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Abstract
Timed failure propagation graphs (TFPGs) perform fault diagnosis in a transparent way. However, accurate TFPGs depend 
on experts’ knowledge or accurate model of the system, which is hard to obtain for complex systems. This paper presents a 
data-driven TFPG construction approach for fault diagnosis, which finds spectral-timed failure propagation graphs (sTFPG) 
directly from data. The sTFPG construction problem is transformed into a spectral-temporal logic inference problem and 
solved with a tree-structured long short-term memory (LSTM) network. Therefore, no expert or accurate model is needed to 
construct the TFPG. Moreover, the training process is guided and sped up by the supremacy property of the spectral-temporal 
logic, which focuses on the structure information of the signals and incorporates the physical meanings in the learning 
process. Experimental results on real rolling element bearing data sets illustrate that the performance of the proposed fault 
diagnosis method is comparable with state-of-the-art machine learning methods in fault diagnosis accuracy, and outperforms 
the logic-based method in computational efficiency. Additionally, fault diagnosis with TFPG can be understood by humans 
and reveal the fault mechanism.

Keywords Bearing fault diagnosis · Spectral temporal logic · Supremal language · Timed failure propagation graph · Tree-
structured long short-term memory networks

1 Introduction

Timed Failure Prorogation Graphs (TFPGs) have attracted 
intensive studies among scholars and have been widely used 
for fault diagnosis of safety-critical systems [4, 7]. TFPG can 
be seen as a symbolic model of failure dynamics among a 
dynamic system, describing the occurrence of failure events 
and their propagations over time in the systems. They are 
powerful tools for fault diagnosis tasks for two reasons: 
Firstly, they are capable to model temporal logic relation-
ships between basic faults and intermediate events. The 
temporal logic relationships among basic events rely on the 
operational modes of the systems, which also define the con-
straints of the event delays; Secondly, TFPGs can be easily 

explained with natural language and understood by human 
users, which enables the cooperation between fault diagno-
sis systems and human maintainers, thus reduces the cost 
of maintenance and enhances the system performance [22].

In the FAME project [5], the TFPGs were often manu-
ally derived from a given dynamic system based on experts’ 
knowledge about the abstract representation of the system’s 
behaviour under specific faulty conditions. In [4], a com-
prehensive approach was introduced to validate manually 
built TFPGs against the behaviours of the corresponding 
system. However, since modern industrial systems become 
more and more complex, it is impossible for experts to know 
the abstract representation and define the TFPGs precisely. 
Therefore, in line with considerable interest in TFPGs as 
tools for timed failure propagation modelling, many scholars 
have used them as the basics for fault diagnosis implementa-
tions and tried to generate the TFPGs automatically with the 
system behaviours [1, 7].

To reduce the work of experts, article [27] proposed an 
automated synthesis approach to construct TFPGs based 
on timed automata. Following a component topology, it 
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discovers discrepancies between the output signals and the 
failures in input signals, traversing the zone graph of the 
automata, while it could not provide any formal characteri-
zation. As an improvement, article [4] presented an approach 
to support generic finite and infinite-state transition systems, 
defined discrepancies and failure modes as generic prop-
erties of the system state, and produce TFPGs with well-
defined formal characteristics. The above two approaches 
assume the discrepancy nodes are given, which assumes 
the abstracted states of the system are given, thus not suit-
able for complex systems whose abstractions are hard to get. 
With the structural information, article [14] synthesized the 
TFPG with component models, but did not consider system 
dynamics. This approach is only possible with well-defined 
component models. To make good use of historical main-
tenance data, article [28] presented an approach for TFPG 
maturation, in which the TFPG can be improved with the 
historical maintenance data. However, the quality of data 
restricts the quality of the resulting model, and no guarantee 
can be obtained.

In this paper, we present a data-driven approach for con-
structing a kind of TFPG, called sTFPG, which takes as 
input a set of labelled time-series data of the system and 
does not require the knowledge of discrepancy nodes or 
structural model of the system. We first define a formal 
language, called spectral temporal logic (STL), which is a 
formal language to specify the temporal behaviours of the 
frequency events among the signals from the systems to be 
diagnosed and can be understood by human users. More-
over, we show that every sTFPG is equivalent to an STL 
formula, thus the sTFPG construction problem can be trans-
formed into a spectral temporal logic inference problem. 
This work is extensive research about our previous work in 
[9], in which we construct the TFPG by searching through 
a set of predefined discrepant nodes. Since the complex-
ity and expressiveness of the approach are restricted by the 
size of predefined discrepant nodes, this paper tries to use 
a machine learning method to address the complexity issue 
in our previous work. Moreover, the TFPG in this paper is 
defined over the spectral of the signals, thus it is expected to 
be more robust to noise and be suitable for vibration signals.

The sTFPG construct process in this paper is inspired by 
natural language generation. Both of them try to choose a set 
of words (atomic formulas in temporal logic) sequentially 
to construct a sentence (formula in temporal logic). The key 
issue that should be solved is to encode the meaning of the 
sentence in terms of hierarchical and nested structures of 
words [12, 13, 25, 25, 31]. Similar to the field of natural lan-
guage generation, a key challenge for the sTFPG construct is 
how to incorporate semantic and syntax information in the 
learning process. In the field of interpretable fault diagnosis, 

semantic and syntax information are of great importance, 
since they include physical meanings of the diagnosis results 
and mechanism of the faults.

Existing data-driven approaches have many advantages 
over the knowledge-based methods (knowledge about the 
abstraction or model of the system) in TFPG construction, 
but they cannot be directly used to construct sTFPGs for 
three reasons. Firstly, without the knowledge of the system 
to be interpreted, the constructed sTFPGs may not show the 
physical properties of the system and will find irrelevant 
knowledge. For example, when we apply the data-driven 
approach in [9] to diagnose the faults of rolling element 
bearings, the sTFPGs may tell us that the energies of the 
resonant frequencies of inner race fault and outer race fault 
are different, i.e., inner race fault has larger impulse energies 
than outer race fault. However, based on the mechanism of 
rolling-element bearing fault, which tells us that the strikes 
of rollers on the fault surface will excite the fault signals 
and produce the resonant frequencies of structures between 
the bearing and transducers [23]. Namely, the difference 
between inner race fault signals and outer race is the reso-
nant frequencies, but not the energies of the frequencies. 
Secondly, traditional machine learning approaches cannot 
determine the supremacy of the discovered sTFPGs and loss 
the structure information among signals. When we apply 
traditional machine learning methods to find an interpreta-
tion for the signals, such as the method in [10], it is possible 
to find two different formal descriptions that can interpret 
the properties of the signals, but it is hard to tell which one 
is better. Even though the method in [10] evaluates differ-
ent logic-based methods with a numerical metric, called 
robustness degree, the numerical metric does not reveal 
the physical meanings of the signals. Thirdly, robustness 
degree is sensitive to the amplitude values of signals, and it 
ignores the structure information of the signals. However, in 
practice, structure information contains the physical process 
knowledge of a system and the mechanism of the faults. As 
mentioned in the above rolling element bearing fault diagno-
sis example, robustness degree can distinguish two kinds of 
faults based on different resonant energies of the signals, but 
it cannot distinguish different faults based on the temporal 
relationship among resonant energies of the signals.

