
Automatica 142 (2022) 110350

G
a

b

c

(
d
p
t
r
m
H
o
f
f
v
p
i
i
e

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Interpretable fault diagnosis with shapelet temporal logic: Theory and
application✩

ang Chen a,∗, Yu Lu b, Rong Su c

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, 511442, Guangzhou, China
School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore

a r t i c l e i n f o

Article history:
Received 30 March 2021
Received in revised form 21 December 2021
Accepted 11 March 2022
Available online xxxx

Keywords:
Interpretable fault diagnosis
Logic inference
Monotonic order
Rolling element bearing
Shapelet temporal logic

a b s t r a c t

Shapelets are discriminative subsequences of sequential data that best predict the target variable
and are directly interpretable, which have attracted considerable interest within the interpretable
fault diagnosis community. Despite their immense potential as a data mining primitive, currently,
shapelet-based methods ignore the temporal properties of shapelets. This paper presents a shapelet
temporal logic, which is an expressive formal language to describe the temporal properties of shapelets.
Moreover, an incremental algorithm is proposed to find the optimal logic expression with formal and
theoretical guarantees, and the obtained logic expression can be used for fault diagnosis. Additionally,
a case study on rolling element bearing fault diagnosis shows the proposed method can diagnose and
interpret faults with high accuracy. Comparison experiments with other logic-based and shapelet-
based methods illustrate the proposed method has better interpretability at the cost of computation
efficiency.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Fault diagnosis methods based on time series classification
TSC) diagnose fault by classifying the fault types. However, tra-
itional fault classification methods cannot provide further inter-
retations for better fault maintenance. Many scholars have tried
o propose interpretable TSC methods to equip the fault diagnosis
esults with interpretability (Zhao et al., 2021). Interpretability
eans understanding the decision process of fault diagnosis.
owever, until now, there is neither complete theory and method
f pure mathematical analysis nor formal mathematical definition
or interpretability (Yang et al., 2020). To approach interpretable
ault diagnosis results, most existing works pay attention to using
isualization to connect the key features to the decision and
roviding a visual and empirical explanation for users. The goal of
nterpretation is to make users feel the results of the decision are
n line with our understanding about the physical process. How-
ver, the interpretation is empirical and not formal, where the
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users need many numerical experiments and much background
knowledge to approach an interpretation of the results.

Shapelets, which were introduced in 2009 as a primitive for
time series classification in Ye and Keogh (2009), have attracted
a lot of attention in interpretable time series classification (Bergé
et al., 2019). Shapelets are time series subsequences that are rep-
resentative of class membership. The idea is that different classes
of time series can often exhibit inter-class differences in terms of
small subsequences rather than the full series structure. There-
fore, shapelets identify short discriminative series segments (Ye
& Keogh, 2009). Time series classification with shapelets offers
several benefits over competing approaches. Firstly, shapelets can
indicate the inherent structure of the data in a manner that is
directly interpretable and can offer intuitive insights into the
problem domain. Secondly, shapelet classifiers are more com-
pact than many other methods. We only need a small number
of shapelets (sometimes only one) for classification tasks, in-
stead of comparison to the entire dataset. Thirdly, shapelets are
sensitive to the phase-independent shape-based similarity of sub-
sequences, which is hard to detect for algorithms based on the
whole series. Despite the aforementioned promising features of
shapelets for fault diagnosis, there are also two important lim-
itations of shapelets. Firstly, their expressiveness is limited to
simple binary presence/absence questions (Mueen et al., 2011).
Thus, the logical-shapelets were proposed, which allows the com-

bination of multiply shapelets with conjunction and disjunction
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perators, to enrich the complexity of the patterns that shapelets
an express in Mueen et al. (2011). However, logical-shapelets
gnore the temporal relationship between shapelets, and it is also
imited to binary questions. Secondly, the time taken to compute
hapelets is significant (Baldán & Benítez, 2019). When shapelets
ere first proposed, all possible subsequences were considered as
otential candidates, while the minimum distances of a candidate
o all training series were used as a predictor feature for ranking
he quality of the subsequences. A detailed description of efficient
hapelet methods can be found in Baldán and Benítez (2019) and
mitted here due to page limit.
In this paper, inspired by another interpretable time series

lassification primitive, called signal temporal logic (STL) (Desh-
ukh et al., 2017), which is an expressive specification language
sed in the field of formal methods to specify behaviors of con-
inuous systems, we take the shapelets into a temporal logic
efinition and address the expensiveness problem of traditional
hapelets by defining a new formal language, called shapelet tem-
oral logic (ShTL). ShTL is equipped with the capacity to describe
he temporal relationship among shapelets. ShTL not only has the
ime-invariance property of shapelets, but also can describe the
hifted variance pattern of time series. Moreover, the quantitative
emantics of ShTL can tell how much a given time series satisfies
he shapelet properties, not limited to only binary questions. Ad-
itionally, the distance metrics for two shapelets do not depend
nly on the upper and lower bounds of the time series as STL,
hich is more robust to noise compared with STL. To address
he time consuming logic inference problem, we introduce two
ovel techniques to speed up the search for the ShTL-based logic
escription for time series. Firstly, we derive some lemmas and
heorems about the properties of ShTL. Based on these theoretical
esults, we transform the logic inference problem into a sequence
f optimization problems, using the properties of the formal
anguage to guide the search. Secondly, we choose the best k
hapelets and precompute the distance between time series and
hapelets, i.e., we do not need to compute the distance during
he logic inference process. In essence, we trade time for space,
uch that with a small relativity increase in the space required, we
ave significantly reduced the time required (see Section 5.1 for
etail). It is important to note that there is essentially zero-cost
or the expressiveness of ShTL. In other words, if we apply them
o a dataset that does not need their increased representational
ower, they will have a similar property with classic shapelets,
here the bounded time is equivalent to the whole time series.
herefore, the proposed work complements and further enables
he growing interest in shapelets as an interpretable data mining
ool.

