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Abstract— How to effectively and reliably guarantee the
correct functioning of safety-critical cyber-physical systems in
uncertain conditions is a challenging problem. This paper
presents a data-driven algorithm to derive approximate ab-
stractions for piecewise affine systems with unknown dynamics.
It advocates a significant shift from the current paradigm of
abstraction, which starts from a model with known dynamics.
Given a black-box system with unknown dynamics and a linear
temporal logic specification, the proposed algorithm is able to
obtain an abstraction of the system with an arbitrarily small
error and a bounded probability. The algorithm consists of
three components, system identification, system abstraction,
and active sampling. The effectiveness of the algorithm is
demonstrated by a case study with a soft robot.

I. INTRODUCTION

The proliferation of cyber-physical systems (CPSs) brings
how to effectively and reliably guarantee their correct behav-
iors to the forefront of problems we as control engineers need
to address. One natural choice to attain correct functioning is
to consider formal methods techniques, e.g., model checking
[1]. One crucial component of formal methods is a precise
and potentially concise mathematical model of the system
under investigation. However, in reality we rarely have full
knowledge of complex CPSs during their design and even
testing phases. Thus how to attain formal guarantee for
systems with partially or fully unknown dynamics becomes
a problem of practical significance.

In this paper, we aim to address this problem in the
context of abstraction. Given a system model T and a
formal specification φ written, for instance, in linear temporal
logic (LTL), an abstract model of T is a simpler model
T ′; checking whether the simpler model T ′ satisfies φ
suffices to decide whether T satisfies φ. For systems that
can be described by discrete state models, abstraction can
be achieved by using the concepts of simulation and bi-
simulation [2], [3]. In control community, recently there have
been many successful efforts pertaining to the abstraction
of systems of more realistic dynamics, such as those that
are piecewise affine [4], [5], [6], [7]. All these studies, as
far as we know, assume models of known dynamics, which
significantly impedes the application of abstraction in the
analysis and design of systems with inherent uncertainties,
e.g., those needing to interact with a variety of human users.

One principle way of mitigating uncertainties is to utilize
machine learning. Actually, the integration of formal meth-
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ods and machine learning has shown great potential in the
formal design, verification, and validation of CPS recently
[8], [9], [10], [11]. In this paper, we will focus on how
to combine machine learning techniques, particularly system
identification [12] and active learning [18], and formal meth-
ods techniques [13] to generate approximate abstractions for
systems with black-box (unknown), piecewise affine (PWA)
dynamics.

The major contribution of this paper is that it addresses
many theoretical and algorithmic issues pertaining to the
integration of existing approximate abstraction techniques
[13] and system identification techniques [12]. Given a
system with unknown PWA dynamics, the paper shows
that it is possible to extract an abstract model with an
arbitrarily small error and a bounded probability (under
certain mild assumptions). Even though the paper focuses
on PWA systems, the preliminary results obtained in it can
potentially pave the way for future developments for systems
with more complex dynamics.

II. PRELIMINARIES AND NOTATION

A N dimensional polytope X is defined as the convex
hull of at least N + 1 affinely independent vectors in RN . A
complete partition of X is a set of open polytopes Xi, i ∈ I
(I is a finite index set) in RN such that Xi1 ∩ Xi2 = ∅
for all i1, i2 ∈ I, i1 6= i2 and cl(X ) = ∪i∈Icl(Xi), where
cl(Xi) denotes the closure set of Xi. According to the H-
representation, each Xi, i ∈ I can be represented as Xi =
{x ∈ RN : Hix ≺ Ki}, where ≺ denotes componentwise
inequality.

A piecewise affine (PWA) system [14] can be written as
follows:

xk+1 = f(xk) + e

f(x) =


A1x+ b1 if x ∈ X1

...
Asx+ bs if x ∈ Xs

(1)

where xk is the state of the system at step k; f : X → RN
is a PWA map; e ∈ N (0, σ2

e) is an independently, identically
distributed and zero mean Gaussian noise with standard
deviation σe; s is the number of modes; Ai, bi are the
parameters of the i-th mode (Ai, i = 1, · · · , s is assumed
to be nonsingular in this paper); and all s modes together
constitute a complete partition of X .

