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This paper studies a novel time–frequency representation method—adaptive non-parametric short-time
Fourier transform (ANSTFT), together with its application to the echolocation signal analysis. By rotating
the signal in the analysis window, the local instantaneous frequency has been reset to parallel to the time
axis. Then the high frequency and time resolution have been achieved with the mono-frequency signal
simultaneously. To find the optimal rotating angle of the local signal, an iterative approximation
algorithm has been utilized, which makes the ANSTFT a non-parametric data driving method and have
the better generalization ability than the conventional adaptive STFT. Moreover, several numerical
examples are presented to illustrate the aforementioned characteristics and the application of ANSTFT
to echolocation signal analysis demonstrates its validity.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Echolocation is an active sensory system that tightly couples
signal production with echoes reception. Using differences
between pulse and echo [1], echolocators collect information and
form an acoustic image of the environment. Bats are one of the
echolocators that detect the presence of a target or to discriminate
differences in target distance with echolocation. The big brown
bats (Eptesicus fuscus) find prey and guide flight in darkness with
sonar. Their sonar broadcasts are frequency modulation (FM),
sweeping downward in several harmonics [2]. Based on the sur-
rounding conditions, these bats change the initial high frequencies,
the interpulse intervals and terminating low frequencies of FM
sweeps, the duration, and the amplitude of broadcasts. Objects at
different distances will produce echoes at different delays. Bats fig-
ure out the distance to objects from the delay of echoes that arrive
during the interval that follows each broadcast.

When research on the echolocation behavior in animals, time–
frequency analysis (TFA) is a powerful tool to analyze the evolu-
tionary history, phylogeny, classification of echolocators [3], etc.
Because the time and frequency resolution play a key role in the
echolocation signal analysis, getting a time–frequency distribution
with high time and frequency resolution is of great significance.
TFA can identify the signal frequency components and reveal their
time variant characteristics. It is a powerful tool to extract features
from the time varying signal [4]. To achieve a good time–frequency
representation result, many TFA methods have been proposed in
the last century. Among these methods, the short-time Fourier
transform (STFT) [5] could be the most widely used method for
studying non-stationary signals. STFT reveals the overall frequency
contents and the concept behind it is simple and effective. In STFT,
a sliding window is used and it applies a stationary signal spec-
trum analysis on each signal frame. However, restricted by the Hei-
senberg uncertainty principle [6], the time resolution Dt and the
frequency resolution Df satisfy the inequality DtDf P 1/4p. Since
the size of Heisenberg box, which can be defined as DtDf, has a
constant minimal value, the trade-off between time resolution
and frequency resolution is an inevitable issue. Because the win-
dow width is fixed in STFT, the STFT cannot meet the demand of
multi-resolution analysis in many application fields. To solve this
problem, the wavelet transform (WT) is proposed with a variable
window [7]. However, since the WT derives from STFT, it is also
restricted by the Heisenberg uncertainty principle and the variable
window is not self-adaptive. Another popular choice is the Wigner-
Ville distribution (WVD) [8] which is a kind of quadratic transform
achieving a high accurate estimation for mono-frequency signals.
However, when the signal is nonlinear, or multicomponent, cross
terms will arise and result in misinterpretation of the signal.

To achieve a high resolution TFR, scholars have proposed many
enhanced approaches that based on the classical TFA methods. By
adjusting the analysis window width according to the local station-
ary length, the adaptive short-time Fourier transform (ASTFT) has
been studied in [9]. By operating the signal component in time
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frequency plane with a polynomial function instead of the linear
chirp kernel, the polynomial Chirplet transform (PCT) produces a
time–frequency distribution with high frequency resolution in
[10]. The Gabor–Wigner transform, which combine the Gabor
transform and the Wigner distribution, has fewer cross-term prob-
lems [11], etc. It is easy to find that most of them are parametric
approaches in the view of their self-adaptive ways. Even though
the parametric approaches can improve the time–frequency repre-
sentation in many cases, some drawbacks cannot be omitted when
an accurate estimation is needed. It is well known that the param-
eters identification process will introduce estimation error and
increase the computational complexity. What is more, as the
parameter identification methods typically designed for a certain
type of signal, these methods are usually lack of generalization
ability and only effective in some cases or for some certain signals.
For example, the polynomial Chirplet transform [12] is merely
effective for slowly varying signal because the polynomial approx-
imation method may lead to Runge phenomenon. When the fre-
quency varies fast, the polynomial function used in the PCT
cannot approximate the IF well and the peak detection algorithm
fails to work well either. Besides, most of these methods are ‘‘win-
dow’’ based so that they are restricted by the Heisenberg uncer-
tainty principle and cannot achieve the high resolution for all
signals.