. Definition and background

A time series x is a sequence of real numbers x1, x2, . . . , xm ∈
R, sampled at equal time intervals. We use x[i] to denote xi.

efinition 1 (Shapelet). A shapelet x[i, l] = xi, xi+1, . . . , xi+l−1 is
a continuous subsequence of time series x starting at position i
with length l.

Based on the definition of shapelets, a time series of length
m can have m(m + 1)/2 shapelets of all possible lengths from 1
to m. Time series classification based on shapelets mainly relies
on the chosen distance or similarity metrics to discriminate two
shapelets. The distance metric defines the distance function d(·)
that compares two time series of equal length. Then, classification
can be performed by identifying the closest subsequence match
in the target time series. Since tiny differences in scale and offset
rapidly swamp any similarity in shape (Keogh & Kasetty, 2003), to

achieve scale and offset invariance, the z-normalization is applied w

2

to the individual time series before the actual distance is com-
puted. Various distance metrics have been used, depending on the
application scenarios and properties of the time series. Here we
define the time-varying distance metrics shown as follows.

f (s, x, i) = d(s, x[i, l]), (1)

where i ≤ m− l+ 1, and the distance metrics d(·, ·) used in this
paper is the normalized Euclidean distance.

2.1. Shapelet temporal logic

Definition 2 (Shapelet Temporal Logic). Given a shapelet s and a
time series x. Shapelet temporal logic (ShTL) is a temporal logic
defined over time series shapelet distance. ShTL is a predicate
logic with interval-based temporal semantics. The syntax of ShTL
is defined recursively as,

ϕ := µ|¬ϕ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|F[a,b)ϕ|G[a,b)ϕ, (2)

where a and b are non-negative finite real numbers, and µ =
f (s, x, i) ≤ γ is a predicate, where f (s, x, i) is defined in Eq. (1),
and γ ∈ R+ is a constant. The Boolean operators ¬, ∨ and ∧
are negation (‘‘not’’), disjunction (‘‘or’’) and conjunction (‘‘and’’),
respectively. The temporal operators F and G stand for ‘‘Finally
(eventually)’’ and ‘‘Globally (always)’’, respectively.

Remark 1. The syntax of ShTL is similar with STL in Chen
et al. (2020). But the distance metric for STL is defined as the
distance between the signal and a predefined value among a time
interval, which is sensitive to the predefined value and noise,
i.e., a noise will change the distance easily. However, the distance
metric for ShTL is the normalized Euclidean distance between
a piece of signal and the shapelet, in which the noise’s effect
will be averaged among the shapelet, thus more robust to noise.
This transformation releases the noisy sensitivity property of STL.
Moreover, any distance or similarity measure can be employed as
the distance metric. Similar to signal temporal logic (Chen et al.,
2020), ShTL is also equipped with quantitative semantics. The
quantitative semantics, call robustness degree (also called ‘‘degree
of satisfaction’’) that quantifies how well a given time series x
satisfies a given formula ϕs with respect to shapelet s at time i,
denoted as ρ(x, ϕ, i) which can be defined similarly with STL as
in Chen et al. (2020).

The robustness degree is sound, meaning that ρ(x, ϕ, i) ≥
0 implies that time series x satisfies ϕ at time i, denoted as
x[i, l] |Hs ϕ, and ρ(x, ϕ, i) < 0 implies that time series x
iolates ϕ at time i, denoted as x[i, l] ⊭s ϕ. Therefore, to check
hether a time series x satisfies a formula ϕ at i, we only need
o calculate the robustness degree ρ(x, ϕ, i). In the rest of this
aper, we denote the robustness degree of formula ϕ at time 0
ith respect to time series x by ρ(x, ϕ) for short. If ρ(x, ϕ) is large
nd positive, then x would have to deviate substantially in order
o violate ϕ. The above definition also indicates that robustness
egree ρ(x, ϕ) depends on some pieces of x, not all series of
, we call the intervals that expanded by the pieces as effective
nterval of a formula ϕ with respect to x. ShTL can be extended to
arametric shapelet temporal logic (pShTL), where the bound γ and
he endpoints of the time intervals [a, b) are parameters instead
f constants. For example, if ϕθ = F[τ1,τ2)(f (s, x, i) ≤ π1) with
arameter vector θ = [π1, τ1, τ2], then ϕθ = F[0,3)(f (s, x, i) < 0).
In the following, we will use ϕθi (or ϕθ∗ ) to denote the ShTL

ormula resulting from valuating the parameters θ of the pShTL
ormula ϕθ . With pShTL, we can define the extended language of
formula ϕ with respect to shapelet s as
e(ϕ) =

{
x|x ∈ L(ϕθ ),∀θ ∈ Rn} , (3)
here n is the dimension of the parameter vector.
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ShTL is an expressive formal language and can be used to
describe a wide range of time series properties, such as (1)
Bounded-time invariance, e.g., F[0,a)G[b,c)(f (s, x, i) ≤ π ) denotes
‘there exists a time i ∈ [0, a), such that f (s, x, i) ≤ π will be hold
n [i+ b, i+ c)’’; (2) Cyclical shapelets, e.g., G[0,a)F[0,b)(f (s, x, i) ≤
.1) denotes ‘‘f (s, x, i) ≤ 0.1 (shapelet s) will be hold within every

time interval [i, i + b) for all i ∈ [0, a)’’; (3) Multiple shapelets
coupling, e.g., F[0,a)(f (s, x, i) ≤ π1)∧ F[0,b)(f (s′, x, i) ≤ π2) denotes
‘there exists a time i ∈ [0, a), such that eventually f (s, x, i) will
e not larger than π1 and there exists a time i ∈ [0, b), such that
ventually f (s′, x, i) is not larger than π2’’, where s and s′ are two
hapelets.