A transition system is a tuple T = (Q, δ,O, o), where Q
is the state space; δ : Q → 2Q (2Q is the powerset of Q)
is a transition map assigning a state q ∈ Q to its next state
q′ ∈ Q; O is the set of observations; and o : Q → O is
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an observation map assigning each q ∈ Q an observation
o(q) ∈ O [1]. We denote a region of the state space as
P ⊂ Q. The embedding transition system of a PWA system
S described by Eqn. (1) is a tuple Te = (Qe, δe, Oe, oe),
where Qe = ∪i∈IXi; δe : x→ x′ iff there exists i ∈ I such
that the transition from x to x′ satisfies Eqn. (1); Oe = I;
and oe(x) = i iff x ∈ Xi [13].

The reachability metric over two transition systems T1 and
T2 is defined as [15]:

d(T1, T2) = h(Reach(T1), Reach(T2)),

where h is the Hausdorff distance and Reach(T ) is the set
of all reachable states of T . Given two transition systems T1

and T2 with the same observation set O and a reachability
metric d defined over them, a relation Sσ ⊆ Q1×Q2 is called
a σ−approximate simulation relation of T1 by T2 [15] if for
all (q1, q2) ∈ Sσ:
• d(o(q1), o(q2)) ≤ σ,
• ∀q′1 = Post(q1), there exists q′2 = Post(q2), such that

(q′1, q
′
2) ∈ Sσ , where Post(P ) = {q ∈ Q | ∃p ∈

P with p→ q}.
Moreover, T1 is said to be σ−approximately simulated by
T2, denoted T1 ≺σ T2.

III. PROBLEM STATEMENT

Formally, in this paper, we wish to solve the following
problem:

Problem 1: Given a PWA system S with unknown dy-
namics, an LTL specification φ, and a bound σ > 0, find a
finite transition system T̂ such that p(T̂ ≺σ T ) > 1 − δ,
where p(.) stands for probability, T is the true abstract
transition system of S, and δ is bounded.

Remark 1: By unknown dynamics, we mean that the
following system characteristics are unknown: (i) the number
of modes, s, (ii) the parameters related to the dynamics
of each mode, {Ai, bi, i = 1, · · · , s}, (iii) the parame-
ters related to the partitions (regions) of the state space,
{Hi,Ki, i = 1, · · · , s}, and (iv) the standard deviation of
the Gaussian noise, σe. But we assume that our algorithm,
which will be presented in the next section, can use the
system as a black-box simulator to generate samples. This
is a reasonable assumption since during system design and
testing phases, engineers can always get access to, e.g., a
computer simulation of the system [16].

Remark 2: Notice that the requirement p(T̂ ≺σ T ) >
1 − δ is inspired by the concept of probably approximately
correct (PAC) models in machine learning [17]. It simply
says that the probability that the transition system T̂ (ob-
tained by using our algorithm) is a σ-approximate simulation
by the PWA system S is higher than 1− δ. In other words,
given a PWA system with unknown dynamics, we intend to
find out its approximate abstract transition system T̂ with a
high enough confidence.

IV. DATA-DRIVEN ABSTRACTION ALGORITHM

Fig. 1 illustrates the basic architecture of our data-driven
abstraction algorithm to solve Problem 1. The inputs of the
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Fig. 1: Architecture of our data-driven abstraction algorithm.

algorithm are a black-box PWA system S with unknown
dynamics and an LTL specification φ; the output of the
system is a transition system T . The algorithm can be
roughly divided into three components: system identification,
system abstraction, and active sampling. The goal of the
system identification component is to derive an estimated
PWA model Ŝ based on the data sampled from the black-box
system S (serving as a simulator). The goal of the system
abstraction component is to derive a transition system T
given the identified PWA model Ŝ and the specification
φ. One important procedure of the system identification
component is refinement, which refines the estimated model
Ŝ, until no significant improvement can be achieved, based
on the currently available data and the current abstraction
T . Finally, if no satisfactory abstraction T can be found
after the refinement, the active sampling component will be
implemented to draw new data points with the help of the
black-box simulator S .