To develop a TFA method with a good generalization ability and
achieve high resolution TFR for all signals, the adaptive non-para-
metric approach seems to be a good choice for its inherent data-
driven characteristic. Because there is no need to construct any
basis to match the signal components, the generalization ability
can be guaranteed. Among these non-parametric methods, the
empirical mode decomposition [13] and local mean decomposition
[14] are well known to researchers during recent years and have
been applied to data analysis in various fields [15]. Taking the
data-driven and STFT’s characteristic into consideration, the
authors of this article developed an adaptive non-parametric
method to improve the STFT for better time–frequency representa-
tion. The layout of this paper is as follows: a deep analysis of the
STFT, the scheme of the ANSTFT and the iterative approximation
algorithm are presented in Section 2. Some validations including
multicomponent chirped signal analysis and nonlinear chirped sig-
nal analysis are discussed in Section 3 and the application of the
ANSTFT to echolocation signal is shown in Section 4. Conclusions
are given in Section 5.

2. Theory of algorithm

2.1. The relationship between frequency changing rate and window
width

Consider a signal x(t) and a real, even window x(t), whose Fou-
rier transforms are X(f) and W(f) respectively. The STFT of signal
x(t) is defined as:

STFTðt; f Þ ¼
Z þ1

�1
xðsÞxðdÞðs� tÞe�j2pfs ds ð1Þ

where x(r)(s � t) is the normalized real window, usually taken as
the Gaussian function defined by:

xðdÞðtÞ ¼
1ffiffiffiffiffiffiffi
2p
p

d
exp �1

2
t
d

� �2
 !

ð2Þ

The energy density spectrum at time t is therefore:

EDSðt; f Þ ¼ jSTFTðt:f Þ2j ¼
Z þ1

�1
xðsÞxðrÞðs� tÞe�j2pfs ds

����
����
2

ð3Þ
Eq. (3) shows that for each different time, we get a different spec-
trum and the totality of these spectra is the time–frequency distri-
bution, EDS. Then the characteristic function of the EDS can be
obtained:

CEDSðh; sÞ ¼
ZZ
jSTFTðt; f Þj2ejhtþj2pfs dtdf ¼ Axðh; sÞAxð�h; sÞ ð4Þ

where

Aðh; sÞ ¼
Z

x� t � 1
2
s

� �
x t þ 1

2
s

� �
ejht dt ð5Þ

is the ambiguity function of the signal. Here we define the time and
frequency marginal as follows:

pðtÞ ¼
Z
jSTFTðt; f Þ2jdf ¼

Z
A2

x ðsÞA
2
xðs� tÞds ð6Þ

Pðf Þ ¼
Z

B2
x ðfÞB

2
xðf � fÞdf ð7Þ

where x(t) = Ax(t)eju(t), xrðtÞ ¼ AxðtÞejuwðtÞ and X(f) = B(f)ej£(f),
Wðf Þ ¼ Bxðf Þej£xðf Þ respectively. Then the local Frequency can be
estimated by:

h f it ¼
1

PðtÞ

Z
f jSTFTðt; f Þj2df

¼ 1
PðtÞ

Z
A2

x ðsÞA
2
xðs� tÞ u0xðsÞ þu0xðs� tÞ

� �
ds ð8Þ

Cohen has showed that (8) can be rewritten as [16]:

h f it ¼
X1
n¼0

MnðtÞ
n!

