithm
at time t is R̄t =

∑Nt
i=0[f(xit, y

i
t)−f(x∗, y∗)]/Nt, where Nt

is the number of trials. In this case study, we set Nt = 1000.
Each trial is initialized randomly.

Fig. 2(a) and Fig. 2(b) show the comparison of the
mean regret R̄t incurred by the different Gaussian Process
based algorithms with Gaussian kernel and Matérn kernel,
respectively. With both kernels, GP-ACB outperforms the
others. For instance, GP-UCB arrives at its minimum regret
in an average of 58 iterations; while GP-ACB arrives at its
minimum regret in an average of 45 iterations. Further, for
this particular case, Matérn kernel outperforms the Gaussian
kernel. This is not surprising, given that the Ackley’s function
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Fig. 2. Performances of GP-ACB and other strategies. The mean regret over
1000 trails R̄(t) := R̄t =

∑1000
i=0 [f(xit, y

i
t)− f(x∗, y∗)]/1000 is chosen

as the performance metric. (a) shows the results with Gaussian kernel. (b)
shows the results with Matérn kernel.

is quite “non-smooth” and Matérn kernel is designed to
capture non-smoothness.

B. Active Requirement Mining for Automotive Power Steer-
ing

In this sub-section, the utility of our active requirement
mining algorithm elaborated in Section IV-C is demonstrated
in the context of a road vehicle power steering system.

Fig. 3. A vehicle steering system with dynamics modeled for the steering
rack, pinion gear, worm gear assembly, steering geometry (for small angular
displacement), electronic power assist steering motor and feedback control
algorithm. Of interest is the interaction between targets and selected design
parameters. This work addresses upper column stiffness (kU ), EPAS motor
winding centroidal mass moment of inertia (Jm) and the worm gear overall
ratio (gG).

1) Model Description: The system is a passenger auto-
mobile equipped with electric power assist steering (EPAS).
The steering dynamics are emphasized in the system diagram
of Fig. 3 and simulation model pictured in Fig. 4. The
electric motor in the studied configuration is attached to
the steering column and provides torque assistance using a
basic “boost curve” control concept. The simple algorithm
implemented maps measurements from steering wheel torque
and wheel speed sensors to motor commands through a
multi-dimensional lookup table. The model is available at
http://chpsslab.com/publications.html.

Vehicle model properties include two degree-of-freedom
chassis dynamics (lateral and yaw motions). Plant features
which make traditional stability analysis difficult include

Fig. 4. MATLAB/SimulinkTM model of automobile with electric power-
assist steering (EPAS). The blocks on the right side select/generate trajec-
tories for requirement mining.

non-linearities owing to friction, tire force behavior and
mechanism kinematics. Models for force generation of pneu-
matic tires range widely in their complexity, with the most
complex empirically-derived examples requiring dozens of
coefficients for a complete parameterization. Lateral tire
forces on the front and rear axles (FyF , FyR) are in general
generated using these highly nonlinear functions. However,
for low lateral force values, a simple proportional relation-
ship between slip angle and force matches measured data
suitably. The open-loop step-steer test at 0.4g of lateral
acceleration produces forces within the linear range.

The equations of motion for the system are as follows:

ṗV = FyF + FyR − mu0

Jy
pY

ṗY = aFyF − bFyR − lbLgG
rpJm

pm − lkL
rp
qL+

l2

Jy
(br − bL

rp2
)pY + l2

Jwd
( bLrp2 − br)pwd

ṗwd = lbLgG
rpJm

pm + lkL
rp
qL − l2

Jy
(br − bL

rp2
)pY−

l2

Jwd
( bLrp2 − br)pwd − caFyF

q̇L = gG
Jm
pm − l

rp
( 1
Jwd

pwd − 1
Jy
pY )

q̇U = ωsw − gG
Jmpm

ṗm = −τfg + Tic − bLgG
2

Jm
pm + bLgG

rpJwd
pwd−

bLgG
rpJy

pY + gG(kUqU − kLqL)

δ̇ = 1
Jwd

pwd − 1
JypY

ψ̇ = 1
Jy
pY

Ẋ = u0 cosψ − pV
m sinψ

Ẏ = u0 sinψ + pV
m cosψ

where pV is the lateral vehicle chassis momentum, pY is the
vehicle chassis yaw angular momentum, pwd is the wheel
angular momentum in the diametric/steered direction, qL
is the angle of lower steering column, qU is the angle of
upper steering column, pm is the angular momentum of
EPAS motor windings, δ is the tire-steered angle, ψ is the
inertial heading angle, X is the vehicle displacement in the
inertial lateral direction, and Y is the vehicle displacement is
inertial longitudinal direction. The model contains a single
exogenous input, ωsw, the angular velocity of the steering
wheel. The inertial states (X,Y, ψ) can be used to evaluate
fitness in the presence of requirements relating to overall

4590



vehicle behavior, such as double lane change or obstacle
avoidance maneuvers.