. Problem formulation

Now we formally define the problem solved in this paper.

roblem 1. Given a set of time series Γ = Υ + ∪Υ −, where Υ +,
ndicating the set of time series that have desirable behaviors, and
−, indicating the set of time series that have undesirable behav-

ors, respectively, find a pShTL formula ϕD describing desirable
ehaviors (with subscript D indicates ‘‘desirable’’ behavior), such
hat the misclassification rate,

(Γ , ϕD) = (FA+MD)/(|Υ +| + |Υ −|) (4)

s minimized, where | · | denotes the cardinality of a set, FA ={
x|x ⊭s ϕD, x ∈ Υ +

}
| is the number of false alarms (time series

mproperly classified) and MD = |
{
x|x |Hs ϕD, x ∈ Υ −

}
| is the

umber of missed detections (time series improperly classified
s desirable).

This problem is a classical supervised learning problem, which
s modified from the off-line anomaly learning problem defined
n Chen et al. (2020). However, instead of using the original time
eries for classification, here we introduce shapelets and their
istances of the original time series for logic formula learning.
n the paper, the algorithm should make a decision to extend the
ShTL formula and find the optimal parameters for the formula
o optimize the misclassification rate.

. Theoretical properties of pShTL

In this section, we derive some theoretical properties of pShTL
hat are important to solve the problem. The proofs of the theo-
etical results can be found in the Appendix.

emma 1. Given pShTL formula ϕ1 = F[0,a)ϕ, ϕ2 = G[0,b)ϕ,
and parameters a, b, c, the following statements hold: (1) if ϕ3 =
F[0,c)ϕ1, then Le(ϕ3) = Le(ϕ1); (2) if ϕ3 = G[0,c)ϕ2, then Le(ϕ3) =

e(ϕ2); (3) if ϕ3 = G[0,c)ϕ1, then Le(ϕ3) ⊆ Le(ϕ1); (4) if ϕ3 =
[0,c)ϕ2, then Le(ϕ2) ⊆ Le(ϕ3).

Lemma 1 shows that the expressiveness of some complex
ormulas with nesting temporal operators are equivalent to some
imple formulas. Based on the results in Lemma 1, we have the
ollowing results.

emma 2. For a pShTL formula ϕ(θ ) with parameter vector θ , and
for any time series x, if x |Hs ϕ(θ ), then there exists a simpler form of
ϕ with parameter vector θ ′, denoted as ψ(θ ′), such that x |Hs ψ(θ ′),
where ψ is simplified from ϕ by merging the nesting operator in ϕ
and is defined recursively by syntax,

ψ = φ|¬φ|φ1 ∧ φ2|φ1 ∨ φ2, (5)

where φ ∈ Ω is the atomic formula and Ω = {(f (s, x, i) ≤
γ ), F[a,b)(f (s, x, i) ≤ γ ),G[a,b)(f (s, x, i) ≤ γ ), F[a,b)G[c,d)(f (s, x, i) ≤
γ ),G F (f (s, x, i) ≤ γ ),¬φ}.
[a,b) [c,d)

3

The syntax in (5) is simpler and does not include temporal op-
erators. Lemma 2 indicates that we can use some atomic formulas
to construct pShTL formulas that have equivalent expressiveness
with respect to pShTL formulas defined by the syntax in (2).
This property allows us to omit the formulas that have complex
nesting operators. Before we introduce the theorem of this paper,
we define the concept of effective interval as follows.

Definition 3 (Effective Interval). Given a set of time series T and
an ShTL formula ϕ, if for all x ∈ T ⇒ x |Hs ϕ, then an effective
nterval is the shortest position interval, denoted as E(T , ϕ) =
[m, n], such that for any time series x ∈ T , the decision of x |Hs ϕ
s based on x[m, n−m+1], namely other series of x do not affect
he result of robustness calculation.

efinition 4 (Parallel Formulas). Given a set of time series T , two
hTL formulas ϕ1 and ϕ2 are parallel formulas with respect to T ,

denoted as ϕ1 ∥T ϕ2, if for any series in T , the conjunction set of
their effective intervals is empty.

The effective interval is defined over the same dimension.
When the formulas are applied to different dimensions of the
time series, they are always parallel formulas. Moreover, the
effective interval is related to the temporal parameters of the
formula, which captures the subsequence of time series that is
related to decision making. To guide the search for an optimal
formula, we define a relation denoted as ⪯s, called monotonic
order, for ShTL formulas as shown in Definition 5.

Definition 5 (Monotonic Order). Given two labeled time series
sets Υ + and Υ −, indicating the set of desirable and undesirable
behaviors, respectively, for two ShTL formulas ϕ1 and ϕ2, ϕ1 ⪯s ϕ2
if the following conditions hold: (1) for all x ∈ Υ +, x |Hs ϕ1 ⇒
x |Hs ϕ2; (2) for all x ∈ Υ −, x ⊭s ϕ1 ⇒ x ⊭s ϕ2.

emma 3. Given two labeled time series sets Υ + and Υ −, indicating
the set of time series that have desirable and undesirable behaviors,
respectively, for two ShTL formulas ϕ1, ϕ2, and ϕ1 ∥T ϕ2, the
ollowing statements hold: (1) if for all x ∈ Υ +, x |Hs ϕ1 and
x |Hs ϕ2, implies ϕ1 ⪯s ϕ1 ∧ ϕ2; (2) if for all x ∈ Υ −, x ⊭s ϕ1
nd x ⊭s ϕ2, implies ϕ1 ⪯s ϕ1 ∨ ϕ2.

Based on the definition of parallel formula and monotonic or-
er, the proof of Lemma 3 is trivial and omitted here. Accordingly,
e have the following theorems.

heorem 1. Given two labeled time series sets Υ + and Υ − as
defined in Problem 1, if there exists an ShTL formula ϕ defined
by syntax in Eq. (5), such that ∀x ∈ Υ +, x |Hs ϕ and ∀x ∈
Υ −, x |Hs ¬ϕ, then there exists a sequence of pShTL formula
ϕ1, ϕ2, . . . , ϕn with a proper parameter for each formula, such that
ϕ1 ⪯s ϕ2, . . . ,⪯s ϕn ⪯s ϕ, ϕ ⪯s ϕn and |ϕi| − |ϕi−1| = 1, where
n ≥ 1 and |ϕi| denotes the number of predicates in ϕi.

