
Vol.:(0123456789)1 3

Applied Intelligence
https://doi.org/10.1007/s10489-021-03107-6

Timed failure propagation graph construction with supremal
language guided Tree‑LSTM and its application to interpretable fault
diagnosis

Gang Chen1

Accepted: 13 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Timed failure propagation graphs (TFPGs) perform fault diagnosis in a transparent way. However, accurate TFPGs depend
on experts’ knowledge or accurate model of the system, which is hard to obtain for complex systems. This paper presents a
data-driven TFPG construction approach for fault diagnosis, which finds spectral-timed failure propagation graphs (sTFPG)
directly from data. The sTFPG construction problem is transformed into a spectral-temporal logic inference problem and
solved with a tree-structured long short-term memory (LSTM) network. Therefore, no expert or accurate model is needed to
construct the TFPG. Moreover, the training process is guided and sped up by the supremacy property of the spectral-temporal
logic, which focuses on the structure information of the signals and incorporates the physical meanings in the learning
process. Experimental results on real rolling element bearing data sets illustrate that the performance of the proposed fault
diagnosis method is comparable with state-of-the-art machine learning methods in fault diagnosis accuracy, and outperforms
the logic-based method in computational efficiency. Additionally, fault diagnosis with TFPG can be understood by humans
and reveal the fault mechanism.

Keywords Bearing fault diagnosis · Spectral temporal logic · Supremal language · Timed failure propagation graph · Tree-
structured long short-term memory networks

1 Introduction

Timed Failure Prorogation Graphs (TFPGs) have attracted
intensive studies among scholars and have been widely used
for fault diagnosis of safety-critical systems [4, 7]. TFPG can
be seen as a symbolic model of failure dynamics among a
dynamic system, describing the occurrence of failure events
and their propagations over time in the systems. They are
powerful tools for fault diagnosis tasks for two reasons:
Firstly, they are capable to model temporal logic relation-
ships between basic faults and intermediate events. The
temporal logic relationships among basic events rely on the
operational modes of the systems, which also define the con-
straints of the event delays; Secondly, TFPGs can be easily

explained with natural language and understood by human
users, which enables the cooperation between fault diagno-
sis systems and human maintainers, thus reduces the cost
of maintenance and enhances the system performance [22].

In the FAME project [5], the TFPGs were often manu-
ally derived from a given dynamic system based on experts’
knowledge about the abstract representation of the system’s
behaviour under specific faulty conditions. In [4], a com-
prehensive approach was introduced to validate manually
built TFPGs against the behaviours of the corresponding
system. However, since modern industrial systems become
more and more complex, it is impossible for experts to know
the abstract representation and define the TFPGs precisely.
Therefore, in line with considerable interest in TFPGs as
tools for timed failure propagation modelling, many scholars
have used them as the basics for fault diagnosis implementa-
tions and tried to generate the TFPGs automatically with the
system behaviours [1, 7].

To reduce the work of experts, article [27] proposed an
automated synthesis approach to construct TFPGs based
on timed automata. Following a component topology, it

 * Gang Chen
 datagangchen@126.com

1 Shien-Ming Wu School of Intelligent Engineering, South
China University of Technology, Guangzhou 511442, China

http://orcid.org/0000-0003-4970-2540
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-03107-6&domain=pdf

 G. Chen

1 3

discovers discrepancies between the output signals and the
failures in input signals, traversing the zone graph of the
automata, while it could not provide any formal characteri-
zation. As an improvement, article [4] presented an approach
to support generic finite and infinite-state transition systems,
defined discrepancies and failure modes as generic prop-
erties of the system state, and produce TFPGs with well-
defined formal characteristics. The above two approaches
assume the discrepancy nodes are given, which assumes
the abstracted states of the system are given, thus not suit-
able for complex systems whose abstractions are hard to get.
With the structural information, article [14] synthesized the
TFPG with component models, but did not consider system
dynamics. This approach is only possible with well-defined
component models. To make good use of historical main-
tenance data, article [28] presented an approach for TFPG
maturation, in which the TFPG can be improved with the
historical maintenance data. However, the quality of data
restricts the quality of the resulting model, and no guarantee
can be obtained.

In this paper, we present a data-driven approach for con-
structing a kind of TFPG, called sTFPG, which takes as
input a set of labelled time-series data of the system and
does not require the knowledge of discrepancy nodes or
structural model of the system. We first define a formal
language, called spectral temporal logic (STL), which is a
formal language to specify the temporal behaviours of the
frequency events among the signals from the systems to be
diagnosed and can be understood by human users. More-
over, we show that every sTFPG is equivalent to an STL
formula, thus the sTFPG construction problem can be trans-
formed into a spectral temporal logic inference problem.
This work is extensive research about our previous work in
[9], in which we construct the TFPG by searching through
a set of predefined discrepant nodes. Since the complex-
ity and expressiveness of the approach are restricted by the
size of predefined discrepant nodes, this paper tries to use
a machine learning method to address the complexity issue
in our previous work. Moreover, the TFPG in this paper is
defined over the spectral of the signals, thus it is expected to
be more robust to noise and be suitable for vibration signals.

The sTFPG construct process in this paper is inspired by
natural language generation. Both of them try to choose a set
of words (atomic formulas in temporal logic) sequentially
to construct a sentence (formula in temporal logic). The key
issue that should be solved is to encode the meaning of the
sentence in terms of hierarchical and nested structures of
words [12, 13, 25, 25, 31]. Similar to the field of natural lan-
guage generation, a key challenge for the sTFPG construct is
how to incorporate semantic and syntax information in the
learning process. In the field of interpretable fault diagnosis,

semantic and syntax information are of great importance,
since they include physical meanings of the diagnosis results
and mechanism of the faults.

Existing data-driven approaches have many advantages
over the knowledge-based methods (knowledge about the
abstraction or model of the system) in TFPG construction,
but they cannot be directly used to construct sTFPGs for
three reasons. Firstly, without the knowledge of the system
to be interpreted, the constructed sTFPGs may not show the
physical properties of the system and will find irrelevant
knowledge. For example, when we apply the data-driven
approach in [9] to diagnose the faults of rolling element
bearings, the sTFPGs may tell us that the energies of the
resonant frequencies of inner race fault and outer race fault
are different, i.e., inner race fault has larger impulse energies
than outer race fault. However, based on the mechanism of
rolling-element bearing fault, which tells us that the strikes
of rollers on the fault surface will excite the fault signals
and produce the resonant frequencies of structures between
the bearing and transducers [23]. Namely, the difference
between inner race fault signals and outer race is the reso-
nant frequencies, but not the energies of the frequencies.
Secondly, traditional machine learning approaches cannot
determine the supremacy of the discovered sTFPGs and loss
the structure information among signals. When we apply
traditional machine learning methods to find an interpreta-
tion for the signals, such as the method in [10], it is possible
to find two different formal descriptions that can interpret
the properties of the signals, but it is hard to tell which one
is better. Even though the method in [10] evaluates differ-
ent logic-based methods with a numerical metric, called
robustness degree, the numerical metric does not reveal
the physical meanings of the signals. Thirdly, robustness
degree is sensitive to the amplitude values of signals, and it
ignores the structure information of the signals. However, in
practice, structure information contains the physical process
knowledge of a system and the mechanism of the faults. As
mentioned in the above rolling element bearing fault diagno-
sis example, robustness degree can distinguish two kinds of
faults based on different resonant energies of the signals, but
it cannot distinguish different faults based on the temporal
relationship among resonant energies of the signals.

In this paper, we address the aforementioned issues of
machine learning methods by investigating the internal rela-
tionship between different spectral temporal logic formulas.
Given two spectral temporal logic formulas, we not only care
about how good the formulas can interpret the signals via
robustness degree metric but also care about the structure
difference among formulas via supremacy analysis. To our
knowledge, it is the first attempt to consider the supremacy
of the learned formal languages. Compared with existing

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

studies, the contributions of this paper include threefold as
follows:

– We propose a novel two-domain formal logic that is suit-
able to describe the time-frequency properties of vibra-
tion signals, thus it can be used to describe fault features
among vibration signals and diagnose faults for rotary
machines.