uðnþ1Þ
x ðtÞ ð9Þ

where

MnðtÞ ¼
R

A2
x ðsþ tÞA2

xðsÞsndsR
A2

x ðsþ tÞA2
xðsÞds

ð10Þ

Then writing out the first few terms for hfit we have:

h f it � u0x þM1ðtÞu00x þ
1
2

M2ðtÞu000x ð11Þ

And the instantaneous bandwidth can be rewritten as:

B2
t ¼ r2

f jt �
1

4T2
t

þ T2
t u
002
x ðtÞ ð12Þ

where T2
t ¼ M2 �M2

1.
Eq. (12) shows the relationship between instantaneous band-

width, frequency changing rate and the width of the window.
When the chirped rate is high, a narrow window is preferred.

As mentioned above, the major shortage of STFT is the mis-
match between the signal and the window width for its fixed win-
dow size. The time–frequency window of Gaussian function is
shown in Fig. 1

Fig. 1 shows that the wider window we choose, the higher fre-
quency resolution we get. Eq. (12) shows that the optimal window
can be described by:

Optimal width of window � 1
2ju00xðtÞj

ð13Þ

Based on Eqs. (13) and (12), Various adaptive STFT are proposed
to get a better TFR. Soo-Chang Pei and Shih-Gu Huang, for instance,
had proposed an adaptive window width based on the estimation
of the chirp rate [8]. However, frequency resolution in these meth-
ods mainly depends on the analytical signal itself, namely, when
the chirp rate of the signal is high, the window width should be
narrow, then the frequency resolution of the adaptive STFT will
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be low. This manner of the self-adaptive cannot optimize the time
and frequency resolution simultaneously, and this feature will
greatly limit the performance of these adaptive STFT.

Eq. (12) indicates that when the chirp rate is zero, the window
function of STFT will reach the widest optimal width and achieve
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Fig. 3. Multicomponent chirped signal with length of 1024 and
the highest frequency resolution. However, most signals of interest
are not a chirp signal or the chirp rate is not zero.

2.2. Adaptive non-parametric short-time Fourier transform

As discussed above, the conventional adaptive STFT methods
have many drawbacks when applying them to practical application
due to the signal’s feature. To tackle these problems, we rotate the
IF of the signal in the time–frequency domain. The controversial
concept of IF was first put forward by Carson and Fry in [17], they
used it to analysis the mono-component frequency-modulated
(FM) signal and then it was further developed by Van der Pol
[18] and Gabor [19]. Ville [20] unified their theory and proposed
the widely acknowledged definition of the IF in 1948. According
to the definition of Ville, for an arbitrary time series s(t), we can
always have its Hilbert transform ŝðtÞ as:

ŝðtÞ ¼ 1
p

A
Z þ1

�1

s0ðtÞ
t � t0

dt0 ð14Þ

where A indicates the Cauchy principal value. For all signal of class
Lp, their analytical signal z(t) can be expressed as:

zðtÞ ¼ sðtÞ þ ĵsðtÞ ¼ aðtÞ expðjuðtÞÞ ð15Þ

where

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðtÞ þ ŝ2ðtÞ

q
; uðtÞ ¼ arctan

ŝðtÞ
sðtÞ

� 	
ð16Þ

Then the IF can be defined as:

finstðtÞ ¼
1

2p
duðtÞ

dt
ð17Þ

Then the adaptive non-parametric short-time Fourier transform
can be defined as:

ANSTFTðt; f Þ ¼
Z þ1

�1
zðsÞe�j/ða;t;sÞxðdÞðs� tÞe�j2pfs ds ð18Þ

where /ða; t; sÞ ¼ p tan a � fs
2T s

2 � 2p tan a � fs
2T st is an IF rotating

operator that rotates the IF around point (t, f) on the time–
frequency plane and z(t) is the analytical signal, fs is the sampling
frequency and T is the time duration of the signal. The first term
of /(a, t, s) rotates all the signal on the time–frequency plane with
an angle of a, the second term of /(a, t, s) shifts all the signal com-
ponents along the frequency axis for tan a � fs

2T t Hz and relocates the
signal of point (t, f) to it original position.