Remark 2. Theorem 1 indicates that if there exists a pShTL
formula can classify the time series, we can search for the formula
through the monotonic order chain, which can start from a simple
formula, then extends it based on monotonic order properties.
Moreover, the monotonic properties indicate the search direction
is to find the formula ϕ, which should: (1) be monotonic order
with respect to the previous formula; (2) decrease the number
of time series that belongs to Υ − but satisfies ϕ. The follow-
ing theorem shows that the searching can be started with any
formula.

Theorem 2. Given two labeled time series sets Υ + and Υ − as
defined in Problem 1, if there exists an ShTL formula ϕ, such that
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x ∈ Υ +, x |Hs ϕ and ∀x ∈ Υ −, x |Hs ¬ϕ, then ∀ϕ0 and ∀x ∈ Υ +,
x |Hs ϕ0, there exists a sequence of pShTL formula ϕ1, ϕ2, . . . , ϕn
with proper parameters, such that ϕ0 ⪯s ϕ1 ⪯s ϕ2, . . . ,⪯s ϕn ⪯s ϕ

and ϕ ⪯s ϕn, where n ≥ 1.

Corollary 1. Given two labeled time series sets Υ + and Υ − as
defined in Problem 1, if there exists an ShTL formula ϕ, such that
∀x ∈ Υ +, x |Hs ϕ and ∀x ∈ Υ −, x |Hs ¬ϕ, then ∀ϕ0 and ∀x ∈ Υ −,
x |Hs ¬ϕ0, there exists a sequence of pShTL formula ϕ1, ϕ2, . . . , ϕn
with proper parameters, such that ϕ0 ⪯s ϕ1 ⪯s ϕ2, . . . ,⪯s ϕn ⪯s ϕ

and ϕ ⪯s ϕn, where n ≥ 1.

5. Solutions

5.1. Shapelet generation

The ShTL defined in this paper is based on the shapelets. Since
every subsequence of the original time series can be a shapelet,
taking all the shapelets into consideration for logic inference
is unrealistic and unnecessary. Since shapelet generation is not
the main focus of this paper, we use the shapelet generation
algorithm in Lines et al. (2012) with small modification, such
that the algorithm is suitable for ShTL. In this paper, we also
use the best k shapelets to construct the pShTL formula for time
series classification. We denote the set of all subsequences of
length l to be Tl. The process of extracting the k best shapelets
is similar to the algorithm in Lines et al. (2012), but we have
made some changes since our concern is how to choose shapelets
that will classify the data well. First, we care about how the
distribution of the distances of the shapelets is different from
the distribution from the other classes. We have redefined the
procedures findDistance in Algorithm 2 in Lines et al. (2012).
Moreover, we calculate the time-varying distance for each time
series in Γ with respect to each chosen shapelet at the last step.
The distances are measured based on the metric defined in Eq. (1),
and the distance between a subsequence S of length l and all the
subsequences Tl is

di,S = min
R∈Ti,l

d(S, R)+ βd̄(S, Ti,l), (6)

where d̄(S, Ti,l) is the average distance between S and all the
subsequences in Ti,l, and β is a discount factor that balance the
critical case and the average. We introduce the second term
since pShTL not only captures the critical scenario but also cares
about the temporal properties of the distances. Moreover, in order
to speed up the computation process for distance, we use the
efficient distance computation method in Mueen et al. (2011).
Then all distances between a candidate shapelet S and all series
in Γ will be a set of n distance, i.e.,

DS = ⟨d1,S, d2,S, . . . , dn,S⟩. (7)

With DS , the quality of a shapelet is measured based on the
information gain, which sorts the distance set DS , then evaluates
the information gain on the class values for each possible split
value. If there are multiple classes in Γ , the F-statistic of a fixed-
effects ANOVA can be used and readers can refer Lines et al.
(2012) for more details of the shapelet generation method.

5.2. Logic inference algorithm

In this subsection, we introduce the logic inference algorithm
in Algorithm 1. The inputs of the Algorithm 1 are the class label
set C, two sets (D,U), where D denotes the set of distance series
come from the desirable series in Υ +, and U denotes the set
of distance series come from the undesirable series in Υ −. Line
1 initializes ϕ with a random formula that has the structure
D

4

chosen from Ω with random parameters. Then the algorithm
calculates the robustness of all the time series in (D,U) in Line
4. Based on the robustness, Line 5 checks whether the time
series are classified correctly with the current formula ϕD. D+
denotes the series in D are classified correctly, and U+ denotes
the series in U are classified correctly, respectively.D− and U− are
defined as versa. For example, if a time series in D has a positive
robustness degree, the series is assigned to set D+. If the series
has negative robustness, it will be assigned to set D−. We can
easily find that FA in Eq. (4) leads to D− and MD leads to U−. Line
7 checks all the shapelets. Line 8 extends the current formula to
get two new formulas ϕand(θ ) and ϕor (θ ) with parameter vector
θ (8k formulas in total for all, where the number 8 comes from
the 4 choices of atomic formulas in Ω and their negation, φi

j and
φi
j are the atomic formulas for shapelet i). Based on the results in

Lemma 2, all formulas can be constructed in this way. Line 9 and
Line 10 find the optimal parameters for the newly found formulas.
The optimization problems are defined in the following.

Algorithm 1 Logic Inference for Time Series Classification
Require: A set of distance series (D,U) and their class label set
C , parameter space Θ and length limit, M , for ϕD.
Ensure: The ShTL formula ϕD for the desirable class.
1: Initialize ϕD as an atomic pShTL formula defined in Ω with

random parameters. Set count = 0
2: repeat
3: quality← ∅, count ← count + 1,
4: ρi ← calculateRobust(ϕD,D,U),
5: D+,D−,U+,U+ ← assignLable(ρi, C),
6: for j = 1 to 8 do
7: for i = 1 to k do
8: ϕand(θ )← ϕD ∧ φ

i
j , ϕor (θ )← ϕD ∨ φ

i
j ,

9: q1, ϕand(θ∗)← optAnd(D+,D−,U−, ϕand(θ )),
10: q2, ϕor (θ∗)← optOr(D−,U+,U−, ϕor (θ )),
11: quality.add(< q1, ϕand(θ∗) >,< q2, ϕor (θ∗) >),
12: ϕD ← assessFormula(quality),
13: until count > M or q1/2 == 0.