– We develop a fully data-driven approach to construct
sTFPGs without the need for expert knowledge, in which
the learning process is guided by supremacy analysis of
formal languages, avoiding losing structure information
among signals. The proposed approach is the first attempt
to unify the discrete logic events reasoning and continue
variables learning problem in one framework.

– We demonstrate the performance of the proposed
approach in fault diagnosis by experiments with real
data sets collected from rolling element bearings. The
experimental results indicate the proposed method can
reveal the fault mechanism of rolling-element bearing
and diagnose the faults in noisy environments with high
accuracy.

This paper is organized as follows: Section 2 introduces the
STL, the supremacy of STL language and formulates the
sTFPG construction problem; Section 3 presents a supremal
language guided tree-structured long short-term memory
network (T-LSTM) based framework to solve the problem;
Section 4 applies the proposed method to data sets collected
from a rotary machine for fault diagnosis tasks; Finally, sec-
tion 5 concludes the paper.

2 Problem statement

This section will define STL formally and give an example
to show the properties of STL. Then we define the problem
solved in this paper formally.

2.1 Spectral temporal logic

Spectral temporal logic is an extended version of sig-
nal temporal logic [20], and defined over discrete-
frequency, discrete-time, continuous-valued time-fre-
quency representation of a signal. Given a frequency
doma in F = {kf0|k = 0, 1, 2,⋯} , a t ime doma in
T = {k�|k = 0, 1, 2,⋯} , a discrete-frequency, discrete-
time, continuous-valued time-frequency representation
is a function x ∈ F(T ,F,ℝn) , where � and f0 are the
sampling interval for time and frequency, respectively.
F(A,B,C) denotes the set of all functions from A × B to

C. Note that the time-frequency representation is multi-
dimensional in the third direction, since the signal can
be multidimensional. When the signal is multidimen-
sional, its time-frequency representation is computed for
each dimension independently. We use x(t, f) to denote
the value of time-frequency representation for signal x at
time t and frequency f. Moreover, the time-frequency rep-
resentation of signal x comes from the second temporal
moment over time, called moment spectrogram. At every
time t, we use a window to select a piece of signal, and
calculate the second temporal moment to get the spectrum
at time t based on the method in [10]. Then we slide the
window to get the time-frequency representation of the
signal. Formally, STL is defined as follows.

Definition 1 Spectral temporal logic is a time-frequency
logic defined over signals’ moment spectrogram. The syntax
of an STL formula � is defined recursively as:

where [f1, f2] and [a, b] denote the frequency and time inter-
val, respectively. � is a predicate over the spectrogram, and
� ∶= g(x(t, f)) ∼ c with g ∈ F(ℝn,ℝ) being a function that
maps the spectral of the signal at time t and frequency f to a
real value, ∼∈ {≥,<} , and c ∈ {kc0|k ∈ ℕ} being a constant,
where c0 is the sampling interval. We use ∨ to denote logic
(“or”) and use ∧ to denote logic (“and”) operators, respec-
tively. Moreover, the spectral operator ◻ denotes “always”
operator, indicating the statement following the operator
always true, and ◊ denotes “eventually” operator, indicat-
ing the statement to be true at leas once between f1 and f2
Hz, respectively. Finally, the temporal operator U denotes
“Until” operator. For example, ◻[f1,f2]

� means � is always
true between f1 and f2 Hz, and ◊[f1,f2]

� means � is eventually
true between f1 and f2 Hz.

Note that STL is a two-domain logic, i.e., time
domain and frequency domain, but it defines the time
domain and frequency domain properties indepen-
dently. All the spectral patterns are defined with � and
all the temporal patterns are defined with � . We also
define a quantitative semantics for STL, called robust-
ness degree � ∶ F(T ,F,ℝn) × Ψ → ℝ , which maps an
STL formula � ∈ Ψ and a spectrogram x ∈ F(T ,F,ℝn)
to a real value. The robustness degree measures the
robustness of the formula with respect to perturbation,
which is measured by how far the spectrogram of a
signal x is away from satisfying STL formula � at (t, f),
denoted as �(x,�, t, f) and defined as:

(1)
� ∶= �|�1 ∧ �2|◻[f1,f2]

�|◊[f1,f2]
�,

� ∶= �|�1 ∧ �2|�1 ∨ �2|�1U[a,b]�2

 G. Chen

1 3

�(x,�, t, f) ≥ 0 means the behaviours of signal x can be
described with � at time t and frequency f correctly, denoted
as x[t, f] ⊧ 𝜑 , and 𝜌(x,𝜑, t, f) < 0 means the behaviours of
signal x violates � at time t and frequency f, denoted as
x[t, f] ⊭ 𝜑 . Therefore, to check whether a signal x satisfies
a formula � at (t, f), we only need to calculate the robustness
degree �(x,�, t, f) . To simplify the notations, we use �(x,�)
to denote �(x,�, 0, 0) for short.

Next, we will introduce the relation between STL and
sTFPG. The sTFPG used in this paper is a kind of TFPG
defined specifically for capturing spectral temporal fea-
tures. With small modifications from [9], the sTFPG used
in this paper is a directed graph, in which the edges are
from failure mode(s) to discrepancy events and can be
defined as follows.

Definition 2 (sTFPG). An sTFPG i s a tuple
G = ⟨F,D,E,ET ,DC,DP⟩ , where (i) F is a set of fail-
ure mode nodes; (ii) D is a set of discrepancy nodes; (iii)
E ⊆ V × V is a set of edges with V = F ∪ D ; (iv) ET ∶ E → I
maps an edge e ∈ E to a time interval [tmin(e), tmax(e)] ∈ I
with tmin(e) and tmax(e) being the minimum and maximum
propagation times on the edge e; (v) DC ∶ D → {AND,OR}
maps a discrepancy node d ∈ D to its discrepancy type; and
(vi) DP maps a discrepancy node d ∈ D to an STL formula

𝜓 ∶= ◻[f1,f2]
(l(x)

< 𝜋1 ∧ l(x) ≥ 𝜋1)|◊[f1,f2]
(l(x)

< 𝜋1 ∧ l(x) ≥ 𝜋2)
 over a time-frequency representation x,

where 𝜋1 > 𝜋2 , and l(x) < 𝜋2 and l(x) ≥ �2 are the predicates
defined in (1).

sTFPGs inherit all the desirable properties of TFPGs, but
the semantics of an sTFPG are defined over time-frequency
representation of signals, which makes sTFPGs be suitable
for rotary machines fault diagnosis. We have the following
proposition.

Proposition 1 If a spectrogram x actives a node in an sTFGP
G, denoted as d ∈ D , there is an STL formula �d associated
to the node, such that �(x,�d) ≥ 0.

Lemma 1 in [9] shows that when a signal actives a node
in sTFPG G, it must satisfy a signal temporal logic formula.

(2)

𝜌(x, (p(x) < 𝜋), t, f) = 𝜋 − g(x(t, f))

𝜌(x, (p(x) ≥ 𝜋), t, f) = g(x(t, f)) − 𝜋

𝜌(x,◻[f1,f2)
𝜇, t, f) = min

f �∈[f+f1,f+f2)
𝜌(x,𝜇, t, f �)

𝜌(x,◊[f1,f2)
𝜇, t, f) = max

f �∈[f+f1,f+f2)
𝜌(x,𝜑, t, f �)

𝜌(x,𝜑1 ∧ 𝜑2, t, f) = min
(
𝜌(x,𝜑1, t, f), 𝜌(x,𝜑2, t, f)

)

𝜌(x,𝜑1 ∨ 𝜑2, t, f) = max
(
𝜌(x,𝜑1, t, f), 𝜌(x,𝜑2, t, f)

)

𝜌(x,𝜑1U[a,b]𝜑2, t, f) = maxt�∈[t+a,t+b](min(𝜌(x,𝜑2, t
�, f),

mint��∈[t,t�] 𝜌(x,𝜑1, t
��, f))

Since STL proposed in this paper has similar semantics to
signal temporal logic used in [9] when the nodes are atomic
formulas about the spectral properties, it is easy to prove
Proposition 1. Based on the Lemma 1 in [9], we know that
whenever there exists a temporal operator U in an STL for-
mula � , it can be mapped to an edge in G. Further, if the
directed graph starting from a failure mode is ended at one
discrepancy node, we say the STL formula defined by the
last node of the directed graph is the STL formula for the
failure mode.