2) Test Conditions: The International Standards Organiza-
tion (ISO) maintains a set of test methods used for studying,
evaluating and reporting road vehicle dynamic performance.
In this work we use ISO 7401, focusing on analyzing
transient lateral response through the step-steer test. The
maneuver uses an open-loop steering input: meaning once
the input is calibrated to create the desired output, the driver
(or driver model) has a small impact on the results. This has
the advantage of isolating the vehicle and control system’s
response to parametric or environmental changes.

For the step steer test, the standard forward speed is 100
kph (about 62 mph). Starting with yaw rate and lateral ve-
locity close to zero, the steering wheel is turned very quickly
(hence step steer) to a value which yields a selected lateral
acceleration in the steady state. Measurements made during
this maneuver generate trajectories for lateral acceleration.

Time parameter τ (s)
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Fig. 5. Requirement mining result with ϕθ := G[0,τ ](alat < π). Sets
with robustness degrees of 1, 0, and -1 are shown in blue, red and black,
respectively.

3) Requirement Mining: We choose a PSTL formula as
follows:

ϕθ = ϕ(τ,π) := G[0,τ ](alat < π), (9)

where alat is the vehicle lateral acceleration. The initial state
space X0 is chosen to be two dimensional, consisting of the
gear ratio gG and motor inertia Jm (it is worth pointing
out that, for this particular example, a more appropriate
interpretation of an initial state ~x0 ∈ X0 is that it serves as
an input to the model as shown in Fig. 5). The requirement
mining result is shown in Fig. 5. By implementing the
algorithm elaborated in Section IV-C, the critical level set,
i.e., the set consisting of all parameters θ := (τ, π) with
F (θ) = 0 (Eqn. (2)), is identified and shown in red in Fig.
6. The robustness degree of the model with respect to any
ϕθ with θ on the identified critical level set is zero.

To compare the performance of GP-ACB and GP-UCB
in the context of requirement mining, we run the active
requirement mining algorithm described in Section IV-C
in two different ways, one with ε-SVR together with GP-
ACB and the other one with ε-SVR together with GP-ACB.
The comparison result in shown in Fig. 6. It shows the
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Fig. 6. The distributions of the absolute value of all the sampled points’
robustness degree with the GP-ACB algorithm and the GP-UCB algorithm.

distributions of the absolute value of all the sampled points’
robustness degree. For a method that can locate the critical
level set quickly, it is expected that the sampled points should
be concentrated around zero. Fig. 6 demonstrates that both
the GP-ACB and GP-UCB algorithms can find the critical
level set, since with both algorithms more than 80% of
the sampled points’ robustness are smaller than 20% of the
maximum robustness. However, GP-ACB is superior to GP-
UCB in the sense that it has more points concentrated around
zero.

4) Sensitivity Analysis for Design Parameters: The
knowledge of design parameters’ effect on the performance
of a system is crucial for the design process, especially
when there exists trade-offs among multiple objectives. In the
following, we demonstrate high-level parametric sensitivity
analysis for a subset of steering system parameters and
requirements written in the form of STL formulas. STL offers
a way of specifying transient and steady-state responses. For
instance,

F[0,10](G[0,4.5](alat < 6) ∧G[4.5,10](alat > 4.5)) (10)

describes a requirement that is related to the settling time
similar to those listed in ISO 7401. Then the robustness
degree with respect to such a formula, especially how the
robustness changes with multiple design parameters, offers
an intuitive way of analyzing the optimal trade-off among
parameters.