Parameter Optimization: The goal of each optimization prob-
em is to find an optimal parameter vector θ∗ ∈ Θ , such that
ϕD ⪯s ϕand(θ∗), ϕD ⪯s ϕor (θ∗), and the value for q1/2 = |D−|+|U−|
is minimum. Therefore, the optimization problems in Line 8 and
Line 9 can be defined as,

θ∗ = argmin(|D−| + |U−|) (8)

Subject to:

∀x ∈ D+, x |Hs ϕand/or (θ∗); (9a)

∀x ∈ U+, x ⊭s ϕand/or (θ∗). (9b)

According to the semantics of ShTL, we can ignore the constraints
in (9a) during the optimization process in Line 10, and ignore the
constraints in (9b) during the optimization process in Line 9, since
they always hold. We solve the optimization problem defined in
Eq. (8) with an active learning algorithm called Gaussian process
adaptive confidence bound (GP-ACB) defined in Chen et al. (2020).
After the optimal parameters have been found, Line 11 saves the
formulas and the obtained values for q1, q2, then Line 12 chooses
the best formula among the formulas in quality and assigns it to
ϕD. Based on the Lemmas derived above, Algorithm 1 can lead to
the following results.

Theorem 3. Denote ϕi as the formula found in the ith iteration in

Line 12 in Algorithm 1, the following statements hold,
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(1) ϕ1 ⪯s ϕ2, . . . ,⪯s ϕM ;
(2) If there exists a pShTL formula ϕ∗ with proper parameters that

can classify the time series in (D,U) correctly, then with a large
enough M, we have ϕ∗ ⪯s ϕM .

Theorem 3 indicates that, if there exists a formula that can
lassify the time series, Algorithm 1 can find the formula by
earching along the monotonic order. Since the number of time
eries in U− and D− are non-increasing when searching along the
monotonic order, the miss-classification rate is non-increasing.
Note that Theorem 3 assumes that the distance series are clas-
sifiable with ShTL formula. But it may be not true in practice.
Therefore, in Algorithm 1, we set a length limit M to avoid
an indefinitely long formula when the distance series are not
classifiable with an ShTL formula.

Remark 3. Assume that the number of time series in Γ is
n and the average length of each time series is m̄, then the
size of the candidate shapelets is O(m̄2n). Checking the quality
of one candidate takes O(m̄n). Hence, the complexity of the
shapelet generation Algorithm is O(m̄3n2). Based on Theorem 1,
the increase of the length of ϕD in Algorithm 1 will decrease the
size of U− and D−. Then the average length of ϕD will be n/2.
Assume the size of sampling space for parameter θ is H , then the
complexity of Algorithm 1 is O(knH), where k is the number of
shapelets. In this paper, we assume the time series are univariate.
But the proposed algorithms can also deal with multidimensional
time series, in which case, we need to find shapelets for each
dimension. Moreover, we need to calculate the shapelet distance
for each dimension, which means the dimension of time series in
U and D will be increased. Assume the dimension of the signals
is N , then the complexity for the shapelet generation algorithm
and Algorithm 1 will be O(Nm̄3n2) and O(NknH), respectively.
Moreover, since GP-ACB is used to find the optimal formula,
the following theorem from Chen et al. (2020) is applicable to
construct the relation between robustness and uncertainties.

Theorem 4 (Theorem 1 in Chen et al. (2020)). If the optimal
robustness degree from solving (8) is κ̂ , and the robustness degree
without noise is κ , pick δ ∈ (0, 1) and set βt = 2 log(|Θ|πt/δ),
here

∑
t⩾1 π

−1
t = 1. If we sample the new parameter point θ with

he strategy proposed in Eqn. (12) in Chen et al. (2020), then after T
teps of sampling, we have P(|κ̂ − κ| < β

1/2
T σ (θ, T −1)) holds with

robability ⩾ 1− δ.

. Experiment evaluation

In this section, the proposed method is applied to the fault
iagnosis tasks for motor bearings. In order to accurately diag-
ose the faults, fault features should be contained in the sampled
ignals. Therefore, we assume that the fault will not disappear
ithin the sampled time interval if it has occurred. Moreover, we
lso assume we know the fault types among the signals, including
he number of fault types. The motor bearing signals provided by
ase Western Reserve University (Lou & Loparo, 2004) are used
or experimental validation. The vibration signals were collected
rom the drive end of the motor housing in the test rig. Each
earing was tested under four different loads (0, 1, 2, and 3 hp),
nd single point faults (dents) were introduced to the bearings
ith fault diameters of 0.007, 0.014, 0.021 and 0.028 inches
eparately. An accelerometer is placed near the drive end to
ollect the vibration signals. In this paper, the collected vibration
ata under 1797 rpm was used to design data samples and the
ampling frequency was 12 kHz. Three bearing conditions’ signals
re collected, including outer race fault, inner race fault and ball

ault. Each bearing condition consists of 160 samples, including

5

ifferent fault diameters and different loads, and each sample is
vibration signal containing 2000 data points.
To verify the practical effectiveness of the proposed method,

he fault diagnosis accuracies for the three type faults are eval-
ated. Since the signals were contaminated by noises, we first
ecompose the signals with wavelet package transform at level
and calculate the second spectral moment for one component
f the decomposed signals for interpretable fault diagnosis. Then,
e construct the labeled set Γ for training and testing purpose.