In this paper, we address the aforementioned issues of 
machine learning methods by investigating the internal rela-
tionship between different spectral temporal logic formulas. 
Given two spectral temporal logic formulas, we not only care 
about how good the formulas can interpret the signals via 
robustness degree metric but also care about the structure 
difference among formulas via supremacy analysis. To our 
knowledge, it is the first attempt to consider the supremacy 
of the learned formal languages. Compared with existing 
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studies, the contributions of this paper include threefold as 
follows:

– We propose a novel two-domain formal logic that is suit-
able to describe the time-frequency properties of vibra-
tion signals, thus it can be used to describe fault features 
among vibration signals and diagnose faults for rotary 
machines.

– We develop a fully data-driven approach to construct 
sTFPGs without the need for expert knowledge, in which 
the learning process is guided by supremacy analysis of 
formal languages, avoiding losing structure information 
among signals. The proposed approach is the first attempt 
to unify the discrete logic events reasoning and continue 
variables learning problem in one framework.

– We demonstrate the performance of the proposed 
approach in fault diagnosis by experiments with real 
data sets collected from rolling element bearings. The 
experimental results indicate the proposed method can 
reveal the fault mechanism of rolling-element bearing 
and diagnose the faults in noisy environments with high 
accuracy.

This paper is organized as follows: Section 2 introduces the 
STL, the supremacy of STL language and formulates the 
sTFPG construction problem; Section 3 presents a supremal 
language guided tree-structured long short-term memory 
network (T-LSTM) based framework to solve the problem; 
Section 4 applies the proposed method to data sets collected 
from a rotary machine for fault diagnosis tasks; Finally, sec-
tion 5 concludes the paper.

2  Problem statement

This section will define STL formally and give an example 
to show the properties of STL. Then we define the problem 
solved in this paper formally.

2.1  Spectral temporal logic

Spectral temporal logic is an extended version of sig-
nal temporal logic [20], and defined over discrete-
frequency, discrete-time, continuous-valued time-fre-
quency representation of a signal. Given a frequency 
doma in  F = {kf0|k = 0, 1, 2,⋯} ,  a  t ime  doma in 
T = {k�|k = 0, 1, 2,⋯} , a discrete-frequency, discrete-
time, continuous-valued time-frequency representation 
is a function x ∈ F(T ,F,ℝn) , where �  and f0 are the 
sampling interval for time and frequency, respectively. 
F(A,B,C) denotes the set of all functions from A × B to 

C. Note that the time-frequency representation is multi-
dimensional in the third direction, since the signal can 
be multidimensional. When the signal is multidimen-
sional, its time-frequency representation is computed for 
each dimension independently. We use x(t, f) to denote 
the value of time-frequency representation for signal x at 
time t and frequency f. Moreover, the time-frequency rep-
resentation of signal x comes from the second temporal 
moment over time, called moment spectrogram. At every 
time t, we use a window to select a piece of signal, and 
calculate the second temporal moment to get the spectrum 
at time t based on the method in [10]. Then we slide the 
window to get the time-frequency representation of the 
signal. Formally, STL is defined as follows.

Definition 1 Spectral temporal logic is a time-frequency 
logic defined over signals’ moment spectrogram. The syntax 
of an STL formula � is defined recursively as:

where [f1, f2] and [a, b] denote the frequency and time inter-
val, respectively. � is a predicate over the spectrogram, and 
� ∶= g(x(t, f )) ∼ c with g ∈ F(ℝn,ℝ) being a function that 
maps the spectral of the signal at time t and frequency f to a 
real value, ∼∈ {≥,<} , and c ∈ {kc0|k ∈ ℕ} being a constant, 
where c0 is the sampling interval. We use ∨ to denote logic 
(“or”) and use ∧ to denote logic (“and”) operators, respec-
tively. Moreover, the spectral operator ◻ denotes “always” 
operator, indicating the statement following the operator 
always true, and ◊ denotes “eventually” operator, indicat-
ing the statement to be true at leas once between f1 and f2 
Hz, respectively. Finally, the temporal operator U denotes 
“Until” operator. For example, ◻[f1,f2]

� means � is always 
true between f1 and f2 Hz, and ◊[f1,f2]

� means � is eventually 
true between f1 and f2 Hz.

Note that STL is a two-domain logic, i.e., time 
domain and frequency domain, but it defines the time 
domain and frequency domain properties indepen-
dently. All the spectral patterns are defined with �  and 
all the temporal patterns are defined with � . We also 
define a quantitative semantics for STL, called robust-
ness degree � ∶ F(T ,F,ℝn) × Ψ → ℝ , which maps an 
STL formula � ∈ Ψ and a spectrogram x ∈ F(T ,F,ℝn) 
to a real value. The robustness degree measures the 
robustness of the formula with respect to perturbation, 
which is measured by how far the spectrogram of a 
signal x is away from satisfying STL formula � at (t, f), 
denoted as �(x,�, t, f ) and defined as:

(1)
� ∶= �|�1 ∧ �2|◻[f1,f2]

�|◊[f1,f2]
�,

� ∶= �|�1 ∧ �2|�1 ∨ �2|�1U[a,b]�2
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�(x,�, t, f ) ≥ 0 means the behaviours of signal x can be 
described with � at time t and frequency f correctly, denoted 
as x[t, f ] ⊧ 𝜑 , and 𝜌(x,𝜑, t, f ) < 0 means the behaviours of 
signal x violates � at time t and frequency f, denoted as 
x[t, f ] ⊭ 𝜑 . Therefore, to check whether a signal x satisfies 
a formula � at (t, f), we only need to calculate the robustness 
degree �(x,�, t, f ) . To simplify the notations, we use �(x,�) 
to denote �(x,�, 0, 0) for short.

Next, we will introduce the relation between STL and 
sTFPG. The sTFPG used in this paper is a kind of TFPG 
defined specifically for capturing spectral temporal fea-
tures. With small modifications from [9], the sTFPG used 
in this paper is a directed graph, in which the edges are 
from failure mode(s) to discrepancy events and can be 
defined as follows.

Definition 2  (sTFPG).  An sTFPG  i s  a  tuple 
G = ⟨F,D,E,ET ,DC,DP⟩ , where (i) F is a set of fail-
ure mode nodes; (ii) D is a set of discrepancy nodes; (iii) 
E ⊆ V × V is a set of edges with V = F ∪ D ; (iv) ET ∶ E → I 
maps an edge e ∈ E to a time interval [tmin(e), tmax(e)] ∈ I 
with tmin(e) and tmax(e) being the minimum and maximum 
propagation times on the edge e; (v) DC ∶ D → {AND,OR} 
maps a discrepancy node d ∈ D to its discrepancy type; and 
(vi) DP maps a discrepancy node d ∈ D to an STL formula 

𝜓 ∶= ◻[f1,f2 ]
(l(x)

< 𝜋1 ∧ l(x) ≥ 𝜋1)|◊[f1,f2 ]
(l(x)

< 𝜋1 ∧ l(x) ≥ 𝜋2)
 over a time-frequency representation x, 

where 𝜋1 > 𝜋2 , and l(x) < 𝜋2 and l(x) ≥ �2 are the predicates 
defined in (1).

sTFPGs inherit all the desirable properties of TFPGs, but 
the semantics of an sTFPG are defined over time-frequency 
representation of signals, which makes sTFPGs be suitable 
for rotary machines fault diagnosis. We have the following 
proposition.