2.2 Illustration example

Example 1 Figure 1 shows one such sTFPG. The intervals
over the edges denote the time intervals when a failure
event will propagate from a node to the child node. An OR
node will be satisfied when one of its parents’ event has
reached to the node within the time interval defined by the
edge, while an AND node will be satisfied when all of its
parents’ events have reached to the node within the time
interval defined by the edges. In this paper, the edges to
an AND node have the same time interval for simplicity.
The main difference between the sTFPG used in this paper
and a traditional TFPG is that the discrepancy nodes of our
sTFPG are defined by atomic STL formulas. For example,
formula 𝜑1 = ◊[550,1250](x(t, f) ≥ −51.0 ∧ x(t, f) < −49.5)
is attached to D1, which requires the spectrogram
should be eventually greater than -51.0 dB and smaller
than -49.5 dB between 550 and 1250 Hz at time t, for-
m u l a 𝜑2 = ◻[350,900](x(t, f) ≥ −50.5 ∧ x(t, f) < −47.5)
is for node D2, which requires the spectrogram
should be always smaller than -47.5 dB and larger
then -50.5 dB between 350 and 900 Hz at time t, for-
m u l a 𝜑3 = ◻[1200,2000](x(t, f) < −47.0 ∧ x(t, f) ≥ −50.5)
is for D3, which requires the spectrogram should be
always greater than -50.5 dB and smaller than -47.0
dB between 1200 and 2000 Hz at time t, and formula
𝜑4 = ◊[1200,1800](x(t, f) ≥ −51.5 ∧ x(t, f) < −47.5) is for D4,
which requires the spectrogram should be eventually greater
than -51.5 dB and smaller than -47.5 dB between 1200 and
1800 Hz at time t, respectively. The graph shows that when
failure FM happens, event D1 will be triggered within the
next 1 second, i.e., �1 is satisfied within the next 1 second,
then event D2 will be triggered within the next 0.1 seconds
and event D3 will be triggered within the next 0.1 seconds,
i.e., formula �3 will be satisfied. Event D4 will be triggered
within 0.2 seconds after event D2 and D3 are triggered, i.e.,
formula �4 will be satisfied. The sTFPG can be mapped to
a formula � = ((�1U[0.0,0.1]�3) ∧ (�1U[0,0.1]�2))U[0.0,0.2]�4 ,
which is the satisfaction condition for node D4.

Figure 2 shows a signal’s moment spectrogram that satis-
fies the sTFPG in Figure 1. The moment spectrogram shows

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

�1 is satisfied at time 0.26 seconds (the moment spectrogram
is larger than -51.0 dB and smaller than -49.5 dB at least
once between 550 and 1250 Hz); �2 is satisfied at 0.32 sec-
onds (the moment spectrogram is always larger than -50.5
dB and smaller than -47.5 dB between 350 and 900 Hz at
0.32 seconds). The time shift is 0.06, which is in the interval
[0, 0.1]; �3 is satisfied at 0.32 seconds (the moment spec-
trogram is always larger -50.5 dB and smaller than -47.0 dB
between 1200 and 2000 Hz), which happens in the interval
[0.0, 0.1]; Similarity, we can see �4 is satisfied at time 0.38
seconds (the moment spectrogram is larger than -51.5 dB
and smaller than -47.5 dB at least once between 1200 and
1800 Hz), which is within the next 0.0 to 0.2 seconds after
�2 and �3 are satisfied. Therefore, the moment spectrogram
satisfies formula �.

2.3 Supremal language

In this subsection, we discuss the supremacy of STL for-
mulas. Based on Proposition 1, any STL formula can be
mapped to an sTFPG. Since the STL formulas are defined
over the continuous-valued, discrete frequency and dis-
crete time space, in order to get a symbolic representa-
tion of the time-frequency representation, we partition the
state space of the signals’ spectrums into intervals with
equal length. As shown in Figure 3, the state space is parti-
tioned and we assign a low case alphabet to each partition,
which can be seen as an abstraction of the spectrum space
[24]. Based on the partition, we can obtain an abstrac-
tion for each signal’s spectrum. Given a spectrum of a
signal at time t, denoted as x(t, f), we can define a word
� = �(x(t, f)) , which is the sequence of low case alphabet,
where � is a map that maps a spectral value to an alpha-
bet. Moreover, since the node of sTFPG is defined with
formula

𝜓 ∶= ◻[f1 ,f2]
(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1)|◊[f1 ,f2]

(l(x)

< 𝜋1 ∧ l(x) ≥ 𝜋1)
 , in which the

predicates (l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) define a rectangle among

the spectral-amplitude plane. Similarity, we assign an
upper case alphabet to each rectangle. As shown in Fig-
ure 3 (left), we assign alphabet A3 to the rectangle defined
by 𝜓 = (x(3, 3) ≥ 3 ∧ x(3, 3) < 6) . Obviously, the rectangle
may contain many small partitions, and when � (A3) is
satisfied, a ∨ b ∨ c is true at x(3, 3). Namely, the value of
the spectrum at x(3, 3) should be a or b or c. Based on
the semantic of STL, we can check that Figure 3 (middle)
satisfies formula ◻[3,7]� (◻[3,7]A3) and Figure 3 (right) sat-
isfies formula ◊[3,7]� (◊[3,7]A3).

In the time domain, we focus on the structure of the sig-
nals and ignore the precise temporal relationship, thus we
ignore the temporal interval after “Until” operator. Given
an STL formula � , we use �(�) to denote the abstracted
formula, called �−STL formula. Moreover, we denote the
node formulas in sTFPG as a set of atomic proposition AP.
Obviously, the syntax and semantics of �−STL is the same
with linear temporal logic (LTL) [8], which is defined
based on a set of atomic propositions AP as follows.

where �,�1 , and �2 are LTL formulas and ⊤ denote logic
“true”. The logic is defined over Σ = 2AP . Since the LTL
formulas defined by syntax in (3) can be transformed
into Büchi automata [15], the abstracted �−STL formulas
can also be transformed into Büchi automaton. A Büchi
automaton is a 5-tuple A = (Q,Σ, �, I,F) , where Q denotes
a finite set of states, Σ is a finite alphabet, and Σ� = 2Σ ;
� ∶ Q × Σ�

→ Q to be a transition function, denoting the

(3)𝜙 ∶= ⊤|p ∈ AP|𝜙1 ∨ 𝜙2|𝜙1 ∧ 𝜙2|𝜙1U𝜙2,

Fig. 1 An illustration of an sTFPG G. Circles are OR nodes. Dotted
and solid boxes are failure mode node and AND node, respectively

Fig. 2 Spectral of the signal at time 0.24 sec, 0.4 sec, 0.48 sec, and
0.58, respectively. The green regions are the spectrums should reach,
and the pink regions are the spectrums should not avoid

 G. Chen

1 3

state changing relations; I ⊆ Q is a set of initial states, and
F = {F1,F2,⋯ ,Fm} , where Fj ⊆ Q × Σ� × Q are sets of
accepting transitions.

Example 1 (Continued.) In this example, we reconsider the
sTFPG in Figure 1 and show how the TFPG can be repre-
sented by an STL formula. The formula associated to the
sTFPG is � = ((�1U[0.1,0.3]�3) ∧ (�1U[0,0.2]�2))U[0.1,0.4]�4 ,
where �1,�2,�3 and �4 are defined in Example 1. If we see
�1,�2,�3 and �4 as atomic propositions, we can obtain an
LTL formula � = ((�1U�3) ∧ (�1U�2))U�4 . Here the atomic
proposition AP = {�1,�2,�3,�4}.

In the above example, the atomic propositions are the
atomic formulas, which are independent from the signals.
To allow the Büchi automata to have more detail description
capacity, in the rest of this paper, we expand the atomic
formulas with symbols from the abstraction map � . For
example, formula ◻[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) can be
expanded into ∧f2

i=f1
Ai , where Ai is the abstracted symbol for

rectangle (l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) at frequency i. Similarly,
formula ◊[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) can be expanded into
∨
f2
i=f1

Ai . Note that the expanded formulas are still LTL for-
mulas and can be transformed into Büchi automata, but the
transformed automata have larger atomic proposition sets.