To construct the positive set (the signals should have positive
robustness degree with respect to an optimal formal) for the
inner fault, 80 pieces of inner fault signals are used, and the
negative set (the signals should have positive robustness degree
with respect to an optimal formal) comes from the other two
conditions’ signals (40 signals for each). The labeled sets for outer
race fault and rolling element fault are constructed accordingly.
To construct the testing set for the inner fault conditions, the
positive testing examples are the rest 80 pieces, and the nega-
tive test examples come from the other two bearing conditions
(40 pieces for each condition that un-used for training). Other
testing sets are constructed accordingly. Before we start the logic
inference procedure, shapelets are selected by running shapelet
generation algorithm, where we select 3 shapelets, and the length
range of the shapelet is from 10 to 30, respectively. The num-
ber of shapelets and their length ranges are set through some
experiments, in which we test many choices and check whether
the results are acceptable and the results show 3 shapelets with
lengths between 10 and 30 are enough. As shown in Fig. 1(d), the
generated shapelets’s lengths are 18, 23, and 30, respectively.

Table 1 shows the learned ShTL formals with Algorithm 1 and
their performance for fault diagnosis. The formula ϕI indicates
that the causes for inner race fault are that always between
0.03 and 0.05 s, the distance between the signals and shapelet
1 is smaller than or equal to 0.17 within every 0.015 s, and
eventually between 0.07 and 0.15 s, the distance between the
signals and shapelet 3 is always larger than 0.15 within 0.01 s.
Fig. 1(e,f) shows the visualization of formula ϕI , in which we can
see the formula can classify the red signals (positive set) and
greed signals (negative set) correctly. The light blue rectangle
region indicates the first term of the formula, where the red
signals should reach, and the blue region indicates the second
term of formula, where the red signals should avoid. Moreover,
the combination of ‘‘eventual’’ (F) and ‘‘always’’ (G) operators
allows the regions moving along the time axis, which illustrates
the expressiveness of the formula and equips the formula with
shift-invariance property. Moreover, the average variances of the
original signals, the shapelet distance for shapelet 1 and 3 are
0.0175, 0.0022, and 0.0017, respectively. Compared with the orig-
inal signals, the variance of the shapelet distances are smaller,
which means ShTL is more robust than STL to noise. The other
two formulas can be interpreted in the same way and is omitted
here due to page limit. The fault diagnosis accuracy shows the
proposed method can obtain good performance since the error
rate is smaller than 5%. Fig. 1(b,c) shows the spectrogram of
the signal that generates shapelet 1 and 3, respectively. The
spectrograms indicate that shapelet 1 reveals the high-frequency
component of the signal and shapelet 3 reveals the low-frequency
component of the signal. When the shapelet’s spectrogram is
distributed in a low-frequency region, the distance between the
shapelet and low-frequency signal will be small. In contrast, when
the shapelet’s spectrogram is distributed in the high-frequency
region, the distance between the shapelet and the high-frequency
signal will be small. Moreover, since a high-frequency signal
usually leads to large variance, it also has large shapelet distance
components. The visualization of formula ϕI in Fig. 1(e,f) indicates

the red signals have more high-frequency components, while the
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Table 1
Interpretation formulas for the real experimental vibration signals for inner race, outer race and rolling element faults.
Fault type Interpretation formula Robustness Accuracy rate

– – Training Testing Training Testing

Inner race (ϕI ) G[0.03,0.05](F[0,0.015](f (s1, x) ≤ 0.17)) ∧ F[0.07,0.15](G[0,0.01](¬(f (s3, x) ≤ 0.15))) 0.014 0.009 1.000 1.000
Outer race (ϕO) G[0.02,0.1](F[0,0.03](f (s1, x) ≤ 0.12)) 0.004 0.021 1.000 1.000
Ball (ϕB) (F[0.06,0.94](¬(f (s1, x) ≤ 0.26)) ∧ G[0.097,0.13](¬(f (s2, x) ≤ 0.13)) 0.005 −0.018 1.000 0.975
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Fig. 1. (a) Some selected time series among the testing set; (b) The spectrogram
f the signal that generates shapelet 1; (c) The spectrogram of the signal that
enerates shapelet 3; (d) the selected 3 shapelets with different colors; (e) The
hapelet distance between shapelet 1 and the signals in inner fault’s testing set
nd the formula (ϕI first term) defined region; (f) The shapelet distance between

shapelet 3 and the signals in the inner fault’s testing set and the formula (ϕI
second term) defined region. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

green signals have more low-frequency components. Based on
the fault mechanism of rolling-element bearing in Chen et al.
(2022), the inner race fault has a larger ballpass frequency than
other conditions, thus the inner race fault signals have more
6

high-frequency components. Therefore, the interpretation of the
formula is in line with the fault mechanism.

An ShTL formula maps a set of observed phenomena and their
temporal relationships to a fault event. The phenomena reveal
physical processes among the systems, which can be understood
by human users with some background knowledge, thus the
formula is interpretable. When we monitor the condition for
a safety-critical system, for example, the nuclear power plant,
interpretable fault diagnosis results provided by ShTL formulas
are critically important for the users. If the results are not in-
terpretable, the users will not trust the decision made by the
fault diagnosis algorithm or it will take a long time for the users
to trust the decision and take necessary preventive actions. The
delay caused by trust issues may lead to heavy losses. Moreover,
the shapelet reveals which behaviors of the system affect the fault
diagnosis decision, thus it provides a more detailed explanation
for the decision process and helps the users take a quick action
to control the fault. For example, since shapelet 1, which has
high-frequency property, affects the fault diagnosis decision in
the bearing fault diagnosis experiment, we can add lubricating
oil to reduce the high-frequency component to control the fault.

Table 2 compares the proposed method with methods in Chen
et al. (2020) and Lines et al. (2012), which shows the average
faults diagnosis results for the experimental data among 10 tails.
In Lines et al. (2012), the shapelets are extracted and then support
vector machine (SVM) is used to classify the faults and in Chen
et al. (2020) the frequency temporal logic (FTL) is used to describe
the faults, where the formulas are learned with deep neural
network. The results show the our method has comparable fault
diagnosis accuracy, but has worse efficiency. However, the pro-
posed method has better interpretation abilities, since classifying
the faults with SVM in Lines et al. (2012) cannot reveal how the
shapelets affect the decision process, and without using shapelet
in Chen et al. (2020), the users cannot know which component of
the signals are related to fault diagnosis results.