A. System Identification

Given a black-box PWA system S, or subsequently a set
of K samples D := {yk, xk}, k = 1, · · · ,K, the system
identification component identifies a PWA model, specified
by the number of modes s as well as the mode parameters
Âi, b̂i, Ĥi and K̂i with i = 1, · · · , s. The problem itself is a
well-studied problem [12]. Specifically, we need to find (i) a
minimum positive integer, s, (ii) a set of parameter matrices,
{Âi}si=1 and {Ĥi}si=1, and (iii) a set of parameter vector
{b̂i}si=1 and {K̂i}si=1 (notice that {Ĥi}si=1 and {b̂i}si=1

together constitute a complete partition {Xi}si of the PWA
system’s state space S), such that the estimated parameters
are the solution of the following minimization problem:

(Âi, b̂i, Ĥi, K̂i) = argmin
(xk,yk)∈(D∩Xi)

1

K

K∑
k=1

c(yk − f̂(xk)) (2)

where f̂(.) is specified by Âi, b̂i, Ĥi and K̂i, i = 1, · · · , s
and c is a given penalty function, which is chosen to be
c(·) = || · ||2 in this paper. Notice that solving the identifica-
tion problem involves the simultaneous solving of two sub-
problems, data classification and parameter estimation. Once
the data points have been classified into clusters {Di}si=1
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such that (yk, xk) ∈ Di, i.e., (yk, xk) is attributed to the i-
th mode, mode parameters Âi, b̂i, Ĥi and K̂i can be easily
estimated by solving Eqn. (2).

Our system identification component is modified from the
method proposed in [14]. It consists of two main procedures:
initialization and refinement. One major difference between
our method and the one in [14] is that we utilize the current
abstract transition system to guide the refinement.

Algorithm 1: System Identification Initialization
Input : A bound σ̂, a set of samples

D := {(yk, xk)}, k ∈ {1, · · · ,K}, a ratio
0 < r < 1, and a large number J

Output: Âi, b̂i,Di, Ĥi, K̂i, i = 1, · · · , s
1: Set l = 0 and I0 = {1, · · · ,K};
2: for |Il+1| ≥ rK do
3: Randomly generate a set of parameters

{Aj , bj}, j ∈ {1, · · · , J};
4: Construct sets

Σj = {‖ yk − (Ajxk + bj) ‖≤ σ̂, k ∈ Il} for each
j ∈ {1, · · · , J};

5: Set l = l + 1 and Σmax = argmaxJj=1 |Σj |;
6: With Σmax, estimate Âl and b̂l by solving

(Âl, b̂l) = argmin
A,b

|Σmax|∑
k=1

c(yk − (Axk + b));

7: Set Dl = {k ∈ Il :‖ yk − (Âlxk + b̂l) ‖≤ σ̂} and
Il+1 = Il \ Dl;

8: Find boundaries specified by {Ĥ}li=1 and {K̂}li=1

between sets {Di}li=1; set s = l.

1) Initialization: The pseudo code of the initialization
procedure is shown in Alg. 1. The steps are rather self-
explanatory. Here we would like to provide a few simple
comments for clarification. We need to randomly generate
a matrix Âj and a vector b̂j (Line 3) in each loop, which
is quite inefficient; thus the termination condition |Il+1| ≥
rK (Line 2) can be set loosely, i.e., with a rather large
r. Such a practice is reasonable, given the fact that the
initialization procedure is only meant to generate some good
enough partitions (modes), which will be further refined in
the refinement procedure. As for the boundaries specified
by {Ĥ}li=1 and {K̂}li=1 between sets {Di}li=1 (Line 8),
standard support vector machines (SVM) regression methods
can be used to compute them.

2) Refinement: Given the random nature of the way
Âi, b̂i, i = 1, · · · , s are generated in Alg. 1, it is quite
unlikely that we are able to identify all the correct modes
with the initialization procedure. There are two main issues:
data points that belong to more than one mode (called
“undecidable data points” in [14]) and data points that don’t
belong to any mode (called “unfeasible data points” in [14]).
We refine the identified system model by eliminating these
two types of data points as shown in Alg. 2.