Next, we consider the supremacy of sTFPGs, in which
we investigate which sTFPG is the best one to interpret the
signals. The underlying assumption for this investigation is
that a better sTFPG will be robust to the variation of the sig-
nals’ amplitude values, and captures the structure features of
the signals, thus is more expressive. This assumption is rea-
sonable, since the mechanism of fault is usually unchanged,
while the signals from the system to be diagnosed are usu-
ally contaminated by noises or affected by the variation of
operations. The noises and varying operations will change
the amplitude values. Thus a more expressive sTFPGs will be
closer to the fault mechanism. Given a set of sTFPGs, we say
the associated STL formula for the most expressive sTFPG as
the supremal formula, which is defined as follows.

Definition 3 (Supremal Formula) Given a set of STL formu-
las Φ , we say a formula is the supremal formula among Φ ,
denoted as S(Φ) if the following condition holds:

where �(x) is the abstraction for signal x. Note that the
supremal formula is defined over formula set Φ , but not
defined over signals, which indicates that the supremacy
of a formula is independent from the signals. This prop-
erty is very important, since data-driven methods usu-
ally assume we have enough data, but in practice, we
cannot guarantee the coverage of the data for the learn-
ing tasks. If the supremal formula is independent from
the data, it will be more robust to the size and quality
of data sets. A related concept about supremacy is par-
tial order, in which for any two formulas �1,�2 , we say
�1 is a partial order of �2 , denoted as �1 ⪯ �2 , if ∀x ,
𝛼(x) ⊧ 𝛼(𝜑1) ⟹ 𝛼(x) ⊧ 𝛼(𝜑2).

Since each STL formula can be mapped to an LTL for-
mula, the supremacy of formulas can be investigated in terms
of formal language. We use Σ to denote a finite alphabet, i.e.,
a set of event, and Σ+ is the set of all finite sequences of
events (an event is an element of Σ) taken from Σ and we have
Σ∗ = Σ+ ∪ {�} , where � is the empty sequence. A sequence
of events is also called a string, and � ∈ s means that event
� occurs at least once in s [29]. For any string s ∈ Σ∗ ,
�s = s� = s . Given a Büchi automaton A , the transition func-
tion can be extended to strings in Σ∗ by letting �(q, �) = q for
all q ∈ Q , and �(q, s�) = �(�(q, s), �) otherwise. For a state
q ∈ Q and a event � ∈ Σ , the transition �(q, �) is eligible
when the transition is defined, denoted as �(q, �)! . The set
of eligible strings among an automaton A is called the lan-
guage of A , denoted as L(A) = {s ∈ Σ∗|∃q0 ∈ I, �(q0, s)!} .
The accepting language of the automaton A is denoted as
La(A) = {s ∈ Σ∗|∃q0 ∈ I, �(q0, s)! and ∃� ∈ s, � ∈ F} . With
a little abuse of notation, here we use L�(�) to denote the
language of an STL formula under abstraction mapping �
and L�

a
(�) the accepting language, respectively. Based on

(4)∀x,∀𝜑 ∈ Φ, if 𝛼(x) ⊧ 𝛼(𝜑), then 𝛼(x) ⊧ 𝛼(S(Φ)).

Fig. 3 Abstraction represen-
tation of a spectrum. (left)
abstraction maps of the
spectrum; (middle) spectrum
that satisfies ∧7

i=3
Ai (w.r.t.

◻[3,7](a ∧ b ∧ c)); (right) spec-
trum that satisfies ∨7

i=3
Ai (w.r.t.

◊[3,7](a ∨ b ∨ c))

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

the definition of supremal formula, we have the following
lemma.

Lemma 1 Given a set of STL formula Φ , �S is the supremal
formula among Φ if ∀� ∈ Φ , we have L𝛼

a
(𝜑) ⊆ L𝛼

a
(𝜑S).

The proof of Lemma 1 is obviously. The condition indi-
cates that for every accepting string of L�

a
(�) , there exists

the same string in L�
a
(�S) , which means that for any sig-

nal x, when the associated string satisfies formula � , i.e.,
�(x) ∈ L�

a
(�)), it must satisfies �S , i.e., �(x) ∈ L�

a
(�S) . How-

ever, the condition for supremal formula is quit conserva-
tive, since for any two formulas �1 , �2 , it is likely that the
two formulas only share some of the accepting language.
Namely L�

a
(�1) ⧵ L

�
a
(�2) ≠ � and L�

a
(�2) ⧵ L

�
a
(�1) ≠ � .

Moreover, when two formulas’ associated automata have
different alphabet sets, it is unlikely that the two automata
share any accepting language, which makes it hard to meas-
ure the supremacy level of the formulas. To deal with this
situation, we introduce a map, called natural projection [32].
For two alphabets Σ1 and Σ2 , which come from the associ-
ated Büchi automata for two STL formulas �1 and �2 , the
natural projection PΣ1→Σ2

∶ Σ∗
1
→ Σ∗

2
 removes from traces

s ∈ Σ∗
1
 all events not in Σ∗

2
 , defined as

To simplify the notation, we use P�1→�2
 to denote PΣ1→Σ2

for simplicity. Figure 4 shows a conceptual illustration of
the natural projection of two formulas �1,�2 , in which
P�1→�2

(L�
a
(�1)) indicates the strings in L�

a
(�1) that can

find their associated projected strings in L�
a
(�2) . If all the

strings in L�
a
(�1) can find their projected strings in L�

a
(�2) ,

we say �2 has larger supremacy than �1 . Then the metric for
supremacy level of two formulas can be defined as

where | ⋅ | denotes the cardinality of a set. Based on the defi-
nition of supremacy level, if �1 ⪯ �2 , then r(�1,�2) ≤ 1 and
for all � ∈ Φ , r(�,S(Φ)) ≤ 1.

(5)PΣ1→Σ2
(s�) =

{
PΣ1→Σ2

(s)�, if � ∈ Σ2

PΣ1→Σ2
(s), otherwise .

(6)

r(�1,�2) =

{ |P�1→�2
(L�

a
(�1))∩L

�
a
(�2)|

|P�2→�1
(L�

a
(�2))∩L

�
a
(�1)|

, if P�2→�1
(L�

a
(�2)) ≠ �,

0, otherwise ,

2.4 Problem formulation

We wish to construct an sTFPG by finding an STL for-
mula, which can be used to classify time-series data
from a rotational machine. Moreover, the associated
language defined by the STL formula is a supremal lan-
guage among the formula space, which gives an expres-
sive explanation about the failure propagation properties
among the machine. Here we consider the case in which
the sTFPG construction procedure can learn from his-
torical data that has been labelled according to whether
or not it represents a faulty behavior. More formally, we
will solve Problem 1.

Problem 1 Let X = X+ ∪ X− be a labeled set of moment
spectrogram obtained by calculating the second tempo-
ral moment over time to a set of time-series data from a
rotational machine. Let D be a set of atomic formulas hav-
ing the form of 𝜓 ∶= ◻[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) and
◊[f1,f2]

(l(x) < 𝜋1 ∧ l(x) ≥ 𝜋1) , and � is the abstraction map for
STL formulas. Let T be a set of temporal operators having
the form of U[a,b] . The goal is to choose N atomic formulas
from D and connect these atomic formulas with Boolean
operator ∧,∨ and temporal operator U[a,b] , such that

is expected to be maximized, where �(x,�N) and �(x,¬�N)
are the robustness degrees of time-frequency representation
x with respect to �N and its negation, respectively. The first
term of R(X,�N) is the robustness degree of �N with respect
to X, and the second term is the average supremacy level
among a set of formulas Φ , where Φ is a set of formulas
among the search space and constructed dynamically dur-
ing the construction procedure. � is a constant value, which
balances the effect of the two terms.

This problem is modified from the supervised learning
problem previously addressed in [20]. In [20], the formula
is defined with signal temporal logic, and the searching
process is guided by a predefined order, whose search

(7)

R(X,�N) = min(minx∈X+(�(x,�N)), minx∈X−(�(x,¬�N)))

+�
1

�Φ�
∑

�∈Φ r(�N ,�),

Fig. 4 A conceptual illustration
of the natural projection of two
formulas �1,�2

 G. Chen

1 3

space grows exponentially with respect to the number of
dimensions of the signal and the length of the formula.
Moreover, the formulas learned in [20] cannot be mapped
to an sTFPG. In this paper, we will find STL formulas
with T-LSTM for fault diagnosis tasks and the searching
procedure will consider the supremacy of the found STL
formulas. Considering the definition of supremal language,
we have the following lemma.