Table 3 shows the number of signals in D+, D−, U+ and U−

ith different formula lengths. The results show that when the
ormula length increases, the number of signals in D+ and U+

ill increase, while the number of signals in D− and U− will
ecrease, indicating that more signals will be classified correctly
ith the increase of formula length. This result confirms that
lgorithm 1 increases the formula length along the partial order
irection. Moreover, Fig. 1(e,f) show the effective intervals of the
wo sub-formulas of ϕI . It is clear that the two effective intervals
o not have any intersection region along the time axis. Based
n the definition of parallel formulas in Definition 4, the two
ub-formulas are parallel.
We also investigate the noisy resistance properties of the ShTL

ormula in bearing fault diagnosis with simulated signals. In the
irst simulation setting, we investigate the performance of the
roposed method with different levels of noise by changing the
ignal-to-noise ratio (SNR). The training set, and testing set are
onstructed in the same way as the first experiment, but the
ignals are collected with the fault model defined in Chen et al.
2022). In this experiment, we only change the SNR and fixed
he rotational speed. The average error rates of 10 trails are
hown in Table 4. The results show that the proposed method
an obtain good performance even though the SNR is −15 dB,
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Table 2
Diagnosis accuracies of different methods.
Fault type Accuracy/Time (s)

– ShTL Shapelet (Lines et al., 2012) FTL (Chen et al., 2020)

Inner race 1.000/1043 1.000/866 1.000/415
Outer race 1.000/1003 1.000/875 0.950/428
Ball 0.975/1013 1.000/879 1.000/435
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Table 3
Illustration of exploration via partial order direction.
Fault type # D+ # D− # U+ # U−

Formula length 1/2 1/2 1/2 1/2
Inner race (ϕI ) 65/80 15/0 53/80 27/0
Outer race (ϕO) 80/– 0/– 80/– 0/–
Ball (ϕB) 47/78 33/2 67/80 13/0

Table 4
Results for different signal to noise ratio.
SNR (dB) Error rate (%)

−20 −15 −10 0 10

Inner race (ϕI ) 11.50 3.75 0.00 0.00 0.00
Outer race (ϕO) 12.25 1.50 0.00 0.00 0.00
Ball (ϕB) 12.00 4.50 0.00 0.00 0.00

indicating the method is robust to noise. The reason for this
is that the shapelet distance is the average distance between
the shapelet and the signal, which acts as a filter applied to
the vibration signals. Table 5 shows the formulas obtained with
SNR = −10 db. We can see that the structure of the interpretation
s the same with formulas in Table 1, but they have different
arameters for the formulas. This is reasonable since only the
tructure of the formula shows the observed physical phenomena
nd their temporal relationship under the fault condition. These
henomena and relationships are related to the fault mechanism,
hich should be unchanged.

. Conclusions

This paper introduces a formal language that classifies time
eries for fault diagnose. An algorithm has been developed to infer
he logic formula, which can be used to describe the properties
f the shapelets and diagnosis the faults with performance guar-
ntees. Experiments on rolling element bearing datasets indicate
he proposed method has comparable fault diagnosis accuracy
ut has better performance in fault interpretation. However, the
roposed method takes more time to find the classifier. Therefore,
urther studies should address the computational complexity of
he proposed method and apply the method to industrial fields,
uch as real-time motion classification and electroencephalogram
EEG) classification.

ppendix

.1. Proof of Lemma 1

roof. (1) We have ϕ3 = F[0,c)ϕ1 = F[0,c)F[0,a)ϕ. ϕ3 requires that
ϕ is eventually true within [0, a + c). Since ϕ1 = F[0,a′)ϕ, which
requires ϕ is eventually true within [0, a′). Here we use a′ for
ϕ1 to differ the parameters notations. The parameter for ϕ1 is a′
and the parameters for ϕ3 are a and b. For every valuation of the
parameters for ϕ3, we can always find a valuation for ϕ1 that is
equal to a+ c , such that Le(ϕ1) = Le(ϕ3). Condition (1) holds.

(2) We have ϕ3 = G[0,c)ϕ2 = G[0,c)G[0,b)ϕ. ϕ3 requires that
ϕ is always true within [0, b + c). Since ϕ2 = G[0,b′)ϕ, which

′ ′
equires ϕ is always true within [0, b ). The parameter for ϕ2 is b

7

nd the parameters for ϕ3 are c and b. For every valuation of the
parameters for ϕ3, there exists a valuation for ϕ2 that is equal to
b+ c , such that Le(ϕ2) = Le(ϕ3). Condition (2) holds.

(3) We have ϕ3 = G[0,c)ϕ1 = G[0,c)F[0,a)ϕ. ϕ3 requires that
ϕ is eventually true within [t, t + a) for any t ∈ [0, c). Since
ϕ1 = F[0,a′)ϕ, which requires ϕ is eventually true within [0, a′).
For any time series that satisfies ϕ3, it must satisfy ϕ1 at some
time starting within [0, c), namely Le(ϕ3) ⊆ Le(ϕ1). Condition (3)
holds.