Algorithm 2: System Identification Refinement
Input : Current abstract transition system T ,

parameters Âi, b̂i,Di, Ĥi, K̂i, i = 1, · · · , s
obtained in Alg. 1, and a bound σ̂

Output: Âi, b̂i, Ĥi, K̂i, i = 1, · · · , s
Set β ≥ 0, µ ≥ 0, κ ≥ 0, 0 < θ < 1, l = 1;

while Not terminated do
1: Compute (i∗, j∗) = argmin1≤i<j≤s βi,j with
βi,j =‖ Âi − Âj ‖;

2: if βi∗,j∗ ≤ θtβ then
3: Merge modes i∗ and j∗; Set s = s− 1;
4: Recompute Di∗ = {k ∈ {1, · · · ,K} :

‖ yk − (Âi∗xk + b̂i∗) ‖≤ σ̂};
5: Use CR() and rule Dis() to reassign points;
6: Compute i∗ = argmini=1,··· ,s |Di|/|D|;
7: if |Di|/|D| ≤ θtµ then
8: Discard mode i∗; let s = s− 1;
9: Go to Step 4;

10: Store {Âi}si=1 as {Âoldi }si=1;
11: Update Âi, b̂i, Ĥi, K̂i with new {Di}si=1;
12: if ‖ Âi − Âoldi ‖≤ κ then
13: Terminated.
14: else
15: l = l + 1;

end

B. System Abstraction

Given an estimated PWA model Ŝ (or f̂ ), parameterized
by Âi, b̂i, Ĥi and K̂i with i = 1, · · · , s, and an LTL
formula φ, the goal of the system abstraction component is
to generate a good enough abstraction T . We roughly follow
the approximate abstraction procedures described in [13] to
design and implement the system abstraction component.
Here we are just going to provide a rough outline of the
abstraction algorithm. Interested readers can refer to [13] for
more details. First, a deterministic Buchi automaton Bφ is
constructed from the formula φ. Second, the corresponding
embedding transition system Te is constructed for Ŝ by
simply using the definition of embedding transition system.
Third, an observation map oe is created by partitioning the
state space of the system Te into uniform grids. Fourth, given
the system Te, the observation map oe, and the LTL formula
φ (or its corresponding Buchi automaton Bφ), an initial
transition system T0 is constructed by following standard
abstraction procedures, such as those prescribed in [1]. Fifth,
a product automaton P is constructed as P = T0 × Bφ,
which concerns both the initial transition system T0 and
the specification φ. The product automaton is a tuple P =
(Sp, Sp0, δp, Fp), where Sp is the set of states, Sp0 is the
set of initial states, δp is the transition map, and Fp is the
acceptance condition. Finally, refinement is conducted by
solving a deterministic Rabin game. The pseudo code of the
abstraction refinement procedure is shown in Alg. 3. In the
algorithm, S> is the set of states from which all traces are
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accepted by P , S⊥ is the set of states from which no trace
is accepted by P , and Su: the set of states from which some
but not all traces are accepted by P .

Algorithm 3: System Abstraction Refinement
Input : Current abstract transition system T , current

product automaton P , an initial state q of T ,
and a ratio 0 < η < 1

Output: Refined abstract transition system T̂ and
refined product automaton P̂

Initialize T̂ = T , P̂ = P , and Su = ∅;
while |Su| ≥ η|Q| do

1: Compute S> and S⊥ for P̂;
2: Set Su := Pp \ (S> ∪ S⊥);
3: for all (q, g) ∈ Su do
4: if q ∈ Su then
5: Set q := q;
6: for all (∃qr ∈ q, q′ ∈ Post(qr) and

(qr ∩ Pre(q′)) 6= ∅) do
7: Construct states q1, q2 such that

q1 := qr ∩ Pre(q′),
q2 := qr \ Pre(q′);

8: q := (q \ qr) ∪ {q1, q2};
9: q := q;

10: Update δ and o for T̂ ;
11: Update P̂ and T̂ .

end

C. Active Sampling

The system identification component and the system ab-
straction component described in the last two sub-sections
are based on a fixed data set D := {(yk, xk)}Kk=1. It is
quite obvious that the quality of the system identification
and the system abstraction depends on the quality of the data
set. To improve the quality of the system identification (in
other words, to decrease the number of data points needed
for the system identification), we use an active learning
algorithm developed by our group [18] to sample high quality
(or “informative”) data points for the system identification
component after the initial round (see Fig. 1).

The strategy to find the next data point to sample for round
t + 1 has two steps. In the first step, the best candidate for
each mode is identified as follows:

xi := argmax
x∈X̂i

(Ψi,t(x) + λ
1/2
t %i,t(x)) (3)

where Ψi,t(x) is the Gaussian process regression mean of the
prediction error defined over the data points in Di, %i,t(x)
is the Gaussian process regression variance of the prediction
error defined over the data points in Di, and λt is a regular-
ization factor. In the second step, the active learning algo-
rithm chooses mode i∗ = argmini=1,··· ,s(maxx∈X̂i

Ψi,t(x))
and the corresponding best candidate xi∗ to sample.