Lemma 2 (Existence) Given D and T as described in Prob-
lem 1, there exists a set of formulas Φ , such that any STL
formula � constructed with D and T , ∃�� ∈ Φ, r(�,��) ≤ 1.

The proof of Lemma 2 is simple, since we can increase
the size of Φ to satisfy the condition. The issue is that it is
hard to figure out the size of Φ , which is related to the size
of D and the way how D is generated. In this paper, we set
the size of Φ through experiments.

3 Spectral‑timed failure propagation graph
construction with T‑LSTM

The goal of this paper is to construct an STL formula, such
that the cost function in (7) is maximized. Figure 5 illus-
trates the overall framework proposed in this paper, which
includes three components: Policy network, Parser network,
and Evaluator. The policy network adopts a stochastic policy
and samples an atomic formula from D at each step, which
is a formula generation network. It keeps sampling until
the number of atomic formulas reaches a limitation N. The
parser takes the sequence of sampled atomic formulas as
inputs and outputs an STL formula by constructing the pars-
ing tree for the formula with a sequence of actions, denoted
as P� . The Evaluator evaluates the performance of the gen-
erated formula. Since the reward can be computed once the
final structure of the formula is available, the process can
be naturally addressed by the policy gradient method [30].

3.1 Tree‑LSTM for syntactic parsing

The parser component tries to select a sequence of operations
from a predefined set {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} , where

S denotes a shift operator, D means ∨ operator, C means ∧
operator and U[a1,b1]

 means U[a1,b1]
 operator, to construct an

STL formula with the sequence of atomic formulas cho-
sen by the Policy network. As shown in Figure 6, a unique
sequence of {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} operations cor-

responds to a unique binary parse tree of the selected atomic
formulas, which further leads to a unique STL formula. We
note that for a sequence of atomic formulas of length N,
there are exactly N shift (S) operations and N − 1 CON-
JUNCTION/DISJUNCTION/UNTIL (C∕D∕U[a,b]) opera-
tions that are needed to construct the parse tree.

Our Parser follows the Stack-augmented Parser-
Interpreter Neural Network (SPINN) [6], which is a
shift-reduce parser that uses LSTM as its composition
function. Given an input sequence of atomic formulas
� = {�1,�2,⋯ ,�N} , the parser tracks an index p start-
ing from the leftmost formula (p = 1) and maintains a
stack. To parse the sequence of formulas, parser chooses
a sequence of operations �̂� = {a1, a2,⋯ , a2N−1} , where
at ∈ {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯} . When an S operation is

chosen, the formula �i is pushed to the stack and the pointer
will move to the next atomic formula (p++) for next step of
choosing; while when a D∕C∕U[a,b] operation is chosen, the
stack pops two elements out, and combines them into a single
formula with ∨∕ ∧ ∕U operator, and pushes it back to the
stack. Here we use T-LSTM as the parsing function, which
maps a operation to a value, denoting the probability that the
operation will be chosen. To select the operations, we param-
eterize each operation at ∈ {S,D,C,U[a1,b1]

,⋯ ,U[ai,bi]
,⋯}

with a policy network P�(⋅|�p,W) , where �p represents the
current state at stack p and W is the parameter matrix of
the network. During the parsing procedure, a two-layer feed-
forward network is used to approximate the state vector esti-
mation function, whose inputs are the hidden states of the

Fig. 5 Structure of the graph construction process. The policy net-
work samples an atomic formula at each state. The Parser finds the
syntax parsing tree and outputs the final formula � for approximation

task when the parsing tree is completed. The approximation perfor-
mance, supremacy level and robustness degree obtained provide the
reward to the networks

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

top two elements of the stack hi and hj and the probability of
operation ap to be chosen is defined as:

where Ψ = {W1,W2, b1, b2} are the parameters for the two-
layer feed-forward network. Figure 7 (right) shows the
encoding map for operators in T . The first bit indicates
the spectral operator used, i.e., 0 for “always” and 1 for
“eventually”, the second bit indicates the dimensional
index of the signal, the third bit indicates the comparison
operator, i.e., 0 for ≥ and 1 for <, the fourth bit indicates
the scale value and the last two bits indicate the spectral
bounds for the spectral operator. Figure 7 (left) shows
the encoding map for atomic formula, where each atomic
formula is represented with a six-dimensional vector. The
first bit indicates the spectral operator used, i.e., 0 for
“always” and 1 for “eventually”, the second bit indicates
the dimensional index of the signal, the third bit indicates
the comparison operator, i.e., 0 for ≥ and 1 for <, the
fourth bit indicates the scale value and the last two bits
indicate the spectral bounds for the spectral operator. For

(8)
�p = ReLU(Wp[hi, hj, ap] + bp)

P�(ap|�p;Ψ) = softmax(W2
�p + b2)

example, formula ◻[1,2](x1 ≥ 0.1) can be encoded as vector
[0, 1, 0, 0.1, 1, 2].

Evaluator: To evaluate the performance of the parser
network, the last state vector �N is fed to the evaluator net-
work, which is a two-layer feed-forward network and the
reward function is the combination of robustness degree,
supremacy level and robustness degree approximation
error, defined as:

where Ω denotes all the parameters, Ws�N + bs is the approxi-
mation for the robustness degree, and � is a factor that bal-
ances the importance of cost function and approximation
error. The goal of the Parser network and Evaluator is to
maximize the reward J(Ω) . Note that the calculation of J(Ω)
needs a set of formulas Φ . In this step, we initialize Φ with
M STL formulas with length N, then during the temporal
logic inference procedure, Φ is updated with the new gener-
ated formula �N by calculating the supremacy level r(�,�N)
for all � ∈ Φ . If r(𝜑,𝜑N) > 1 for all � ∈ Φ , then Φ is not
updated; else Φ is updated by replacing the formula that has
smallest supremacy level.

(9)J(Ω) = −(Ws�N + bs − �(X,�N))
2 + �R(X,�N)

Fig. 6 Two examples of the trees and their corresponding opera-
tion sequences. There are 4 input atomic formulas (4 leaf nodes)
for each example, so 7 actions are needed to construct a valid pars-
ing tree. A SHIFT (S) operation introduces a leaf node, while a

DISJUNCTION(D)/CONJUNCTION(C)/UNTIL(U) operation com-
bines two previously nodes and introduces a non-leaf node. Obvi-
ously, different operation sequences lead to different tree structures
and STL formula

Fig. 7 Encoding maps for
atomic formulas in D and
operators in T

 G. Chen

1 3

3.2 Policy network for atomic formula generation

The Policy network adopts a stochastic policy �(�t|�t;Θ)
and uses a delayed reward to improve the policy. During
the learning process, it samples an atomic formula with
the probability at each state whose representation sp is con-
structed by the hidden states in the Parser network. Let �t
is the atomic formula at time t, the policy is defined as,

where �(�t|�t;Θ) denotes the probability of choosing �t , and
Θ = {Wi, bp,W

i, bp} denotes the parameters of the Policy net-
work. In the beginning, the hidden states hi and hj of the stack
are initialized with zero vectors, and the state of the current
formula representation �p is calculated based on Eqn.(8), then
the word at the begin is sampled based on Eqn.(10). Since
there are N shift operations will be chosen by the Parser net-
work if the length of the formula is N, the Policy network will
sample an atomic formula from D whenever all the atomic
formulas have been pushed to the stack, i.e., only the �p at the
step when p++ point to null will be used for the policy network.
During the training process, we use the policy gradient method
to optimize the parameters of the policy network, aiming to
maximize the expected reward and the gradient is,

(10)
ŝt = ReLU(Wl[hi, hj,𝜔t] + bp)

𝜋(𝜔t|�t;Θ) = softmax(Wpŝt + bp)

(11)▽Θ =

N∑

t=1

R(X,�N)▽Θlog�(�t|�t;Θ)

where R(X,�N) is the reward defined in Eqn.(7) obtained
when the formula is constructed completely. Compared
with traditional machine learning-based methods that use
classification performance as the reword function, e.g., the
reward function in [3, 6, 11, 33], the reward function used in
this paper includes the structure information of the formu-
las, which shapes the reward function by supremacy. Even
though there exist many language machine learning methods
that have incorporated the syntax information in the learning
process, such as the methods in [21, 34, 35], these methods
encode the syntax information into a vector representation,
which losses the physical meaning of the syntax, thus cannot
be used to interpret the fault diagnosis results.