/(a, t, s) comes from the optimization issue defined by:
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sampling frequency of 200 Hz: (a) waveform; (b) true IFs.
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max
a

1
2ju00xðtÞj

subject to
hf it ¼ 1

PðtÞ
R

f jANSTFTðt; f Þj2df ¼
X1
n¼0

MnðtÞ
n!

uðnþ1Þ
x ðtÞ

a 2 � 1
2 p;

1
2 p
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8><
>:

ð19Þ

where 1
2ju00x ðtÞj

is the optimal window width defined by (13) and the

window function in Eq. (18) has a fixed window width.
Eq. (18) shows that the ANSTFT is a kind of enhanced Chirplet

transform which is a generalized time–frequency representation
method introduced by Mann and Haykin [21]. As for Chirplet
transform, Grossman and Paul made some study about the affine
coherent states [22], Berthon applied it to radar detection [23],
Mann and Haykin showed the ‘‘physical considerations’’ and
coined the term Chirplet [24], Barniuk and Jones introduced a
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Fig. 4. STFT map by searching the optimal rotating angle a with the same searching step
with a Gaussian window by length of 512.
Wigner distribution interpretation [25] and Chen et al. [26] pre-
sented the Chirplet WVD. On detection the modulated sinusoidal
components, Dion et al. introduced the techniques based on Kurto-
sis and extended Kalman filters [27]. The classical Chirplet trans-
form is a kind of time–frequency method particularly designed
for the analysis of chirped signals with linear IF law. When the IF
trajectory of the signal under analysis exhibits a nonlinear law,
the Chirplet transform will be inefficient. Eq. (18) has overcome
the shortage of classical Chirplet transforms because no prior
knowledge of the signal is needed and regardless the characteristic
of the signal.

The scheme of the ANSTFT can be illustrated by Fig. 2. In Fig. 2, the
window slides to time t0 and cut a piece of the analytical signal, at
the point (t0, f0), the IF rotating operator rotates the IF by a series
of angles which shown by the black dashed line. Among these angles,
there is a position, shown by the green dashed line, that make the
analytical signal in the window be closed to mono-frequency signal
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which can achieve a higher energy concentration and high fre-
quency resolution. To elaborate the process of the ANSTFT, a linear
frequency modulation (LFM) signal is considered, i.e.

sðtÞ ¼ sinð2pj0t þ pct2Þ ð20Þ

The IF law of the signal s(t) is @(t) = j0 + ct, where j0 is the
initial frequency. When applying the ANSTFT (12) will get the
rotating angle, and /(a, t, s) will rotate the signal in the window
with an angle of arctan(�c) at any time.

Obviously, how to solve the optimization issue defined by (19)
efficiently is a problem must be addressed. Its a computationally
inefficient to solve it directly. To overcome this difficulty, several
methods have been developed and will be discussed in the next
subsection. A comparison of these algorithms will be seen at the
end of next subsection.

2.3. Iterative approximation algorithm

As stated above, the solving of Eq. (19) is the key issue of the
ANSTFT algorithm. While solving the optimization problem
directly will encounter difficulty, a transformation is needed and
this part deals with the optimization process.
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As Bt, which defined by Eq. (12), is a complex function, optimize
the Bt directly is a computational and hard problem. Fortunately,
we have:

jANSTFTðt0; f0Þj ¼ j
Z þ1

�1
zðsÞe�j/ða;t0 ;sÞxðdÞðs� t0Þe�j2pf0sdsj

¼ j
Z þ1

�1
aðsÞejðuðsÞ�/ða;t0 ;sÞÞxðdÞðs� t0Þe�j2pf0sdsj

6 j
Z þ1

�1
aðsÞej2pf0sxðdÞðs� t0Þe�j2pf0sdsj ¼ j

Z þ1

�1
aðsÞxðdÞðs� t0Þdsj

ð21Þ

Eq. (21) indicates that when /(a, t, s)0 � u(s)0 is a constant value
2pf0, the amplitude of the ANSTFT at point the (t0, f0) reaches its
maximum. In this case, the original signal is transformed into a
mono-frequency signal around point (t0, f0). According to Eqs.
(12) and (13), the optimal window width will reach its maximum
as the chirp rate is zero. In other words, when Bt reaches its optimal
value with an optimal rotating angle a, the same rotating angle will
make the ANSTFT reach its maximum value. Thus we just need to
find the rotating angle that makes the amplitude of ANSTFT reach
its local maximum.