D. Main Theorem

Assumption 1: Assume the prediction error of the system
identification component described in Section IV-A can be
characterized by a zero mean Gaussian with a bounded
variance, i.e., f(x)− f̂(x) ∼ N (0, σp(x)2) and σp(x) ≤ C,
where f(x) is the real PWA dynamics and f̂(x) is the
estimated PWA dynamics.

Given this assumption, we can now proceed to the main
theorem of this paper (interested readers can refer to our
report [19] for the proof.)

Theorem 1: Given a PWA system S with unknown dy-
namics, for any σ > ε > 0, the algorithm described in
this paper (with the assumption that the standard deviation
of the prediction error for the system identification compo-
nent is bounded by C) can obtain an approximate abstract
transition system T̂ that is σ-approximately simulated by
the true abstract transition system T of S with a bounded
probability that is greater than 1 − δ, where δ = 1 −

1√
2π(σe+C)

∫ σ−ε
−σ+ε

exp(−υ2/(2(σe + C)))dυ.

V. CASE STUDY

In this section, we will use a soft robot driven by series
pneumatic artificial muscles as an example to demonstrate
our algorithm.

A. Model and LTL Specification

In this case study, we will focus on a particular type of
soft robots, those that are driven by series pneumatic artificial
muscles (sPAM). Such a robot can have two polyethylene
tubing sPAMs, each of which is controlled by a correspond-
ing actuator with pressurized air. Even though the dynamics
of such a robot is nonlinear, in [20], the authors have
shown that its closed-loop behavior can be approximated by
piecewise affine dynamics. Here let’s assume that the robot
under investigation has dynamics as follows:

xk+1 = f(xk) + e (4)

and

f(x) =


[
1 0
0 0.98

]
x if 0 ≤ xk(1) ≤ 0.3[

0.83 0.12
0.12 0.81

]
x+

[
0.01
0.03

]
if xk(1) ≥ 0.3

where x = (x(1), x(2))T is the coordinate of the moving
platform and e is a Gaussian noise with a zero mean and a
standard deviation of 0.1. Please keep in mind that the model
is unknown to our algorithm but the model itself can be used
by our algorithm as a simulator to generate samples.

The specification that needs to be verified is an LTL
formula φ := �(π1 ∧ ♦π2), where “π1 := x(1) is below
0.3", “π2 := x(2) is above 0.6", and � is the temporal
operator “Always”, ♦ is the temporal operator “Eventually”.
Put together, φ specifies that “it should always be true that
x(1) is below 0.3 and eventually x(2) is above 0.6”.
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(a)

(b)

Fig. 2: Comparison results of the system identification com-
ponent used in this paper (green) and the HIT algorithm
(red): (a) Average parameter estimation error with respect
to the number of samples; (b) Average region (partition)
estimation error with respect to the number of samples.

B. Implementation Results

The algorithm proposed in this paper is implemented as a
Matlab tool. The tool takes an LTL formula and a black-box
PWA system as inputs and it outputs an abstract transition
system. The active learning used in the tool is the Gaussian
Process Adaptive Confidence Bound (GP-ACB) algorithm
proposed and implemented by our group in [18]. Moreover,
a Gaussian kernel function is used in GP-ACB. In order to
demonstrate the effectiveness of our algorithm, here we will
provide two sets of implementation results, one regarding the
system identification component and the other one regarding
the entire algorithm.

1) Performance of the System Identification Component:
Here we compare the performance of our system identifica-
tion component with an existing state-of-the-art black-box
system identification tool called the Hybrid Identification
Tool (HIT) [21]. One thing we would like to point out here
is that the evaluation of our system identification component
is conducted in conjunction with other components, e.g.,
abstraction and active sampling, in the loop. It should be
expected that, at worst, our component should have the
same performance as the HIT. However, it may also be
expected that factors such as active-learning based sampling
and abstraction-guided refinement can potentially improve
the identification performance, which turns out to be the case,

at least for this particular case study.
We use two metrics to quantify system identification