3.3 Training process

In this section, we train the above networks using a policy
gradient algorithm. To simplify the training process, here we
train the three components jointly, which is shown in Algo-
rithm 1. The training process includes three steps. Firstly,
we pre-train the Parser network and Evaluator. Secondly, we
pre-train the Policy network while keeping the parameters of
the other two models fixed. At last, we jointly train all three
components. Compared with other learning algorithms,
our algorithm is guided by the language, which shapes the
reward and speeds up the learning process.

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

4 Case studies

In this section, we will evaluate the performance of the pro-
posed method for sTFPG construction and its application to
fault diagnosis and interpretation. The signals are processed
with Matlab and Python environments.

4.1 Fault diagnosis for fixed speed rolling element
bearing

In this experiment, the rotational machine is a rolling-ele-
ment bearing test-rig as shown in Figure 8, which has been
used in [19]. To collect the faulty signals of rolling element
bearings, the electrical-discharge machining method was
used to introduce single pitting faults. The faults are added
to the surface of the race or the rolling body of a series of
rolling element bearings (one type fault for each). The sig-
nals are collected with the shaft speed being fixed and the
sampling rate is 12 kHz.

During the experiment, we introduce three kinds of faults
to the bearings, i.e., rolling element fault, inner race fault,
and outer race fault. After all the data has been collected,
200 signal samples with length 10000 for each condition
(sampled within 0.83 seconds) were used for demonstration

(600 pieces in all). To obtain spectrograms of the signals,
we calculate the second temporal moment over time with
the Matlab embedded function for each piece of the signals.
Therefore, we have 200 spectrograms samples for each bear-
ing condition. Then we construct the labeled training and
testing set. The positive training set for inner fault includes
100 samples from inner fault signals, and the negative set
includes 100 samples from the other two conditions (50 sam-
ples for each). Then the training sets for the other two con-
ditions are constructed accordingly. The positive testing set
for inner fault includes the rest 100 samples from inner fault
signals, and the negative testing set includes 100 samples
from the other two faults (50 samples for each). We construct
the training and testing sets for each fault independently and
accordingly.

The training process is initialized by generating 1000
atomic formulas for D and 100 temporal operators with the
form of U[a,b] for T . The spectrum partition size for formulas
in D is 50 Hz, and the amplitude partition size for formulas
in D is 0.5 dB. Since the temporal partition size is not rel-
evant to computational complexity, here the minimum inter-
val for the temporal domain is 0.05 seconds. The Policy and
Parser produce an 18-dimensional vector for the state vector
and we set the length of the formula with 4 words. We run

Fig. 8 a The test rig and (b) the
location of the accelerometer for
signal collection

Fig. 9 Average robustness
degree and its variance obtained
for each training epoch among
testing data sets for learning
algorithm with supremacy
guided strategy (left) and with-
out supremacy guided strategy
(right)

 G. Chen

1 3

the training on a 64bit Linux computer with a 16-core CPU
at 3.8 GHz, GeForce GTX 1070 GPU, and 64GB RAM.

Figure 9(left) shows the average robustness degrees and
their variances of 10 trails obtained by Algorithm 1 for
each epoch among the testing sets. These results indicate
that our algorithm can reach positive robustness and clas-
sify the conditions of the bearings for three faults, indicating
the obtained STL formula can diagnose the faults correctly
among the testing set. In Figure 9(right), we also show the
results of a modified Algorithm 1, in which we infer the for-
mal language without the guide from the supremacy level.
Namely, the modified reward function is defined as

where the supremacy level is not used. Figure 9 shows the
algorithm guided by supremacy used about 40 epochs to
reach a positive robustness degree, while the algorithm
without supremacy guide needed about 80 epochs to reach a
positive robustness degree. The comparison results indicate
supremacy-guided algorithm can speed up the learning
procedure. Moreover, the results also show the supremacy-
guided algorithm can obtain formulas with larger robustness
degrees, which indicates the obtained formulas will be more
robust to noise.

Table 1 shows the learning results for the three faults
with STL formulas. Note that we add ◊[0,0.5] before every
generated formula, allowing the formulas to be satisfied at
any time within 0.5 seconds, which emits the time align-
ment process for the signals. The semantics of the formulas
are shown in Table 2, in which we use LOW and HIGH
to indicate the low and high energy concentration, respec-
tively. The semantics have omitted the temporal information
for simplicity, which can be found in the captions in Fig-
ure 10, 11 and12. The sTFPGs with respect to the formulas

(12)R�(X,�N) = min(min
x∈X+

(�(x,�N)), min
x∈X−

(�(x,¬�N))).

are shown in Figure 10-12, which shows that the fault pat-
terns for the faults are different in the energy concentra-
tion. The sTFPGs have some nodes denoting the spectral
are larger than some values within some frequency bands,
showing that the occurring of fault conditions will lead to
a larger value for the spectral at the time within these fre-
quency bands (HIGH). Then the larger energy concentration
bands will be followed by low energy concentration within
some time intervals (HIGH then LOW). Moreover, differ-
ent faults will have different concentration patterns in the
frequency domain. Since the fault mechanism of rolling-
element bearing is that the impulse energy comes from the
strikes of rollers on the fault surface and excites the striking
response of the bearing system, which means our sTFPGs,
which denote a sequence of impulse energies, are in line
with the fault mechanism. With the knowledge given by the
sTFPG, maintainers know that avoiding energy concentra-
tion will reduce the risk of system failure, e.g., adding vibra-
tion isolation devices.

Table 3 shows the average faults diagnosis results for the
experimental data with the learned STL formulas among 10
tails, in which the robustness and error rate is used as the
metrics. Note that the formula that obtains positive robust-
ness indicates it diagnose the fault correctly. On the con-
trary, the formula that obtains negative robustness may lead
to misdiagnosis. For example, the outer race has negative

Table 1 sTFPG associated STL formulas for inner race, outer race and rolling element faults with real experiment data

Table 2 The semantics for STL formulas for inner race, outer race and rolling element faults with real experiment data

Table 3 Fault diagnosis results with sTFPGs for real bearing signals

Fault type Robustness Degree Error Rate

- Training Testing Training Testing

Inner Race Fault 0.032 0.022 0.000 0.000
Outer Race Fault 0.023 -0.033 0.000 0.030
Rolling Element Fault 0.043 0.011 0.000 0.000

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

robustness among testing data sets leading to misdiagnosis in
Table 3, which may be caused by the noise or the differences
of fault patterns or distribution between training and testing
data. The results not only show our method can find the
sTFPGs that are in line with the failure mechanisms of roll-
ing element bearing, but also achieve fault diagnosis errors
that are less than 5% among the test data sets. Moreover,

the increase of robustness may not lead to a decrease in
error rate, since we can only guarantee that positive robust-
ness leads to a zero error rate. When we use a robustness
definition that is smooth and differentiable, it is expected
to have a relationship that a larger robustness degree will
lead to a smaller error rate. In our future work, we will try
to investigate the effect of robustness degree definition on

Fig. 10 a A moment spectrogram
from an inner race fault bearing;
(b) The sTFPG obtained by
�
I
= ◊[0,0.5] ((�1U[0,0.05]�2)U[0,0.1]�3)U[0,0.15]�4 ,

which shows when inner fault
happens (I in dash box), event
�1 will happen within the next
0.5 seconds, then �2 will happen
within the next 0.02 seconds, then
�3 will happen within the next 0.1
seconds, then event �4 will happen
within the next 0.15 seconds. The
frequency events �1 , �2 , �3 and �4
are defined in Table 1 for �I

Fig. 11 a A moment spectrogram
from an outer race fault bear-
ing; (b) The sTFPG obtained by
�
O
= ◊[0,0.5] ((�1U[0,0.1]�2) ∧ �3)U[0,0.2]�4)) ,

which shows when outer fault
happens (O in dash box), event �1
and �3 will happen within the next
0.5 seconds. After �1 happens,
then �2 will happen within the
next 0.1 seconds. After �2 and
�3 happen, then �4 will happen
within the next 0.2 seconds. The
frequency events �1 , �2 , �3 and �4
are defined in Table 1 for �O

Fig. 12 a A moment spectrogram
from a rolling element fault bear-
ing; (b) The sTFPG obtained by
�
R
= ◊[0,0.5] (((�1 ∧ �2)U[0,0.15]�3)U[0,0.05]�4) ,

which shows when rolling element
bearing fault happens (R in dash
box), event �1 and �2 will hap-
pen within the next 0.5 seconds.
After �1 and �2 happen, then �3
will happen within the next 0.15
seconds, then �4 will happen
within the next 0.05 seconds. The
frequency events �1 , �2 , �3 and �4
are defined in Table 1 for �R

 G. Chen

1 3

the performance of the proposed method in fault diagno-
sis. Additionally, in order to have a better performance with
respect to error rate, we can modify the evaluator’s reward
function J(Ω) and use the evaluator to approximate the error
rate instead of the robustness degree.