In many application fields, when the signal consists of linear or
approximately linear Chirplet components, most of the optimal a
will be the same. In these cases, if we apply an algorithm to get
the optimal rotating angle on some points, there will be no need
to apply the algorithm to every point in the time series signals as
the rest of points share the same optimal rotating angles. This char-
acteristic of the linear Chirplet will reduce the computation greatly
and avoid repeating the same calculation process. To simplify this
process when facing these kinds of signals, the simple method to
approach the optimal value can be defined as follows:
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Max
a

ANSTFTðt; f Þ

subject to
/ða; t;sÞ ¼ p tana � fs

2T t2 � 2p tana � fs
2T st

ANSTFTðt; f Þ ¼
Rþ1
�1 zðsÞe�j/ða;t;sÞxðdÞðs� tÞe�2pfsds

a ¼ np
2N n ¼ �ðN � 1Þ;�ðN� 2Þ; . . . ;�1;0;1; . . . ;N � 1

8><
>:

ð22Þ

where N is the number of the steps for the search process, and p/2N
is the step length.

Obviously, the searching method with the same search step
length shown above will calculate the STFT 2N � 1 times first,
and then find the best result among the 2N � 1 STFT maps. When
the signal is simple, i.e. The linear Chirplet signal, a small N will be
enough to achieve a good approximation of the accurate value.
However, when the signal is complex, i.e. nonlinear Chirplet signal,
the value of N should be very large if an accurate approximation is
required, and the computation will increase greatly. Then the fast
searching method is needed. This paper uses an iterative approxi-
mation algorithm to approximate the optimal value efficiently.

Since the optimization problem calls for an explicit function,
which is very difficult to get from Eq. (19), so the simplification
process for Eq. (19) is required. Then the iterative approximation
algorithm for every individual time can be defined as follow which
is a numerical approximation approach.

fijðt;aÞ ¼max ½ANSTFTaðt; f Þ� ð23Þ

aiþ1;2 ¼
ai;jf 4

i;1 þ ai;2f 4
i;2 þ ai;3f 4

i;3

ðf 4
i;1 þ f 4

i;2 þ f 4
i;3Þ

ð24Þ

aiþ1;1 ¼ aiþ1;2 �Kig ð25Þ
aiþ1;3 ¼ aiþ1;2 þKig ð26Þ
Termination condition : jfiþ1;2 � fi;2j 6 D ð27Þ
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where g is a constant value that indicates the step size; K is a con-
stant parameter here we set it as 0.8 which is a empirical parameter
that can obtain a better performance. The process of the iterative
can be expressed as follows:

Initialization:
Initialize the a1,1, a1,2, a1,3, and the termination condition D
Start iteration:
While |fi+1 � fi| > D
1) Calculating the STFT for ai,1, ai,2, ai,3,;
2) Finding the peak of STFT for fi,1, fi,2, fi,3,;
3) Getting the parameter of ai,1, ai,2, ai,3, with Legendre

polynomials approximation;
4) Calculating the ai+1,2 through Eq. (24)
5) Calculating the ai+1,1, ai+1,2, ai+1,3 through

ai+1,1 = ai+1,2 �Kjg, ai+1,3 = ai+1,2 + Kjg and ai+1,2 comes from
Eqs. (25) and (26).

6) Calculating the STFT for ai+1,1, ai+1,2, ai+1,3 through (18)
7) Finding the peak of STFT for fi+1,1, fi+1,2, fi+1,3,;
8) Calculating |fi+1,2 � fi,2|
END
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Fig. 9. The relationship between rotating angle (rad) and maximum amplitude at
time 2 s during the iteration process.
3. Numerical test

To demonstrate the effectiveness of the proposed algorithm in
the preceding section, some numerical signals are analyzed and
several experiments are conducted to compare the performance
of the ANSTFT, STFT and other popular TFR methods, i.e., the
WVD and PWVD.