errors: parameter estimation error and region estimation
error. Given the parameters of a real PWA model (unknown
to the investigated algorithms), the parameter estimation
error is the sum of the Euclidean distances between the real
parameters and the estimated parameters. The region esti-
mation error is defined the sum of the following Hausdorff
distance:

e(X̂i,Xi) = max{ sup
x∈Xi

inf
y∈X̂i

d(x, y), sup
y∈X̂i

inf
x∈Xi

d(x, y)},

where e(X̂i,Xi) the region estimation error related to the
ith mode with Xi as the real region or partition and X̂i
as the estimated one, d(x, y) is the Euclidean distance
between x and y, and sup and inf stand for supremum and
infimum, respectively. To calculate the Hausdorff distance,
we randomly generate 100 samples inside the state space X̂i
and the state space Xi.

The comparison results based on 5 trials are shown in Fig.
2. It shows that, averagely speaking, the system identification
component proposed in this paper has a comparable or
better performance than HIT. Particularly, Fig. 2b shows
that our algorithm has a faster convergent rate regarding
the region estimation error. This is probably due to the fact
that, generally speaking, active learning, which is used in our
algorithm, out-performs its randomly sampling counterpart,
which is used in HIT.

2) Performance of the Entire Algorithm: As the true
abstract transition system of the system, described by Eqn.
(4), is unknown, here we use the abstract transition system
obtained by using the algorithm proposed in [13] as a
benchmark. We will call this abstract transition system as
T ∗. In [13], the authors have shown that even though their
algorithm cannot attain the true abstract transition system, it
still can get an abstract transition system that is arbitrarily
close to the real one. Of course, we should point out that, in
order to get this abstract transition system T ∗, the algorithm
in [13] should have access to the system model, i.e., T ∗
is generated with a known model. In parallel, we run our
algorithm to extract an abstract transition system T̂ without
access to the dynamics of the model, i.e., T̂ is generated
with a black-box system with unknown dynamics. Then in
order to demonstrate the effectiveness of our algorithm, we
need to show that T̂ should approach T ∗. This turns out to
be the case, at least for this particular case study.

Based on the system dynamics, Eqn. (4), and the LTL
specification φ, we implement the abstraction algorithm
proposed in [13] and obtain an abstract transition system
T ∗, which will be used as a benchmark. Then the algorithm
proposed in this paper is applied to the same system, but
with unknown dynamics. The output of the algorithm is
another abstract transition system T̂ . Here we use a metric
that is inspired by the concept of approximate simulation to
quantify the difference between the two transition systems.
To be more specific, we set the abstraction error to σ if T ∗
is σ−approximately simulated by T̂ . Moreover, the metric
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σ is normalized to σ̄ by the volume of the state space, i.e.,
σ̄ := σ/|X |.

TABLE I: Comparison result with respect to different number
of samples and a fixed number of refinement steps, which is
set to 20.

Number of samples
20 40 60

σ̄ 0.046 0.042 0.035

TABLE II: Comparison result with respect to different num-
ber of refinement steps and a fixed number of samples in
active sampling component, which is set to 10.

Refinement Steps
5 10 20

σ̄ 0.077 0.068 0.050

Fig. 3: State space partitions of the abstract transition system
obtained by using our algorithm for the case study. The
number of refinement steps and the number of samples in
the active sampling component are both set at 20.

The comparison results are shown in Table I and Table II.
Table I shows the comparison results with respect to different
number of samples and a fixed number of refinement steps in
the system abstraction component. Table II shows the com-
parison results with respect to different number of refinement
steps and a fixed number of samples in the active sampling
component. The tables show the average normalized errors σ̄
based on 5 trials. The results show that the larger the number
of refinement steps, the smaller the abstraction error; and the
larger the number of samples, the smaller the abstraction
error. The results also show that, even with a black-box
system, our algorithm can attain an approximate abstract
transition system T̂ that is close to the benchmark abstract
transition system T ∗.

VI. CONCLUSIONS

In this paper, we proposed a data-driven approximate
abstraction algorithm for piecewise affine systems with un-
known dynamics. We demonstrated both theoretically and

empirically that given a black-box PWA system and an LTL
specification, we were able to derive an abstract transition
system that is approximately simulated by the true abstract
transition system. We demonstrated the effectiveness of our
proposed algorithm with a soft robot as a case study.
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