In order to illustrate the performance of sTFPG in fault
diagnosis, we conduct some comparison experiments in
terms of fault diagnosis accuracy. In the first experiment,
we compare our method with two feature-based fault diag-
nosis algorithms and one TFPG-based method. The com-
parison results are shown in Table 4, in which we compare
the proposed sTFPG method with Fisher [18], Genetic
Algorithm (GA) based SVM [2] and the rTFPG in [9]. The
performances shown in the table are obtained among test
data sets. The results show that our method outperforms the
other methods in general, and only the diagnosis for outer
race fault has worse performance than the GA+SVM method
(0.035 vs 0.025). Moreover, the rTFPG has worse perfor-
mance, and the reason is that the rTFPG is defined directly
over the original signals, thus rTFPG is sensitive to noise.

In the second experiment, we further investigate the prop-
erties of our method by conducting a comparison experi-
ment with the state-of-the-art formal logic-based methods,
in which we compare the performance between our method
and methods in [20] and [10] over the inner fault case. In this
experiment, the lengths of the formulas are set to 4 for all
approaches, and we check the performance of these methods
at 20, 40, 60, and 80 minutes during the training process. The
results are shown in Table 5, which shows that our method
and the method in [20] can achieve zero miss-classification
rate within 40 minutes, while the method in [10] cannot
fully diagnose the faults correctly. [20] can obtain a good
performance since it searches along with a predefined order
for the optimal formulas. When the length of the formula
is smaller, it can obtain a good performance. The method
in [10] tries to use a Gaussian process to approximate the
robustness degree function, which is a hard task due to the

non-convex, non-differentiable and non-smooth properties
of the robustness degree function. Therefore, [10] cannot
reach a good performance within a limited time. Moreover,
the formula learned in [20] and [10] cannot be equivalent to
sTFPGs, which is a shortage for these two methods. Moreo-
ver, without the guide of supremal language, the formulas
found by these two methods do not focus on capturing the
structure information of the signals.

4.2 Discussions

The above case studies indicate that the supremacy of for-
mal logic can guide the search procedure. Moreover, if the
signals’ structure information is important for the decision
process, and the signals are contaminated by noise, then
the supremacy-guided approach has advantages over other
methods. However, the calculation of supremacy level is a
computation costly process. Therefore, if the training data
set is small, the benefit of the supremacy-based strategy may
not cancel out the computation cost for supremacy level
calculation.

Another concern of the proposed method is that it does
not have advantages over other methods when the bearing
vibration signals are collected with variational shaft rota-
tion speed. Since the structure of the signals for different
fault types are mixed with each other in this case, while the
proposed method is good at finding the underlying structure
of the data. Therefore, when we only consider fault diag-
nosis error rate, the proposed method does not have advan-
tages over state-of-the-art methods for fault diagnosis under
complex operating environments. However, when we use
logic formulas for fault detection tasks, in which structure
information is important to distinguish the fault signals from
normal signals, the proposed method will have supremacy
over other methods.

In order to improve the performance of the proposed
method, extensions of the research can be focused on

Table 4 Fault diagnosis error
rate with the methods in [2,
9, 18] and sTFPGs for rolling
element bearing fault diagnosis

Error Rate

Fault Type Fisher+SVM [18] GA+SVM [2] rTFPG [9] Proposed method

Inner Race 0.010 0.015 0.255 0.000
Outer Race 0.035 0.025 0.235 0.035
Rolling Element 0.020 0.010 0.115 0.000

Table 5 Comparison results
between the proposed method
and the other logic based
methods for inner race fault

Method Error Rate/ Robustness

Time (min) 20 40 60 80

Proposed Method 0.280/-0.262 0.165/-0.087 0.050/-0.058 0.000/0.022
Frequency Temporal Logic [10] 0.215/-0.212 0.135/-0.113 0.050/-0.016 0.015/-0.013
Temporal Logic [20] 0.270/-0.243 0.150/-0.215 0.135/-0.019 0.115/0.023

Timed failure propagation graph construction with supremal language guided Tree‑LSTM and…

1 3

noise-resistant sTFPG. Namely, de-noising techniques
should be included when we define the formal language,
e.g., the predicate function p(x) in (2) is a low pass filter
operator, such that the learned sTFPG can deal with noise.
Since the TFPG provides the failure propagation infor-
mation, an extension of its application can be focused on
remaining useful life (RUL) estimation for rolling element
bearings. When the sTFPG is used for RUL estimation, the
robustness of the learned formula can be an indicator for the
RUL, since it shows how much the collected signal satisfies
the formula.

De-noising techniques have been intensively studied
in the field of bearing fault diagnosis. sTFPG shows the
failure prorogation pattern among the time-frequency
representation, it provides an underlying structure of
the signals. This structure information can be used to
guide the de-noising procedure for bearing fault diag-
nosis. For example, when a de-noising auto-encoder
shown in [26] is used to deal with the noise among roll-
ing element bearing signals, the spectral temporal logic
encoded by sTFGP can be used to guide the learning
process, in which the robustness degree can be a part of
the cost function during the training process. This com-
bination of sTFGP and de-noising auto-encoder has two
advantages. Firstly, the sTFGP restricts the searching
space for parameters optimization among auto-encoder,
thus it speed-ups the learning procedure. Secondly, the
obtained signals processed by the auto-encoder will not
lose the structure information, avoiding learning a result
that has no physical meaning. Moreover, cross-domain
knowledge can be encoded with sTFPG, e.g., knowledge
from human experts and knowledge from deep learning
results. The encoded knowledge can be used to guide
the fault diagnosis process when we use deep learning
techniques to diagnose the faults. Therefore, another
extension of this work is cross-domain intelligent fault
classification [16, 17].

In this paper, the proposed method is used to detect
multiple bearing faults, thus it can be used to detect multi-
ple faults. Moreover, the underlying mechanism of the pro-
posed method is finding a spectral temporal logic formula
to classify the faults. The found formula can be mapped to
a timed failure propagation graph. Since spectral tempo-
ral logic can capture the time-frequency properties among
signals, and the gear faults can be obtained from time-
frequency analysis based on existing techniques, it is pos-
sible to use spectral temporal logic to detect the faults of
gear. Moreover, gear fault signals and bearing fault signals
have similar patterns, e.g., the faults will cause a sequence
of impulses among the time-frequency representation of
the signals. Thus the proposed method can be applied to
detect gear faults.

5 Conclusions

The paper presents a novel approach to construct sTFPGs
automatically from labelled data sets. The constructed sTF-
PGs can be used for fault diagnosis. which has been dem-
onstrated with real data sets from rolling element bearings.
Moreover, sTFGPs provide a transparent way for fault diag-
nosis. By transforming the sTFGP construct procedure into
a spectral temporal logic inference problem, the reinforce-
ment learning framework can be used to find the optimal
STL formula. The advantages of the proposed method have
been demonstrated with experiments with real data sets. The
experiment results indicate the supremacy of the formal lan-
guage can guide the learning process and provide robustness
to noises for the learned sTFPGs. Given the popularity of
formal language in safety-critical systems, we believe this
paper provides a necessary foundation for many future sys-
tem monitoring frameworks.

Declarations

Conflicts of interest The authors declare that they have no conict of
interest.