3.1. Multicomponent chirped signal analysis

The multicomponent chirped signal is given by:

sðtÞ ¼ sinð20pt þ 5pt2Þ þ sinð100ptÞ þ sinð�5pt2 þ 180ptÞ ð28Þ

The signal is sampled at a sampling frequency of 200 Hz and the
length of the signal is 1024. The IF trajectory of the signal consists of
three components, namely f1(t) = 10 + 5t, f2(t) = 50, f3(t) = 90 � 5t.
The waveform and IFs trajectory of the signal is shown in Fig. 3.

The multicomponent signal shown in Eq. (28) is a linear chirped
signal. Here we search the optimal rotating angle a with the same
searching step length defined by Eq. (24).

Fig. 4 shows the search process of the optimized a of ANSTFT
with a fixed step length of p/12. Fig. 4(a) rotates the signal by an
angle of �p/6, Fig. 4(b) is �p/12, Fig. 4(c) is zero, Fig. 4(d) is
p/12 and p/6 for Fig. 4(e). The window length of the Gaussian func-
tion is 512 for all. According to Fig. 4(a)–(e), with the change of
rotating angle, the frequency resolution has changed. As shown
in Fig. 4(b), when the rotating angle is (�p)/12, the up-component
has been optimized so as to the third component has been opti-
mized shown in Fig. 4(d).

After the searching method shown by Eq. (22) has calculated
the STFT for each rotating angle, we will get many TFR maps. For
instance, there are 5 STFT maps as shown in Fig. 4. However, in
most cases, the optimized angle is not the same for the entire com-
ponent or all of the time. The next step is to find the optimized
angle for each component and each time from the TFR maps
obtained by the fixed searching step algorithm. The search method
in this paper is based on the feature of the optimized TFR. When
the resolution of the signal is optimized at (t, f) on TF plane, the
amplitude of the frequency component at point (t, f) will reach
its peak due to the conservation of energy. Fig. 5 shows the
frequency distribution at time 1s for each frequency rotating angle.
We can see that with the change of the angle, the amplitude of the
frequency has changed. When the angle reaches its optimal angle,
the amplitude of the frequency component will reach its biggest
value. Based on this characteristic, this paper searches the biggest
amplitude among all the rotated STFT maps for each time and each
frequency. When the angle corresponding to the biggest amplitude
has been found, the angle can be seen as the optimized angle for
point (t, f). After all the optimized angles have been found for each
time and frequency, we can reconstruct the TFR by combining all
the optimized components. Fig. 5(b) reveals the reconstructed
frequency distribution for time 1s which comes from Fig. 5(a).
Comparing the amplitude of the three components in Fig. 4, we
can see that the rotating angle of p/12 is not the optimal angle,
as the amplitudes on the two sides are less than the middle one.
From Eq. (28) we know that the optimal angles for the signal com-
ponent on the two sides are approximately equal to �2p/25 and
2p/25. As the chirping rate is 5 Hz/s, so the p/12 is the approximate
optimal angle.

For the elaborating purpose, some comparative experiments are
conducted. In the experiments, some others TFA methods are
applied to the signal defined by Eq. (28). Fig. 6(a) is the time–
frequency distribution (TFD) for ANSTFT with window length of
512, (b) is for the smooth-pseudo-Wigner-Ville distribution
(SPWVD) with window length of 512, (c) is for classical STFT with
window length of 512 and (d) is for pseudo-Wigner–Ville distribu-
tion (PWVD) with window length of 512. According to Fig. 6, the
ANSTFT can achieve a higher frequency resolution for all the signal
components, and the STFT is only good for the middle component.
The PWVD can obtain a good frequency resolution, however, the
cross term has occurred to contaminate the original TFD and will
lead to misinterpretation of the signal. The SPWVD has avoided
the cross terms while its resolution has been reduced greatly.
Due to the added window function on the time domain and fre-
quency domain, the WVD degenerates into a window method.