Proposition 1 If a spectrogram x actives a node in an sTFGP 
G, denoted as d ∈ D , there is an STL formula �d associated 
to the node, such that �(x,�d) ≥ 0.

Lemma 1 in [9] shows that when a signal actives a node 
in sTFPG G, it must satisfy a signal temporal logic formula. 

(2)

𝜌(x, (p(x) < 𝜋), t, f ) = 𝜋 − g(x(t, f ))

𝜌(x, (p(x) ≥ 𝜋), t, f ) = g(x(t, f )) − 𝜋

𝜌(x,◻[f1,f2)
𝜇, t, f ) = min

f �∈[f+f1,f+f2)
𝜌(x,𝜇, t, f �)

𝜌(x,◊[f1,f2)
𝜇, t, f ) = max

f �∈[f+f1,f+f2)
𝜌(x,𝜑, t, f �)

𝜌(x,𝜑1 ∧ 𝜑2, t, f ) = min
(
𝜌(x,𝜑1, t, f ), 𝜌(x,𝜑2, t, f )

)

𝜌(x,𝜑1 ∨ 𝜑2, t, f ) = max
(
𝜌(x,𝜑1, t, f ), 𝜌(x,𝜑2, t, f )

)

𝜌(x,𝜑1U[a,b]𝜑2, t, f ) = maxt�∈[t+a,t+b](min(𝜌(x,𝜑2, t
�, f ),

mint��∈[t,t�] 𝜌(x,𝜑1, t
��, f ))

Since STL proposed in this paper has similar semantics to 
signal temporal logic used in [9] when the nodes are atomic 
formulas about the spectral properties, it is easy to prove 
Proposition 1. Based on the Lemma 1 in [9], we know that 
whenever there exists a temporal operator U in an STL for-
mula � , it can be mapped to an edge in G. Further, if the 
directed graph starting from a failure mode is ended at one 
discrepancy node, we say the STL formula defined by the 
last node of the directed graph is the STL formula for the 
failure mode.

2.2  Illustration example

Example 1 Figure 1 shows one such sTFPG. The intervals 
over the edges denote the time intervals when a failure 
event will propagate from a node to the child node. An OR 
node will be satisfied when one of its parents’ event has 
reached to the node within the time interval defined by the 
edge, while an AND node will be satisfied when all of its 
parents’ events have reached to the node within the time 
interval defined by the edges. In this paper, the edges to 
an AND node have the same time interval for simplicity. 
The main difference between the sTFPG used in this paper 
and a traditional TFPG is that the discrepancy nodes of our 
sTFPG are defined by atomic STL formulas. For example, 
formula 𝜑1 = ◊[550,1250](x(t, f ) ≥ −51.0 ∧ x(t, f ) < −49.5) 
is attached to D1, which requires the spectrogram 
should be eventually greater than -51.0 dB and smaller 
than -49.5 dB between 550 and 1250 Hz at time t, for-
m u l a  𝜑2 = ◻[350,900](x(t, f ) ≥ −50.5 ∧ x(t, f ) < −47.5) 
is for node D2, which requires the spectrogram 
should be always smaller than -47.5 dB and larger 
then -50.5 dB between 350 and 900 Hz at time t, for-
m u l a  𝜑3 = ◻[1200,2000](x(t, f ) < −47.0 ∧ x(t, f ) ≥ −50.5) 
is for D3, which requires the spectrogram should be 
always greater than -50.5 dB and smaller than -47.0 
dB between 1200 and 2000 Hz at time t, and formula 
𝜑4 = ◊[1200,1800](x(t, f ) ≥ −51.5 ∧ x(t, f ) < −47.5) is for D4, 
which requires the spectrogram should be eventually greater 
than -51.5 dB and smaller than -47.5 dB between 1200 and 
1800 Hz at time t, respectively. The graph shows that when 
failure FM happens, event D1 will be triggered within the 
next 1 second, i.e., �1 is satisfied within the next 1 second, 
then event D2 will be triggered within the next 0.1 seconds 
and event D3 will be triggered within the next 0.1 seconds, 
i.e., formula �3 will be satisfied. Event D4 will be triggered 
within 0.2 seconds after event D2 and D3 are triggered, i.e., 
formula �4 will be satisfied. The sTFPG can be mapped to 
a formula � = ((�1U[0.0,0.1]�3) ∧ (�1U[0,0.1]�2))U[0.0,0.2]�4 , 
which is the satisfaction condition for node D4.

Figure 2 shows a signal’s moment spectrogram that satis-
fies the sTFPG in Figure 1. The moment spectrogram shows 
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�1 is satisfied at time 0.26 seconds (the moment spectrogram 
is larger than -51.0 dB and smaller than -49.5 dB at least 
once between 550 and 1250 Hz); �2 is satisfied at 0.32 sec-
onds (the moment spectrogram is always larger than -50.5 
dB and smaller than -47.5 dB between 350 and 900 Hz at 
0.32 seconds). The time shift is 0.06, which is in the interval 
[0, 0.1]; �3 is satisfied at 0.32 seconds (the moment spec-
trogram is always larger -50.5 dB and smaller than -47.0 dB 
between 1200 and 2000 Hz), which happens in the interval 
[0.0, 0.1]; Similarity, we can see �4 is satisfied at time 0.38 
seconds (the moment spectrogram is larger than -51.5 dB 
and smaller than -47.5 dB at least once between 1200 and 
1800 Hz), which is within the next 0.0 to 0.2 seconds after 
�2 and �3 are satisfied. Therefore, the moment spectrogram 
satisfies formula �.

2.3  Supremal language

In this subsection, we discuss the supremacy of STL for-
mulas. Based on Proposition 1, any STL formula can be 
mapped to an sTFPG. Since the STL formulas are defined 
over the continuous-valued, discrete frequency and dis-
crete time space, in order to get a symbolic representa-
tion of the time-frequency representation, we partition the 
state space of the signals’ spectrums into intervals with 
equal length. As shown in Figure 3, the state space is parti-
tioned and we assign a low case alphabet to each partition, 
which can be seen as an abstraction of the spectrum space 
[24]. Based on the partition, we can obtain an abstrac-
tion for each signal’s spectrum. Given a spectrum of a 
signal at time t, denoted as x(t, f), we can define a word 
� = �(x(t, f )) , which is the sequence of low case alphabet, 
where � is a map that maps a spectral value to an alpha-
bet. Moreover, since the node of sTFPG is defined with 
formula 

𝜓 ∶= ◻[f1 ,f2 ]
(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1)|◊[f1 ,f2 ]

(l(x)

< 𝜋1 ∧ l(x) ≥ 𝜋1)
 , in which the 

predicates (l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) define a rectangle among 

the spectral-amplitude plane. Similarity, we assign an 
upper case alphabet to each rectangle. As shown in Fig-
ure 3 (left), we assign alphabet A3 to the rectangle defined 
by 𝜓 = (x(3, 3) ≥ 3 ∧ x(3, 3) < 6) . Obviously, the rectangle 
may contain many small partitions, and when �  ( A3 ) is 
satisfied, a ∨ b ∨ c is true at x(3, 3). Namely, the value of 
the spectrum at x(3, 3) should be a or b or c. Based on 
the semantic of STL, we can check that Figure 3 (middle) 
satisfies formula ◻[3,7]� ( ◻[3,7]A3 ) and Figure 3 (right) sat-
isfies formula ◊[3,7]� ( ◊[3,7]A3).