We focus on analyzing the sensitivity of the robustness
degree with respect to design parameters. We first specify a
PSTL formula

F[0,T ](G[0,τ ](alat < π1) ∧G[τ,T ](alat > π2)),

where T is the finite maximal simulation time and τ , π1 and
π2 are parameters needed to be mined (estimated). We then
mine the parameters using the active requirement mining
algorithm described in Section IV-C. The end results is the
STL formula (10). Finally, the same algorithm can also be
used to generate the level sets of the power steering system’s
robustness degree with respect to different sets of design
parameters as shown in Fig. 7.
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Fig. 7. Level sets of the power steering system’s robustness degree
with respect to the STL formula ϕ := F[0,10](G[0.4.5](alat < π1) ∧
G[4.5,10](alat > π2)) and different sets of design parameters: (a) assist
motor winding inertia Jm and torsional stiffness kU ; (b) Jm and motor
gear ratio gG.

Fig. 7(a) shows the level sets for torsional stiffness kU and
assist motor winding inertia Jm. The figure shows that kU
has a larger impact on the robustness than Jm. Further, the
sensitivity of the robustness to Jm decreases as Jm increases.
Additionally, for the lateral acceleration requirement with
an open-loop driver input, these trends are consistent with
intuition: added compliance of the column results in less
tire-steered angle. Increased steering motor winding inertia
creates delay in the controlled time response and contributes
to unsatisfactory performance. Fig. 7(b) looks at the winding
inertia and motor gearing ratio. The figure gives some insight
into the limitations of the simple control system design made
for this example. The gear ratio gG is a critical design
parameter, as it allows an affordable motor to generate
significant torque on the column by operating at high speed.
The results show that more aggressive gearing combined with
changes in the winding inertia can lead to violations of the
requirement. Changes can be made to the look-up table for
boost to compensate for different parameters, but a better
solution would be a truly robust compensator: one which
rejects the effects of limited parametric drift. Through this
simple example it can be seen how the proposed technique

might be useful in model-based design and when addressing
manufacturing tolerances during a run of production.

VI. CONCLUSION

In this paper, we introduced an active learning method,
called Gaussian Process Adaptive Confidence Bound (GP-
ACB), for mining requirements of bounded-time temporal
properties of cyber-physical systems. The theoretical analysis
of the proposed algorithm showed that it has a lower regret
bound and thus a higher convergence rate compared to other
Gaussian-Process-based active learning algorithms, such as
GP-UCB. By using two case studies, one of which was
an automatic power steering model, we showed that our
requirement mining algorithm outperformed other existing
algorithms, e.g., those based on GP-UCB. Our results have
significant implications for not only the requirement mining,
but also the validation and verification of cyber-physical sys-
tems. We are currently exploring the possibility of utilizing
active learning to solve the structural inference problem, i.e.,
to mine a requirement without any given template.

APPENDIX

Our proofs on the regret bound follow those in [19].

Lemma 1. Pick δ ∈ (0, 1) and set βt = 2 log(|D|πt/δ),
where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(~x)−mt−1(~x)| ≤ ηm(~x)1/2β
1/2
t σt−1(~x),∀~x ∈ D,∀t ≥ 1

holds with probability ≥ 1− δηm(~x).

Proof. For ~x ∈ D and t ≥ 1. It is known that conditioned
on ~yt−1 = (y1, · · · , yt−1), {~x1, · · · , ~xt−1} is deterministic.
Further, f(~x) ∼ N(mt−1(~x), σ2

t−1(~x)). Now if r ∼ N(0, 1),
then

Pr{r > c} = e−c
2/2(2π)−1/2

∫
e−(l−c)2/2−c(l−c)dr

≤ e−c2/2Pr{r > 0} = (1/2)e−c
2/2.

for c > 0, as e−c(r−c) ≤ 1 for r ≥ c. We have Pr{|f(~x)−
mt−1(~x)| > ηm(~x)1/2β

1/2
t σt−1(~x)} ≤ e−ηm(~x)βt/2. Set r =

(f(~x) − mt−1(~x))/σt−1(~x) and c = ηm(~x)1/2β
1/2
t . After

applying the adaptive bound, we have

|f(~x)−mt−1(~x)| ≤ ηm(~x)1/2β
1/2
t σt−1(~x) ∀~x ∈ D

holds with probability ≥ 1 − |D|e−ηm(~x)βt/2. Choosing
|D|e−ηm(~x)βt/2 = δ/πt, e.g., with πt = π2t2/6, and using
the adaptive bound for t ∈ N, the statement holds.