3.2. Nonlinear chirped signal analysis

Section 3.1 shows the good performance of the proposed
ANSTFT for multicomponent linear chirped signal, this part will
apply the ANSTFT to a nonlinear chirped signal that is given as:

sðtÞ ¼ sin½�200 cosð0:4ptÞ þ 100pt�
t 2 ½0;5:12�

ð29Þ
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The signal is sampled at a sampling frequency of 200 Hz and
the length of the signal is 1024 too. The IF law is f(t) = 40
sin (0.4pt) + 50. The signal defined by Eq. (29) is a nonlinear
chirped signal. To make a comparison, we applied the ANSTFT to
the signal with fixed searching steps just like the method in Sec-
tion 3.1. Due to the signal is complex, we expand the search range
to �0.4p–0.4p. Fig. 7 shows the result of the ANSTFT for different
step size. Fig. 7(a) is the result of dividing the search range into 6
parts, 8 parts for (b), 10 parts for (c) , 12 parts for (d), 14 parts
for (e) and 16 parts for (f) respectively. The Gaussian window’s
length is 512 for all. According to Fig. 7(a)–(d), it is clear that the
IF trajectory has mutations in some times. The main reason for this
is that the time–frequency distribution comes from the fixed
search step size. The angle is not directly proportional to the slope
(
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Fig. 10. Echolocation signal: (a) time domain waveform; (b) the TFDs obtained by the ST
256); (e) ANSTFT (with window size 256).
of the IF which will cause a significant energy leakage phenomena
and then lead to the mutation in the IF’s trajectory. In Fig. 7, as the
searching step size decreases, the frequency resolution increases.
Fig. 7(f) has estimated the IF with a relatively higher resolution
already. Obviously, a higher resolution can be obtained by decreas-
ing the search step length. Taking the definition of the ANSTFT and
the signal of the Eq. (29) into consideration, if the rotating angle
keeps the same direction with the IF law of the signal, a higher
resolution will be achieved. However, with the decreasing of the
search step size, the computation load will increase simulta-
neously. When the search range is divided in 8 parts, 9 times of
STFT should be calculated, for instance. To solve this problem, an
efficient algorithm is needed and the solution will be seen in the
next part.
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3.3. Performance of iterative approximation algorithm

It has been proved in part 3.2 that the search method with a
fixed search step size is not efficient for the nonlinear chirped sig-
nal. A fast approximation algorithm is badly in need, for the fixed
searching step method will be merely suitable for the linear
chirped signal. Eqs. (23)–(27) shows the proposed fast algorithm
for searching the optimal rotating angle. As we can see in the
numerical experiments, it is better to set the initial rotating angle
in a larger interval to make sure that the optimal angle is in the
default interval. In this case, the default search interval is �0.4p–
0.4p. The ANSTFT is applied to the signal defined by Eq. (29) and
the TFD for the ANSTFT with the iterative approximation algorithm
is shown in Fig. 8.

Fig. 8(a)–(d) comes from the ANSTFT with fast approximation
algorithm and the window length is 512 for all. Fig. 8(a) is the
TFD after one cycle of iteration, Fig. 8(b) is the result for two cycles
of iterations and Fig. 8(c) is three cycles and Fig. 8(d) is four cycles.
If we compare Fig. 8(b)–(d), it is clear that there is little difference
between them, which shows that the iteration algorithm can
approximate the optimal TFR in just two cycles. Taking the itera-
tion process into consideration, two iteration cycles means that
the ANSTFT obtains a good TFR with 6 times of calculating the
STFT. Compared to the fixed step length search method which need
17 times of STFT, the iteration method is more efficient.

To observe the performance of the proposed approximation
algorithm, we focus on one sampling point at time 2 s. Fig. 9 shows
the relationship between rotating angle and the maximum ampli-
tude for the sampling point at time 2 s. There are six points on the
angle-amplitude plane, which indicate the result of five cycles of
iterations. Fig. 9 indicates that three cycles of iteration has approx-
imated the optimal angle. The fourth and fifth cycle have not chan-
ged the amplitude a lot (less than 0.02 rad), which means it has
already approximated the optimal value.