In the time domain, we focus on the structure of the sig-
nals and ignore the precise temporal relationship, thus we 
ignore the temporal interval after “Until” operator. Given 
an STL formula � , we use �(�) to denote the abstracted 
formula, called �−STL formula. Moreover, we denote the 
node formulas in sTFPG as a set of atomic proposition AP. 
Obviously, the syntax and semantics of �−STL is the same 
with linear temporal logic (LTL) [8], which is defined 
based on a set of atomic propositions AP as follows.

where �,�1 , and �2 are LTL formulas and ⊤ denote logic 
“true”. The logic is defined over Σ = 2AP . Since the LTL 
formulas defined by syntax in (3) can be transformed 
into Büchi automata [15], the abstracted �−STL formulas 
can also be transformed into Büchi automaton. A Büchi 
automaton is a 5-tuple A = (Q,Σ, �, I,F) , where Q denotes 
a finite set of states, Σ is a finite alphabet, and Σ� = 2Σ ; 
� ∶ Q × Σ�

→ Q to be a transition function, denoting the 

(3)𝜙 ∶= ⊤|p ∈ AP|𝜙1 ∨ 𝜙2|𝜙1 ∧ 𝜙2|𝜙1U𝜙2,

Fig. 1  An illustration of an sTFPG G. Circles are OR nodes. Dotted 
and solid boxes are failure mode node and AND node, respectively

Fig. 2  Spectral of the signal at time 0.24 sec, 0.4 sec, 0.48 sec, and 
0.58, respectively. The green regions are the spectrums should reach, 
and the pink regions are the spectrums should not avoid
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state changing relations; I ⊆ Q is a set of initial states, and 
F = {F1,F2,⋯ ,Fm} , where Fj ⊆ Q × Σ� × Q are sets of 
accepting transitions.

Example 1 (Continued.) In this example, we reconsider the 
sTFPG in Figure 1 and show how the TFPG can be repre-
sented by an STL formula. The formula associated to the 
sTFPG is � = ((�1U[0.1,0.3]�3) ∧ (�1U[0,0.2]�2))U[0.1,0.4]�4 , 
where �1,�2,�3 and �4 are defined in Example 1. If we see 
�1,�2,�3 and �4 as atomic propositions, we can obtain an 
LTL formula � = ((�1U�3) ∧ (�1U�2))U�4 . Here the atomic 
proposition AP = {�1,�2,�3,�4}.

In the above example, the atomic propositions are the 
atomic formulas, which are independent from the signals. 
To allow the Büchi automata to have more detail description 
capacity, in the rest of this paper, we expand the atomic 
formulas with symbols from the abstraction map � . For 
example, formula ◻[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) can be 
expanded into ∧f2

i=f1
Ai , where Ai is the abstracted symbol for 

rectangle (l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) at frequency i. Similarly, 
formula ◊[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) can be expanded into 
∨
f2
i=f1

Ai . Note that the expanded formulas are still LTL for-
mulas and can be transformed into Büchi automata, but the 
transformed automata have larger atomic proposition sets.

Next, we consider the supremacy of sTFPGs, in which 
we investigate which sTFPG is the best one to interpret the 
signals. The underlying assumption for this investigation is 
that a better sTFPG will be robust to the variation of the sig-
nals’ amplitude values, and captures the structure features of 
the signals, thus is more expressive. This assumption is rea-
sonable, since the mechanism of fault is usually unchanged, 
while the signals from the system to be diagnosed are usu-
ally contaminated by noises or affected by the variation of 
operations. The noises and varying operations will change 
the amplitude values. Thus a more expressive sTFPGs will be 
closer to the fault mechanism. Given a set of sTFPGs, we say 
the associated STL formula for the most expressive sTFPG as 
the supremal formula, which is defined as follows.

Definition 3 (Supremal Formula) Given a set of STL formu-
las Φ , we say a formula is the supremal formula among Φ , 
denoted as S(Φ) if the following condition holds:

where �(x) is the abstraction for signal x. Note that the 
supremal formula is defined over formula set Φ , but not 
defined over signals, which indicates that the supremacy 
of a formula is independent from the signals. This prop-
erty is very important, since data-driven methods usu-
ally assume we have enough data, but in practice, we 
cannot guarantee the coverage of the data for the learn-
ing tasks. If the supremal formula is independent from 
the data, it will be more robust to the size and quality 
of data sets. A related concept about supremacy is par-
tial order, in which for any two formulas �1,�2 , we say 
�1 is a partial order of �2 , denoted as �1 ⪯ �2 , if ∀x , 
𝛼(x) ⊧ 𝛼(𝜑1) ⟹ 𝛼(x) ⊧ 𝛼(𝜑2).

Since each STL formula can be mapped to an LTL for-
mula, the supremacy of formulas can be investigated in terms 
of formal language. We use Σ to denote a finite alphabet, i.e., 
a set of event, and Σ+ is the set of all finite sequences of 
events (an event is an element of Σ ) taken from Σ and we have 
Σ∗ = Σ+ ∪ {�} , where � is the empty sequence. A sequence 
of events is also called a string, and � ∈ s means that event 
� occurs at least once in s [29]. For any string s ∈ Σ∗ , 
�s = s� = s . Given a Büchi automaton A , the transition func-
tion can be extended to strings in Σ∗ by letting �(q, �) = q for 
all q ∈ Q , and �(q, s�) = �(�(q, s), �) otherwise. For a state 
q ∈ Q and a event � ∈ Σ , the transition �(q, �) is eligible 
when the transition is defined, denoted as �(q, �)! . The set 
of eligible strings among an automaton A is called the lan-
guage of A , denoted as L(A) = {s ∈ Σ∗|∃q0 ∈ I, �(q0, s)!} . 
The accepting language of the automaton A is denoted as 
La(A) = {s ∈ Σ∗|∃q0 ∈ I, �(q0, s)! and ∃� ∈ s, � ∈ F} . With 
a little abuse of notation, here we use L�(�) to denote the 
language of an STL formula under abstraction mapping � 
and L�

a
(�) the accepting language, respectively. Based on 

(4)∀x,∀𝜑 ∈ Φ, if 𝛼(x) ⊧ 𝛼(𝜑), then 𝛼(x) ⊧ 𝛼(S(Φ)).

Fig. 3  Abstraction represen-
tation of a spectrum. (left) 
abstraction maps of the 
spectrum; (middle) spectrum 
that satisfies ∧7

i=3
Ai (w.r.t. 

◻[3,7](a ∧ b ∧ c) ); (right) spec-
trum that satisfies ∨7

i=3
Ai (w.r.t. 

◊[3,7](a ∨ b ∨ c))
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the definition of supremal formula, we have the following 
lemma.

Lemma 1 Given a set of STL formula Φ , �S is the supremal 
formula among Φ if ∀� ∈ Φ , we have L𝛼

a
(𝜑) ⊆ L𝛼

a
(𝜑S).

The proof of Lemma 1 is obviously. The condition indi-
cates that for every accepting string of L�

a
(�) , there exists 

the same string in L�
a
(�S) , which means that for any sig-

nal x, when the associated string satisfies formula � , i.e., 
�(x) ∈ L�

a
(�) ), it must satisfies �S , i.e., �(x) ∈ L�

a
(�S) . How-

ever, the condition for supremal formula is quit conserva-
tive, since for any two formulas �1 , �2 , it is likely that the 
two formulas only share some of the accepting language. 
Namely L�

a
(�1) ⧵ L

�
a
(�2) ≠ � and L�

a
(�2) ⧵ L

�
a
(�1) ≠ � . 