(4) We have ϕ3 = F[0,c)ϕ2 = F[0,c)G[0,b)ϕ. ϕ3 requires that ϕ is
always true within [t, t+b) for any t ∈ [0, c). Since ϕ2 = G[0,b′)ϕ,
which requires ϕ is always true within [0, b′). For any time series
that satisfies ϕ1, it must satisfy ϕ3 at some time starting within
[0, c), namely Le(ϕ2) ⊆ Le(ϕ3). Condition (4) holds. □

A.2. Proof of Lemma 2

Proof. Based on the syntax of ShTL and the results in Lemma 1,
the following statements hold: (1) if x ∈ Le(FFϕ), then x ∈
Le(Fϕ); (2) if x ∈ Le(GGϕ), then x ∈ Le(Gϕ); (3) if x ∈ Le(GFϕ),
hen x ∈ Le(Fϕ); (4) if x ∈ Le(FGFGϕ), then x ∈ Le(FGϕ); (5) if
∈ Le(GFGFϕ), then x ∈ Le(GFϕ).
Here we omit the parameters for operators F ,G for simplicity.

herefore, for all x that satisfies an ShTL formula, it can satisfy a
ormula defined by the following syntax,

= µ|¬ϕ|Fµ|Gµ|FGµ|GFµ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2, (10)

here µ is the predicate in Eq. (2), which is φ0 in Ω . Therefore,
emma 2 has been proven. □

.3. Proof of Theorem 1

roof. When ϕ has only one predicate, the theorem is obviously
rue. When ϕ has more than one predicate, ϕ can be written as:
i) ϕ = ϕn = ϕ1 ∧ ϕn−1 or (ii) ϕ = ϕn = ϕ1 ∨ ϕn−1, where ϕ1
as only one predicate. Assume D+i is the set for desirable series
hat have been classified correctly with ϕi, and D−i is the set for
esirable series that have been classified incorrectly with ϕi. U+i ,
−

i are for the undesirable series.
For case (i), If ϕn−1 classifies the series correctly, obviously

n−1 ⪯s ϕn, else ϕ1 decreases the number of time series in U−n−1.
ince for any time series x, it must satisfy ϕn−1 or do not satisfy
n−1. Therefore, there exists ϕ1, such that ¬ϕ1 ∥U−n−1 ¬ϕn−1,
here ¬ϕ1 is the negation of ϕ1, and ∀x ∈ D+n−1 ⇒ x |Hs

1 ∧ ϕn−1, therefore, ϕn−1 ⪯s ϕn.
For case (ii), If ϕn−1 classifies the series correctly, obviously

n−1 ⪯s ϕn, else ϕ1 decrease the number of time series in D−n−1.
ince for any time series x, it must satisfy ϕn−1 or not satisfy
n−1. Therefore, there exists ϕ1, such that ϕ1 ∥D−n−1 ϕ2n−1, and
x ∈ U+n−1 ⇒ x |Hs ϕ1 ∨ ϕn−1, therefore, ϕn−1 ⪯s ϕn.
Since the time series classified by ϕ1 and ϕn−1 have different

ffective interval, there exists ϕn−2 ⪯s ϕn−1 based on the above
derivations. Therefore, there exists a sequence of pShTL formulas,
such that ϕ1 ⪯s ϕ2 ⪯s · · · ⪯s ϕn ⪯s ϕ. When n is large enough,
we have D−n = ∅ and U−n = ∅, i.e., ϕ ⪯s ϕn. Moreover, the number
of predicates satisfies the following property,

|ϕn| − |ϕi| = n− i, (11)
where n ≥ i ≥ 1. Theorem 1 has been proven. □
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Table 5
Interpretation formulas for the simulated signals with SNR = −10 db.
Fault type Interpretation formula

Inner race G[0.03,0.07](F[0,0.01](f (s2, x) ≤ 0.21)) ∧ F[0.09,0.15](G[0,0.01](¬(f (s3, x) ≤ 0.16)))
Outer race G[0.04,0.12](F[0,0.04](f (s2, x) ≤ 0.16))
Ball (F[0.02,0.05](¬(f (s1, x) ≤ 0.16)) ∧ G[0.07,0.15](¬(f (s2, x) ≤ 0.12))
A.4. Proof of Theorem 2

Proof. Based on the assumption, we have ∀x ∈ Υ + ⇒ x |Hs ϕ0.
enote U+ ⊆ Υ −, U− ⊆ Υ −, where ∀x ∈ U+ ⇒ x |Hs ¬ϕ0 and
x ∈ U− ⇒ x |Hs ϕ0. To prove the theorem, we first prove that
ne of the following statements,

(1) there exists a pShTL formula ϕand with proper parameters
that can classify time series in D+ and U−, such that ϕ0∧ϕand
can classify Υ + and Υ −;

(2) there exists a pShTL formula ϕor with proper parameters that
can classify time series in D− and U−, such that ϕ0 ∨ ϕand
can classify Υ + and Υ −.

ince the time series in Υ + and Υ − are classifiable with an
hTL formula, the time series in D+ and U−, and D− and U− are
lassifiable too. Therefore, statements (1) and (2) hold. Based on
heorem 1, there exists a sequence of pShTL formula ϕa

1 , ϕ
a
2 , · · · ,

a
n with proper parameters, such that ϕa

1 ⪯s ϕ
a
2, . . . ,⪯s ϕ

a
n ⪯s ϕand

or statement (1). Similarly, there exists a sequence of pShTL
ormula ϕo

1 , ϕ
o
2 , · · · , ϕ

o
n with proper parameters, such that ϕo

1 ⪯s
o
2, . . . ,⪯s ϕ

o
n ⪯s ϕor for statement (2). Denote ϕi = ϕa

i ∧ ϕ0 or
i = ϕ

o
i ∧ϕ0 for i = 1, 2, . . . , n. When n is large enough, we have

−
n = ∅ and U−n = ∅, i.e., ϕ ⪯s ϕ

a/o
n , then Theorem 2 has been

roven. □

.5. Proof of Theorem 3

roof. Proof for item (1): Based on the definition of monotonic
rder and the constraints in Eqs. (9a) and (9b), statement (1)
olds.
Proof for item (2): When we solve the optimization problem

n Line 8 of Algorithm 1, we have ∀x ∈ D+ ⇒ x |H ϕj. Since
he time series in U− and D− are classifiable, ϕj will decrease
he value for q1. Based on Theorem 2, if we ignore D−, Algorithm
will eventually decrease U− to zero. Similarly, when we solve

he optimization problem in Line 9 of Algorithm 1, we have
x ∈ U+ ⇒ x |H ¬ϕj. Since the time series in U− and D− are
lassifiable, ϕj will decrease the value for q2. Based on Corollary 1,
f we ignore U−, the Algorithm 1 will eventually decrease D− to
ero. Theorem 3 has been proven. □
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