Similarly, to compare the ANSTFT with other TFA methods, two
comparative experiments are conducted and the results are shown
in Fig. 8(e)–(f). In Fig. 8, the WVD and classical STFT are applied to
the signal defined by (29), the window length for STFT is 512.
Fig. 8(e) shows that the cross term in WVD makes it hard to distin-
guish real IF of the signal and Fig. 8(f) shows the STFT’s resolution
is low.

4. Echolocation signal analysis

In this section, the ANSTFT is applied to the echolocation signal.
The digitized 2.5 ls echolocation pulse emitted by a Large Brown
Bat, E. fuscus. There are 400 samples; the sampling period is 7 ls
(the data is available in [28]) and the waveform is shown in
Fig. 10(a).

As shown in Fig. 10(b), the echolocation signal consists of four
non-linear frequency modulation (NLFM) components. The TFDs
obtained by the STFT (with window size 256), pseudo-WVD, Chir-
plet WVD (with window size 256) and the proposed ANSTFT are
shown in Fig. 10(b)–(e). Fig. 10 shows that the STFT has a poor
energy concentration along the IFs that makes it unable to achieve
the accurate IF estimation for all components; even though the
PWVD has more accurate estimation than STFT, the inevitable
cross-term among the three components make it fail to work
.While the ANSTFT obtains a higher energy concentration along
the IFs trajectory without any cross-terms. By using ANSTFT, a
more accurate time and frequency information can be extracted
from the echolocation signal. Additionally, it is an advantage of
the novel method for it can find the weak component contained
in the original signal. Fig. 10(e) indicates that the Large Brown Bat’s
sonar broadcasts are FMs, sweeping downward from about 30 kHz
to 5 kHz in four harmonics. The length of the FMs components are
about 6.5 ms,6 ms, 5 ms and 3 ms. The strength (amplitude) of the
echolocation signal is various among different FMs. The peaks of
the four components are 0.85, 1.04, 0.39 and 0.15. The strength
of echolocation signals strongly influences the range of an echolo-
cating bat can detect insect-size targets. While the weakest
component of the echolocation signal shows the Brown Bats can
broadcast a high frequency component.

5. Conclusions

In this paper, an adaptive non-parametric short-time Fourier
transform with high time and frequency resolution TFD has been
proposed. By the rotating of the signal in the analytical window,
the IFs of the signal are rotated to the position that parallel with
the time axis which can obtain a higher frequency resolution and
can have a wider optimal window according to Cohen’s research.

The disadvantages of other adaptive methods are obvious. The
polynomial Chirplet transform [12], for instance, using a polyno-
mial function instead of the linear chirp kernel in the Chirplet
transform, which only suitable for mono-component signal, and
the accurate parameter estimation is a time consuming process.
The fusion technique based on polynomial Chirplet transform
[29] which requires the prior knowledge of the signal, and they
can easily introduce error. Compared with them, the biggest
advantage of the ANSTFT is laid on the non-parametric way.
Because of this characteristic, the ANSTFT is suitable for all kinds
of frequency modulated signals, including the mono-component
signal, multicomponent signal, linear and nonlinear signal etc.
Hence the generalization ability of this approach is axiomatic.

By applying the ANSTFT to some signals, the performance of the
proposed method has been demonstrated by the high resolution
TFDs. Furthermore, by the comparison between with and without
the iteration approximation algorithm, the fast approaching capac-
ity of the iteration algorithm has been validated, which will expand
the application fields of the methods. However, we believe that
there are spaces for improving the iteration approximation algo-
rithm as for the present algorithm, at least 6 times of STFT are
needed for complex signal, and we expect that the ANSTFT algo-
rithm can be enhanced to have a faster algorithm, i.e. decreased
to 3 or 4 times of STFT. In addition, when applies the ANSTFT to
the signal that serious contaminated by noise, the peak detection
method used in the numerical experiment should be improved
too. If the background noise has a larger energy than the signal,
the ridge detection method could not find the ridge any more. To
deal with this problem, some IF detection method which based
on statistical characteristics, i.e. Kalman filters based method,
cyclostationary based method, can be used to find the IF trajectory.
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