Moreover, when two formulas’ associated automata have 
different alphabet sets, it is unlikely that the two automata 
share any accepting language, which makes it hard to meas-
ure the supremacy level of the formulas. To deal with this 
situation, we introduce a map, called natural projection [32]. 
For two alphabets Σ1 and Σ2 , which come from the associ-
ated Büchi automata for two STL formulas �1 and �2 , the 
natural projection PΣ1→Σ2

∶ Σ∗
1
→ Σ∗

2
 removes from traces 

s ∈ Σ∗
1
 all events not in Σ∗

2
 , defined as

To simplify the notation, we use P�1→�2
 to denote PΣ1→Σ2

 
for simplicity. Figure 4 shows a conceptual illustration of 
the natural projection of two formulas �1,�2 , in which 
P�1→�2

(L�
a
(�1)) indicates the strings in L�

a
(�1) that can 

find their associated projected strings in L�
a
(�2) . If all the 

strings in L�
a
(�1) can find their projected strings in L�

a
(�2) , 

we say �2 has larger supremacy than �1 . Then the metric for 
supremacy level of two formulas can be defined as

where | ⋅ | denotes the cardinality of a set. Based on the defi-
nition of supremacy level, if �1 ⪯ �2 , then r(�1,�2) ≤ 1 and 
for all � ∈ Φ , r(�,S(Φ)) ≤ 1.

(5)PΣ1→Σ2
(s�) =

{
PΣ1→Σ2

(s)�, if � ∈ Σ2

PΣ1→Σ2
(s), otherwise .

(6)

r(�1,�2) =

{ |P�1→�2
(L�

a
(�1))∩L

�
a
(�2)|

|P�2→�1
(L�

a
(�2))∩L

�
a
(�1)|

, if P�2→�1
(L�

a
(�2)) ≠ �,

0, otherwise ,

2.4  Problem formulation

We wish to construct an sTFPG by finding an STL for-
mula, which can be used to classify time-series data 
from a rotational machine. Moreover, the associated 
language defined by the STL formula is a supremal lan-
guage among the formula space, which gives an expres-
sive explanation about the failure propagation properties 
among the machine. Here we consider the case in which 
the sTFPG construction procedure can learn from his-
torical data that has been labelled according to whether 
or not it represents a faulty behavior. More formally, we 
will solve Problem 1.

Problem 1 Let X = X+ ∪ X− be a labeled set of moment 
spectrogram obtained by calculating the second tempo-
ral moment over time to a set of time-series data from a 
rotational machine. Let D be a set of atomic formulas hav-
ing the form of 𝜓 ∶= ◻[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) and 
◊[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) , and � is the abstraction map for 
STL formulas. Let T  be a set of temporal operators having 
the form of U[a,b] . The goal is to choose N atomic formulas 
from D and connect these atomic formulas with Boolean 
operator ∧,∨ and temporal operator U[a,b] , such that

is expected to be maximized, where �(x,�N) and �(x,¬�N) 
are the robustness degrees of time-frequency representation 
x with respect to �N and its negation, respectively. The first 
term of R(X,�N) is the robustness degree of �N with respect 
to X, and the second term is the average supremacy level 
among a set of formulas Φ , where Φ is a set of formulas 
among the search space and constructed dynamically dur-
ing the construction procedure. � is a constant value, which 
balances the effect of the two terms.

This problem is modified from the supervised learning 
problem previously addressed in [20]. In [20], the formula 
is defined with signal temporal logic, and the searching 
process is guided by a predefined order, whose search 

(7)

R(X,�N) = min(minx∈X+(�(x,�N)), minx∈X−(�(x,¬�N)))

+�
1

�Φ�
∑

�∈Φ r(�N ,�),

Fig. 4  A conceptual illustration 
of the natural projection of two 
formulas �1,�2
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space grows exponentially with respect to the number of 
dimensions of the signal and the length of the formula. 
Moreover, the formulas learned in [20] cannot be mapped 
to an sTFPG. In this paper, we will find STL formulas 
with T-LSTM for fault diagnosis tasks and the searching 
procedure will consider the supremacy of the found STL 
formulas. Considering the definition of supremal language, 
we have the following lemma.

Lemma 2 (Existence) Given D and T  as described in Prob-
lem 1, there exists a set of formulas Φ , such that any STL 
formula � constructed with D and T  , ∃�� ∈ Φ, r(�,��) ≤ 1.

The proof of Lemma 2 is simple, since we can increase 
the size of Φ to satisfy the condition. The issue is that it is 
hard to figure out the size of Φ , which is related to the size 
of D and the way how D is generated. In this paper, we set 
the size of Φ through experiments.

3  Spectral‑timed failure propagation graph 
construction with T‑LSTM

The goal of this paper is to construct an STL formula, such 
that the cost function in (7) is maximized. Figure 5 illus-
trates the overall framework proposed in this paper, which 
includes three components: Policy network, Parser network, 
and Evaluator. The policy network adopts a stochastic policy 
and samples an atomic formula from D at each step, which 
is a formula generation network. It keeps sampling until 
the number of atomic formulas reaches a limitation N. The 
parser takes the sequence of sampled atomic formulas as 
inputs and outputs an STL formula by constructing the pars-
ing tree for the formula with a sequence of actions, denoted 
as P� . The Evaluator evaluates the performance of the gen-
erated formula. Since the reward can be computed once the 
final structure of the formula is available, the process can 
be naturally addressed by the policy gradient method [30].

3.1  Tree‑LSTM for syntactic parsing

The parser component tries to select a sequence of operations 
from a predefined set {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} , where 

S denotes a shift operator, D means ∨ operator, C means ∧ 
operator and U[a1,b1]

 means U[a1,b1]
 operator, to construct an 

STL formula with the sequence of atomic formulas cho-
sen by the Policy network. As shown in Figure 6, a unique 
sequence of {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} operations cor-

responds to a unique binary parse tree of the selected atomic 
formulas, which further leads to a unique STL formula. We 
note that for a sequence of atomic formulas of length N, 
there are exactly N shift (S) operations and N − 1 CON-
JUNCTION/DISJUNCTION/UNTIL ( C∕D∕U[a,b] ) opera-
tions that are needed to construct the parse tree.