Lemma 2. Fix t ≥ 1, if |f(~x) − mt−1(~x)| ≤
ηm(~x)1/2β

1/2
t σt−1(~x), ∀~x ∈ D, then the regret rt is bounded

by 2β
1/2
t σt−1(~xt).

Proof. According to the definition of ~x∗, mt−1(~xt) +

ηm(~xt)
1/2β

1/2
t σt−1(~xt)

≥ mt−1(~x∗)+ηm(~x∗)1/2β
1/2
t σt−1(~x∗) ≥ f(~x∗). Therefore,

the instantaneous regret

rt = f(~x∗)− f(~xt)

≤ ηm(~xt)
1/2β

1/2
t σt−1(~xt) +mt−1(~xt)− f(~xt)

≤ 2ηm(~xt)
1/2β

1/2
t σt−1(~xt) ≤ 2β

1/2
t σt−1(~xt)
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Lemma 3. Pick δ ∈ (0, 1) and set βt = 2 log(πt/δ), where∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(~x)−mt−1(~x)| ≤ ηm(~x)1/2β
1/2
t σt−1(~x) ∀t ≥ 1

holds with probability ≤ 1− δηm(~xt).

Proof. For ~x ∈ D and t ≥ 1. Conditioned on yt−1 =
{y1, · · · , yt−1}, {~x1, · · · , ~xt−1} is deterministic. Further,
f(~xt) ∼ N(mt−1(~x), σ2

t−1(~x)). According to Lemma 1,
Pr{|f(~xt) − mt−1(~xt)| > ηm(~xt)

1/2β
1/2
t σt−1(~xt)} ≤

e−ηm(~xt)βt/2. Since e−βt/2 = δ/πt, and with the adaptive
bound for t ∈ N, the statement holds.

Lemma 4. Set Lt = max(mt(~x))−min(mt(~x)), ∀~x ∈ D,
and let βt be defined as in Lemma 3, then

1− ηm(~xt)
1/2 ≤ β1/2

t σt−1(~xt)/Lt ∀t ≥ 1

Proof. Set mt−1(~xm) = max(mt−1(~x)), ∀~x ∈ D, ac-
cording to GP-ACB, ηm(~xt)

1/2β
1/2
t σt−1(~xt) +mt−1(~xt) ≥

ηm(~xm)1/2β
1/2
t σt−1(~xm) +mt−1(~xm), then

mt−1(~xm)−mt−1(~xt−1)

≤ ηm(~xt)
1/2β

1/2
t σt−1(~xt)− ηm(~xm)1/2β

1/2
t σt−1(~xm)

⇒ 1− ηm(~xt)
1/2

≤ β
1/2
t

Lt
(ηm(~xt)

1/2σt−1(~xt)− ηm(~xm)1/2σt−1(~xm))

≤ β
1/2
t

Lt
(ηm(~xt)

1/2σt−1(~xt) ≤ β1/2
t σt−1(~xt)/Lt

The proof of Theorem 1 is as follows.

Proof. Define the information gain I as follows:

I(yT , fT ) =
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(~xt)),

where fT = (f(~x1), . . . , f(~xT ))′ ∈ RT . According
to Lemma 1 and Lemma 3, the regret bound {r2

t ≤
4ηm(~xt)βtσ

2
t−1(~xt), ∀t ≥ 1} holds with probability ≥

1− δηm(~xt) ≥ 1− δm. As βt is non-decreasing, we have

4ηm(~x)βtσ
2
t−1(~xt) ≤ 4nβTσ

2(σ−2σ2
t−1(~xt)

≤ 4nβTσ
2S log(1 + σ−2σ2

t−1(~xt))
(11)

where S = σ−2/ log(1 + σ−2), since σ−2σ2
t−1(~xt) ≤

σ−2k(~xt, ~xt) ≤ σ−2,
C1 = 8/ log(1 + σ−2) ≥ 8σ2 and h2 ≤ S log(1 +
h2)for h ∈ [0, σ−2]. As C1 = 8σ2S, for T ≥ 1 we have∑T

t=1 r
2
t ≤

∑T
t=1 4ηm(~x)βtσ

2
t−1(~xt)

≤ n
∑T
t=1

1
2βTC1 log(1 + σ−2σ2

t−1(~xt)) ≤ nC1βT γT .

According to Cauchy-Schwarz inequality, R2
T ≤ T

∑T
t=1 r

2
t .

Theorem 1 has been proven.
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