References

 1. Abdelwahed S, Karsai G, Mahadevan N, Ofsthun SC (2008) Prac-
tical implementation of diagnosis systems using timed failure
propagation graph models. IEEE Transactions on Instrumenta-
tion and Measurement 58(2):240–247

 2. Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection
in cancer classification using pso/svm and ga/svm hybrid algo-
rithms. In: 2007 IEEE Congress on Evolutionary Computation,
pp. 284–290. IEEE (2007)

 3. Bartocci E, Deshmukh J, Gigler F, Mateis C, Ničković D, Qin X
(2020) Mining shape expressions from positive examples. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39(11):3809–3820

 4. Bittner, B., Bozzano, M., Cimatti, A.: Automated synthesis of
timed failure propagation graphs. In: 25th International Joint Con-
ference on Artificial Intelligence, pp. 972–978 (2016)

 5. Bittner, B., Bozzano, M., Cimatti, A., De Ferluc, R., Gario, M.,
Guiotto, A., Yushtein, Y.: An integrated process for fdir design in
aerospace. In: International Symposium on Model-Based Safety
and Assessmemt, pp. 82–95. Springer (2014)

 6. Bowman, S., Gupta, R., Gauthier, J., Manning, C.D., Rastogi, A.,
Potts, C.: A fast unified model for parsing and sentence under-
standing. In: 54th Annual Meeting of the Association for Com-
putational Linguistics, pp. 1466–1477. Association for Compu-
tational Linguistics (2016)

 7. Bozzano, M., Cimatti, A., Gario, M., Micheli, A.: SMT-based
validation of timed failure propagation graphs. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 29, pp.
3724–3730 (2015)

 8. Camacho, A., McIlraith, S.A.: Learning interpretable mod-
els expressed in linear temporal logic. In: Proceedings of the

 G. Chen

1 3

International Conference on Automated Planning and Schedul-
ing, vol. 29, pp. 621–630 (2019)

 9. Chen G, Lin X, Kong Z (2021) Data-driven real-timed-failure-
propagation-graph refinement for complex system fault diagnosis.
IEEE Control Systems Letters 5(3):1049–1054

 10. Chen G, Liu M, Chen J (2020) Frequency-temporal-logic-based
bearing fault diagnosis and fault interpretation using bayesian
optimization with bayesian neural networks. Mechanical Systems
and Signal Processing 145:106951

 11. Chen G, Liu M, Kong Z (2020) Temporal-logic-based semantic
fault diagnosis with time-series data from industrial internet of
things. IEEE Transactions on Industrial Electronics. https:// doi.
org/ 10. 1109/ TIE. 2020. 29849 76

 12. Chen G, Wei P, Jiang H, Liu M (2020) Formal language genera-
tion for fault diagnosis with spectral logic via adversarial training.
IEEE Transactions on Industrial Informatics. https:// doi. org/ 10.
1109/ TII. 2020. 30407 43

 13. Chomsky, N., Lightfoot, D.W.: Syntactic structures. Walter de
Gruyter (2002)

 14. Dubey, A., Karsai, G., Mahadevan, N.: Fault-adaptivity in hard
real-time component-based software systems. In: Software Engi-
neering for Self-adaptive Systems II, pp. 294–323. Springer
(2013)

 15. Fritz, C.: Constructing büchi automata from linear temporal
logic using simulation relations for alternating büchi automata.
In: International Conference on Implementation and Application
of Automata, pp. 35–48. Springer (2003)

 16. Hu C, He S, Wang Y (2021) A classification method to detect
faults in a rotating machinery based on kernelled support tensor
machine and multilinear principal component analysis. Applied
Intelligence 51(4):2609–2621

 17. Hu C, Wang Y, Gu J (2020) Cross-domain intelligent fault clas-
sification of bearings based on tensor-aligned invariant subspace
learning and two-dimensional convolutional neural networks.
Knowledge-Based Systems 209:106214

 18. Jian, Z., Li, X.B., SHI, X.z., Wei, W., WU, B.b.: Predicting pillar
stability for underground mine using fisher discriminant analysis
and SVM methods. Transactions of Nonferrous Metals Society of
China 21(12), 2734–2743 (2011)

 19. Jiang H, Chen J, Dong G, Liu T, Chen G (2015) Study on han-
kel matrix-based svd and its application in rolling element bear-
ing fault diagnosis. Mechanical systems and signal processing
52:338–359

 20. Kong Z, Jones A, Belta C (2016) Temporal logics for learning
and detection of anomalous behavior. IEEE Transactions on Auto-
matic Control 62(3):1210–1222

 21. Kumar A, Ahuja K, Vadapalli R, Talukdar P (2020) Syntax-guided
controlled generation of paraphrases. Transactions of the Associa-
tion for Computational Linguistics 8:330–345

 22. Lei Y, Jia F, Lin J, Xing S, Ding SX (2016) An intelligent fault
diagnosis method using unsupervised feature learning towards
mechanical big data. IEEE Transactions on Industrial Electronics
63(5):3137–3147

 23. Li Y, Liang X, Zuo MJ (2017) Diagonal slice spectrum assisted
optimal scale morphological filter for rolling element bearing fault
diagnosis. Mechanical Systems and Signal Processing 85:146–161

 24. Long, Z., Calin, G., Majumdar, R., Meyer, R.: Language-the-
oretic abstraction refinement. In: International Conference on
Fundamental Approaches to Software Engineering, pp. 362–376.
Springer (2012)

 25. Ma, M., Huang, L., Zhou, B., Xiang, B.: Dependency-based con-
volutional neural networks for sentence embedding. In: Proceed-
ings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pp.
174–179 (2015)

 26. Meng Z, Zhan X, Li J, Pan Z (2018) An enhancement denois-
ing autoencoder for rolling bearing fault diagnosis. Measurement
130:448–454

 27. Priesterjahn, C., Heinzemann, C., Schäfer, W.: From timed autom-
ata to timed failure propagation graphs. In: 16th IEEE Interna-
tional Symposium on Object/component/service-oriented Real-
time Distributed Computing, pp. 1–8. IEEE (2013)

 28. Strasser, S., Sheppard, J.: Diagnostic alarm sequence maturation
in timed failure propagation graphs. In: 2011 IEEE AUTOTEST-
CON, pp. 158–165. IEEE (2011)

 29. Su R, Van Schuppen JH, Rooda JE (2011) The synthesis of time
optimal supervisors by using heaps-of-pieces. IEEE Transactions
on Automatic Control 57(1):105–118

 30. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy
gradient methods for reinforcement learning with function approx-
imation. In: Advances in Neural Information Processing Systems,
pp. 1057–1063 (2000)

 31. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic repre-
sentations from tree-structured long short-term memory networks.
In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers),
pp. 1556–1566 (2015)

 32. Ware S, Su R (2016) Time optimal synthesis based upon sequen-
tial abstraction and its application to cluster tools. IEEE Transac-
tions on Automation Science and Engineering 14(2):772–784

 33. Wen, T.H., Gašic, M., Mrkšic, N., Rojas-Barahona, L.M., Su,
P.H., Vandyke, D., Young, S.: Toward multi-domain language
generation using recurrent neural networks. In: NIPS Workshop
on Machine Learning for Spoken Language Understanding and
Interaction. Citeseer (2015)

 34. Zhang, Z., Wu, Y., Zhao, H., Li, Z., Zhang, S., Zhou, X., Zhou, X.:
Semantics-aware bert for language understanding. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp.
9628–9635 (2020)

 35. Zhang, Z., Wu, Y., Zhou, J., Duan, S., Zhao, H., Wang, R.: Sg-net:
Syntax-guided machine reading comprehension. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp.
9636–9643 (2020)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TIE.2020.2984976
https://doi.org/10.1109/TIE.2020.2984976
https://doi.org/10.1109/TII.2020.3040743
https://doi.org/10.1109/TII.2020.3040743

	Timed failure propagation graph construction with supremal language guided Tree-LSTM and its application to interpretable fault diagnosis
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Spectral temporal logic
	2.2 Illustration example
	2.3 Supremal language
	2.4 Problem formulation

	3 Spectral-timed failure propagation graph construction with T-LSTM
	3.1 Tree-LSTM for syntactic parsing
	3.2 Policy network for atomic formula generation
	3.3 Training process

	4 Case studies
	4.1 Fault diagnosis for fixed speed rolling element bearing
	4.2 Discussions

	5 Conclusions
	References