Our Parser follows the Stack-augmented Parser-
Interpreter Neural Network (SPINN) [6], which is a 
shift-reduce parser that uses LSTM as its composition 
function. Given an input sequence of atomic formulas 
� = {�1,�2,⋯ ,�N} , the parser tracks an index p start-
ing from the leftmost formula ( p = 1 ) and maintains a 
stack. To parse the sequence of formulas, parser chooses 
a sequence of operations �̂� = {a1, a2,⋯ , a2N−1} , where 
at ∈ {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} . When an S operation is 

chosen, the formula �i is pushed to the stack and the pointer 
will move to the next atomic formula ( p++ ) for next step of 
choosing; while when a D∕C∕U[a,b] operation is chosen, the 
stack pops two elements out, and combines them into a single 
formula with ∨∕ ∧ ∕U  operator, and pushes it back to the 
stack. Here we use T-LSTM as the parsing function, which 
maps a operation to a value, denoting the probability that the 
operation will be chosen. To select the operations, we param-
eterize each operation at ∈ {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} 

with a policy network P�(⋅|�p,W) , where �p represents the 
current state at stack p and W is the parameter matrix of 
the network. During the parsing procedure, a two-layer feed-
forward network is used to approximate the state vector esti-
mation function, whose inputs are the hidden states of the 

Fig. 5  Structure of the graph construction process. The policy net-
work samples an atomic formula at each state. The Parser finds the 
syntax parsing tree and outputs the final formula � for approximation 

task when the parsing tree is completed. The approximation perfor-
mance, supremacy level and robustness degree obtained provide the 
reward to the networks
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top two elements of the stack hi and hj and the probability of 
operation ap to be chosen is defined as:

where Ψ = {W1,W2, b1, b2} are the parameters for the two-
layer feed-forward network. Figure 7 (right) shows the 
encoding map for operators in T  . The first bit indicates 
the spectral operator used, i.e., 0 for “always” and 1 for 
“eventually”, the second bit indicates the dimensional 
index of the signal, the third bit indicates the comparison 
operator, i.e., 0 for ≥ and 1 for <, the fourth bit indicates 
the scale value and the last two bits indicate the spectral 
bounds for the spectral operator. Figure 7 (left) shows 
the encoding map for atomic formula, where each atomic 
formula is represented with a six-dimensional vector. The 
first bit indicates the spectral operator used, i.e., 0 for 
“always” and 1 for “eventually”, the second bit indicates 
the dimensional index of the signal, the third bit indicates 
the comparison operator, i.e., 0 for ≥ and 1 for <, the 
fourth bit indicates the scale value and the last two bits 
indicate the spectral bounds for the spectral operator. For 

(8)
�p = ReLU(Wp[hi, hj, ap] + bp)

P�(ap|�p;Ψ) = softmax(W2
�p + b2)

example, formula ◻[1,2](x1 ≥ 0.1) can be encoded as vector 
[0, 1, 0, 0.1, 1, 2].

Evaluator: To evaluate the performance of the parser 
network, the last state vector �N is fed to the evaluator net-
work, which is a two-layer feed-forward network and the 
reward function is the combination of robustness degree, 
supremacy level and robustness degree approximation 
error, defined as:

where Ω denotes all the parameters, Ws�N + bs is the approxi-
mation for the robustness degree, and � is a factor that bal-
ances the importance of cost function and approximation 
error. The goal of the Parser network and Evaluator is to 
maximize the reward J(Ω) . Note that the calculation of J(Ω) 
needs a set of formulas Φ . In this step, we initialize Φ with 
M STL formulas with length N, then during the temporal 
logic inference procedure, Φ is updated with the new gener-
ated formula �N by calculating the supremacy level r(�,�N) 
for all � ∈ Φ . If r(𝜑,𝜑N) > 1 for all � ∈ Φ , then Φ is not 
updated; else Φ is updated by replacing the formula that has 
smallest supremacy level.

(9)J(Ω) = −(Ws�N + bs − �(X,�N))
2 + �R(X,�N)

Fig. 6  Two examples of the trees and their corresponding opera-
tion sequences. There are 4 input atomic formulas (4 leaf nodes) 
for each example, so 7 actions are needed to construct a valid pars-
ing tree. A SHIFT (S) operation introduces a leaf node, while a 

DISJUNCTION(D)/CONJUNCTION(C)/UNTIL(U) operation com-
bines two previously nodes and introduces a non-leaf node. Obvi-
ously, different operation sequences lead to different tree structures 
and STL formula

Fig. 7  Encoding maps for 
atomic formulas in D and 
operators in T
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3.2  Policy network for atomic formula generation

The Policy network adopts a stochastic policy �(�t|�t;Θ) 
and uses a delayed reward to improve the policy. During 
the learning process, it samples an atomic formula with 
the probability at each state whose representation sp is con-
structed by the hidden states in the Parser network. Let �t 
is the atomic formula at time t, the policy is defined as,

where �(�t|�t;Θ) denotes the probability of choosing �t , and 
Θ = {Wi, bp,W

i, bp} denotes the parameters of the Policy net-
work. In the beginning, the hidden states hi and hj of the stack 
are initialized with zero vectors, and the state of the current 
formula representation �p is calculated based on Eqn.(8), then 
the word at the begin is sampled based on Eqn.(10). Since 
there are N shift operations will be chosen by the Parser net-
work if the length of the formula is N, the Policy network will 
sample an atomic formula from D whenever all the atomic 
formulas have been pushed to the stack, i.e., only the �p at the 
step when p++ point to null will be used for the policy network. 
During the training process, we use the policy gradient method 
to optimize the parameters of the policy network, aiming to 
maximize the expected reward and the gradient is,

(10)
ŝt = ReLU(Wl[hi, hj,𝜔t] + bp)

𝜋(𝜔t|�t;Θ) = softmax(Wpŝt + bp)

(11)▽Θ =

N∑

t=1

R(X,�N)▽Θlog�(�t|�t;Θ)

where R(X,�N) is the reward defined in Eqn.(7) obtained 
when the formula is constructed completely. Compared 
with traditional machine learning-based methods that use 
classification performance as the reword function, e.g., the 
reward function in [3, 6, 11, 33], the reward function used in 
this paper includes the structure information of the formu-
las, which shapes the reward function by supremacy. Even 
though there exist many language machine learning methods 
that have incorporated the syntax information in the learning 
process, such as the methods in [21, 34, 35], these methods 
encode the syntax information into a vector representation, 
which losses the physical meaning of the syntax, thus cannot 
be used to interpret the fault diagnosis results.

3.3  Training process

In this section, we train the above networks using a policy 
gradient algorithm. To simplify the training process, here we 
train the three components jointly, which is shown in Algo-
rithm 1. The training process includes three steps. Firstly, 
we pre-train the Parser network and Evaluator. Secondly, we 
pre-train the Policy network while keeping the parameters of 
the other two models fixed. At last, we jointly train all three 
components. Compared with other learning algorithms, 
our algorithm is guided by the language, which shapes the 
reward and speeds up the learning process.
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4  Case studies

In this section, we will evaluate the performance of the pro-
posed method for sTFPG construction and its application to 
fault diagnosis and interpretation. The signals are processed 
with Matlab and Python environments.

4.1  Fault diagnosis for fixed speed rolling element 
bearing

In this experiment, the rotational machine is a rolling-ele-
ment bearing test-rig as shown in Figure 8, which has been 
used in [19]. To collect the faulty signals of rolling element 
bearings, the electrical-discharge machining method was 
used to introduce single pitting faults. The faults are added 
to the surface of the race or the rolling body of a series of 
rolling element bearings (one type fault for each). The sig-
nals are collected with the shaft speed being fixed and the 
sampling rate is 12 kHz.

During the experiment, we introduce three kinds of faults 
to the bearings, i.e., rolling element fault, inner race fault, 
and outer race fault. After all the data has been collected, 
200 signal samples with length 10000 for each condition 
(sampled within 0.83 seconds) were used for demonstration 

(600 pieces in all). To obtain spectrograms of the signals, 
we calculate the second temporal moment over time with 
the Matlab embedded function for each piece of the signals. 
Therefore, we have 200 spectrograms samples for each bear-
ing condition. Then we construct the labeled training and 
testing set. The positive training set for inner fault includes 
100 samples from inner fault signals, and the negative set 
includes 100 samples from the other two conditions (50 sam-
ples for each). Then the training sets for the other two con-
ditions are constructed accordingly. The positive testing set 
for inner fault includes the rest 100 samples from inner fault 
signals, and the negative testing set includes 100 samples 
from the other two faults (50 samples for each). We construct 
the training and testing sets for each fault independently and 
accordingly.

The training process is initialized by generating 1000 
atomic formulas for D and 100 temporal operators with the 
form of U[a,b] for T  . The spectrum partition size for formulas 
in D is 50 Hz, and the amplitude partition size for formulas 
in D is 0.5 dB. Since the temporal partition size is not rel-
evant to computational complexity, here the minimum inter-
val for the temporal domain is 0.05 seconds. The Policy and 
Parser produce an 18-dimensional vector for the state vector 
and we set the length of the formula with 4 words. We run 

Fig. 8  a The test rig and (b) the 
location of the accelerometer for 
signal collection

Fig. 9  Average robustness 
degree and its variance obtained 
for each training epoch among 
testing data sets for learning 
algorithm with supremacy 
guided strategy (left) and with-
out supremacy guided strategy 
(right)
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the training on a 64bit Linux computer with a 16-core CPU 
at 3.8 GHz, GeForce GTX 1070 GPU, and 64GB RAM.

Figure 9(left) shows the average robustness degrees and 
their variances of 10 trails obtained by Algorithm 1 for 
each epoch among the testing sets. These results indicate 
that our algorithm can reach positive robustness and clas-
sify the conditions of the bearings for three faults, indicating 
the obtained STL formula can diagnose the faults correctly 
among the testing set. In Figure 9(right), we also show the 
results of a modified Algorithm 1, in which we infer the for-
mal language without the guide from the supremacy level. 
Namely, the modified reward function is defined as

where the supremacy level is not used. Figure 9 shows the 
algorithm guided by supremacy used about 40 epochs to 
reach a positive robustness degree, while the algorithm 
without supremacy guide needed about 80 epochs to reach a 
positive robustness degree. The comparison results indicate 
supremacy-guided algorithm can speed up the learning 
procedure. Moreover, the results also show the supremacy-
guided algorithm can obtain formulas with larger robustness 
degrees, which indicates the obtained formulas will be more 
robust to noise.

Table 1 shows the learning results for the three faults 
with STL formulas. Note that we add ◊[0,0.5] before every 
generated formula, allowing the formulas to be satisfied at 
any time within 0.5 seconds, which emits the time align-
ment process for the signals. The semantics of the formulas 
are shown in Table 2, in which we use LOW and HIGH 
to indicate the low and high energy concentration, respec-
tively. The semantics have omitted the temporal information 
for simplicity, which can be found in the captions in Fig-
ure 10, 11 and12. The sTFPGs with respect to the formulas 

(12)R�(X,�N) = min(min
x∈X+

(�(x,�N)), min
x∈X−

(�(x,¬�N))).

are shown in Figure 10-12, which shows that the fault pat-
terns for the faults are different in the energy concentra-
tion. The sTFPGs have some nodes denoting the spectral 
are larger than some values within some frequency bands, 
showing that the occurring of fault conditions will lead to 
a larger value for the spectral at the time within these fre-
quency bands (HIGH). Then the larger energy concentration 
bands will be followed by low energy concentration within 
some time intervals (HIGH then LOW). Moreover, differ-
ent faults will have different concentration patterns in the 
frequency domain. Since the fault mechanism of rolling-
element bearing is that the impulse energy comes from the 
strikes of rollers on the fault surface and excites the striking 
response of the bearing system, which means our sTFPGs, 
which denote a sequence of impulse energies, are in line 
with the fault mechanism. With the knowledge given by the 
sTFPG, maintainers know that avoiding energy concentra-
tion will reduce the risk of system failure, e.g., adding vibra-
tion isolation devices.

Table 3 shows the average faults diagnosis results for the 
experimental data with the learned STL formulas among 10 
tails, in which the robustness and error rate is used as the 
metrics. Note that the formula that obtains positive robust-
ness indicates it diagnose the fault correctly. On the con-
trary, the formula that obtains negative robustness may lead 
to misdiagnosis. For example, the outer race has negative 

Table 1  sTFPG associated STL formulas for inner race, outer race and rolling element faults with real experiment data

Table 2  The semantics for STL formulas for inner race, outer race and rolling element faults with real experiment data

Table 3  Fault diagnosis results with sTFPGs for real bearing signals

Fault type Robustness Degree Error Rate

- Training Testing Training Testing

Inner Race Fault 0.032 0.022 0.000 0.000
Outer Race Fault 0.023 -0.033 0.000 0.030
Rolling Element Fault 0.043 0.011 0.000 0.000
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robustness among testing data sets leading to misdiagnosis in 
Table 3, which may be caused by the noise or the differences 
of fault patterns or distribution between training and testing 
data. The results not only show our method can find the 
sTFPGs that are in line with the failure mechanisms of roll-
ing element bearing, but also achieve fault diagnosis errors 
that are less than 5% among the test data sets. Moreover, 

the increase of robustness may not lead to a decrease in 
error rate, since we can only guarantee that positive robust-
ness leads to a zero error rate. When we use a robustness 
definition that is smooth and differentiable, it is expected 
to have a relationship that a larger robustness degree will 
lead to a smaller error rate. In our future work, we will try 
to investigate the effect of robustness degree definition on 

Fig. 10  a A moment spectrogram 
from an inner race fault bearing; 
(b) The sTFPG obtained by  
�
I
= ◊[0,0.5] ((�1U[0,0.05]�2)U[0,0.1]�3)U[0,0.15]�4 , 

which shows when inner fault 
happens (I in dash box), event 
�1 will happen within the next 
0.5 seconds, then �2 will happen 
within the next 0.02 seconds, then 
�3 will happen within the next 0.1 
seconds, then event �4 will happen 
within the next 0.15 seconds. The 
frequency events �1 , �2 , �3 and �4 
are defined in Table 1 for �I

Fig. 11  a A moment spectrogram 
from an outer race fault bear-
ing; (b) The sTFPG obtained by 
�
O
= ◊[0,0.5] ((�1U[0,0.1]�2) ∧ �3)U[0,0.2]�4)) , 

which shows when outer fault 
happens (O in dash box), event �1 
and �3 will happen within the next 
0.5 seconds. After �1 happens, 
then �2 will happen within the 
next 0.1 seconds. After �2 and 
�3 happen, then �4 will happen 
within the next 0.2 seconds. The 
frequency events �1 , �2 , �3 and �4 
are defined in Table 1 for �O

Fig. 12  a A moment spectrogram 
from a rolling element fault bear-
ing; (b) The sTFPG obtained by 
�
R
= ◊[0,0.5] (((�1 ∧ �2)U[0,0.15]�3)U[0,0.05]�4) , 

which shows when rolling element 
bearing fault happens (R in dash 
box), event �1 and �2 will hap-
pen within the next 0.5 seconds. 
After �1 and �2 happen, then �3 
will happen within the next 0.15 
seconds, then �4 will happen 
within the next 0.05 seconds. The 
frequency events �1 , �2 , �3 and �4 
are defined in Table 1 for �R
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the performance of the proposed method in fault diagno-
sis. Additionally, in order to have a better performance with 
respect to error rate, we can modify the evaluator’s reward 
function J(Ω) and use the evaluator to approximate the error 
rate instead of the robustness degree.

In order to illustrate the performance of sTFPG in fault 
diagnosis, we conduct some comparison experiments in 
terms of fault diagnosis accuracy. In the first experiment, 
we compare our method with two feature-based fault diag-
nosis algorithms and one TFPG-based method. The com-
parison results are shown in Table 4, in which we compare 
the proposed sTFPG method with Fisher [18], Genetic 
Algorithm (GA) based SVM [2] and the rTFPG in [9]. The 
performances shown in the table are obtained among test 
data sets. The results show that our method outperforms the 
other methods in general, and only the diagnosis for outer 
race fault has worse performance than the GA+SVM method 
(0.035 vs 0.025). Moreover, the rTFPG has worse perfor-
mance, and the reason is that the rTFPG is defined directly 
over the original signals, thus rTFPG is sensitive to noise.

In the second experiment, we further investigate the prop-
erties of our method by conducting a comparison experi-
ment with the state-of-the-art formal logic-based methods, 
in which we compare the performance between our method 
and methods in [20] and [10] over the inner fault case. In this 
experiment, the lengths of the formulas are set to 4 for all 
approaches, and we check the performance of these methods 
at 20, 40, 60, and 80 minutes during the training process. The 
results are shown in Table 5, which shows that our method 
and the method in [20] can achieve zero miss-classification 
rate within 40 minutes, while the method in [10] cannot 
fully diagnose the faults correctly. [20] can obtain a good 
performance since it searches along with a predefined order 
for the optimal formulas. When the length of the formula 
is smaller, it can obtain a good performance. The method 
in [10] tries to use a Gaussian process to approximate the 
robustness degree function, which is a hard task due to the 

non-convex, non-differentiable and non-smooth properties 
of the robustness degree function. Therefore, [10] cannot 
reach a good performance within a limited time. Moreover, 
the formula learned in [20] and [10] cannot be equivalent to 
sTFPGs, which is a shortage for these two methods. Moreo-
ver, without the guide of supremal language, the formulas 
found by these two methods do not focus on capturing the 
structure information of the signals.

4.2  Discussions

The above case studies indicate that the supremacy of for-
mal logic can guide the search procedure. Moreover, if the 
signals’ structure information is important for the decision 
process, and the signals are contaminated by noise, then 
the supremacy-guided approach has advantages over other 
methods. However, the calculation of supremacy level is a 
computation costly process. Therefore, if the training data 
set is small, the benefit of the supremacy-based strategy may 
not cancel out the computation cost for supremacy level 
calculation.

Another concern of the proposed method is that it does 
not have advantages over other methods when the bearing 
vibration signals are collected with variational shaft rota-
tion speed. Since the structure of the signals for different 
fault types are mixed with each other in this case, while the 
proposed method is good at finding the underlying structure 
of the data. Therefore, when we only consider fault diag-
nosis error rate, the proposed method does not have advan-
tages over state-of-the-art methods for fault diagnosis under 
complex operating environments. However, when we use 
logic formulas for fault detection tasks, in which structure 
information is important to distinguish the fault signals from 
normal signals, the proposed method will have supremacy 
over other methods.

In order to improve the performance of the proposed 
method, extensions of the research can be focused on 

Table 4  Fault diagnosis error 
rate with the methods in [2, 
9, 18] and sTFPGs for rolling 
element bearing fault diagnosis

Error Rate

Fault Type Fisher+SVM [18] GA+SVM [2] rTFPG [9] Proposed method

Inner Race 0.010 0.015 0.255 0.000
Outer Race 0.035 0.025 0.235 0.035
Rolling Element 0.020 0.010 0.115 0.000

Table 5  Comparison results 
between the proposed method 
and the other logic based 
methods for inner race fault

Method Error Rate/ Robustness

Time (min) 20 40 60 80

Proposed Method 0.280/-0.262 0.165/-0.087 0.050/-0.058 0.000/0.022
Frequency Temporal Logic [10] 0.215/-0.212 0.135/-0.113 0.050/-0.016 0.015/-0.013
Temporal Logic [20] 0.270/-0.243 0.150/-0.215 0.135/-0.019 0.115/0.023
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noise-resistant sTFPG. Namely, de-noising techniques 
should be included when we define the formal language, 
e.g., the predicate function p(x) in (2) is a low pass filter 
operator, such that the learned sTFPG can deal with noise. 
Since the TFPG provides the failure propagation infor-
mation, an extension of its application can be focused on 
remaining useful life (RUL) estimation for rolling element 
bearings. When the sTFPG is used for RUL estimation, the 
robustness of the learned formula can be an indicator for the 
RUL, since it shows how much the collected signal satisfies 
the formula.

De-noising techniques have been intensively studied 
in the field of bearing fault diagnosis. sTFPG shows the 
failure prorogation pattern among the time-frequency 
representation, it provides an underlying structure of 
the signals. This structure information can be used to 
guide the de-noising procedure for bearing fault diag-
nosis. For example, when a de-noising auto-encoder 
shown in [26] is used to deal with the noise among roll-
ing element bearing signals, the spectral temporal logic 
encoded by sTFGP can be used to guide the learning 
process, in which the robustness degree can be a part of 
the cost function during the training process. This com-
bination of sTFGP and de-noising auto-encoder has two 
advantages. Firstly, the sTFGP restricts the searching 
space for parameters optimization among auto-encoder, 
thus it speed-ups the learning procedure. Secondly, the 
obtained signals processed by the auto-encoder will not 
lose the structure information, avoiding learning a result 
that has no physical meaning. Moreover, cross-domain 
knowledge can be encoded with sTFPG, e.g., knowledge 
from human experts and knowledge from deep learning 
results. The encoded knowledge can be used to guide 
the fault diagnosis process when we use deep learning 
techniques to diagnose the faults. Therefore, another 
extension of this work is cross-domain intelligent fault 
classification [16, 17].

In this paper, the proposed method is used to detect 
multiple bearing faults, thus it can be used to detect multi-
ple faults. Moreover, the underlying mechanism of the pro-
posed method is finding a spectral temporal logic formula 
to classify the faults. The found formula can be mapped to 
a timed failure propagation graph. Since spectral tempo-
ral logic can capture the time-frequency properties among 
signals, and the gear faults can be obtained from time-
frequency analysis based on existing techniques, it is pos-
sible to use spectral temporal logic to detect the faults of 
gear. Moreover, gear fault signals and bearing fault signals 
have similar patterns, e.g., the faults will cause a sequence 
of impulses among the time-frequency representation of 
the signals. Thus the proposed method can be applied to 
detect gear faults.

5  Conclusions

The paper presents a novel approach to construct sTFPGs 
automatically from labelled data sets. The constructed sTF-
PGs can be used for fault diagnosis. which has been dem-
onstrated with real data sets from rolling element bearings. 
Moreover, sTFGPs provide a transparent way for fault diag-
nosis. By transforming the sTFGP construct procedure into 
a spectral temporal logic inference problem, the reinforce-
ment learning framework can be used to find the optimal 
STL formula. The advantages of the proposed method have 
been demonstrated with experiments with real data sets. The 
experiment results indicate the supremacy of the formal lan-
guage can guide the learning process and provide robustness 
to noises for the learned sTFPGs. Given the popularity of 
formal language in safety-critical systems, we believe this 
paper provides a necessary foundation for many future sys-
tem monitoring frameworks.
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